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On some dense subspaces of topological linear spaces. II

1. Introduction. We are mainly concerned with the existence and prop­
erties of some special dense subspaces of F -spaces and of more general 
topological linear spaces. The subspaces considered include x-subspaces, 
spaces which have property (K) and Baire spaces (see Section 2 for some 
terminological explanations). In the F-space case, each of these classes of 
subspaces is strictly smaller than the next one. This is still so under various 
additional assumptions, which is a central theme of this paper (*).

The results of Sections 4, 6 and 7 complement those of Burzyk, Klis, 
Labuda and the second author ([3], [11], [12]). The results of Section 7, 
which are concerned with subspaces of codimension 1 (often called hyper­
planes in the literature), are also related to those of Arias de Reyna [1] and 
Valdivia [20]. Section 5 contains generalizations, to the case of x-subspaces, 
of some theorems of Kruse [10] and Pol [16] on the existence of topological 
linear spaces which admit only very few continuous linear operators.

In addition, we are concerned with extracting m-independent subse­
quences from linearly independent sequences (Section 3). Generalizations and 
improvements of some results of [11], [12] and [13] are given. One of the 
obtained results, Corollary 1(b), proves useful for some constructions in 
Sections 6 and 7.

The final Section 8 is independent of the preceding ones. It gives a proof 
(and a generalization) of a result due to Godefroy and Talagrand [6], which 
is basic for the material of Section 7.

2. Notation, terminology and Proposition (*). Let A be a (Hausdorff) 
topological linear space. We say that a sequence (x„) in X  is

• 00
m-independent if for every sequence (x„)em = lœ such that Xnxn = 0

n = 1
we have (/„) = 0;

(*) Some of this material was presented at the 6th Prague Topological Symposium (1986).
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an l-sequence if it is linearly independent and the series £  x„ is
n— 1

subseries convergent.

(See [11], Definition 1, and [5], p. 62, respectively, where a slightly 
different terminology is used.)

We shall frequently use the following result ([11], Proposition 3; see 
also Theorem 1 below for an improvement):

(*) Every l-sequence has an m-independent subsequence.
We say that the space X  has property (L) if it contains an /-sequence. It 

is easily seen that if Z is an F-space (i.e., a complete metrizable topological 
linear space) and T : Z -> X  is a continuous linear operator with infinite­
dimensional range, then T(Z) (and, a fortiori, X) has property (L). In fact,
T(Z) then has the following stronger property: it contains a linearly indepen-

00
dent sequence (x j such that the series £  x„ is bounded multiplier conver-

n =  1
gent. Note that, by [2], Theorem 1 (see also [4], Theorem 4), the space m0 
of all sequences in m which have finite range with the topology of pointwise 
convergence does not have the latter property. Nevertheless, it has property 
(L), since the standard basis of m0 is an /-sequence.

Let (x„) be a sequence in X. We denote by <(x„)> the subspace of X  
consisting of those x e X  which admit an expansion of the form

00
x = Yj à„x„, where (IJem .

n =  1

GO

In the case where the series £  x„ is subseries convergent, we put
n — 1

00

xM = Y, 1м(п) х« f°r each subset M of N.
n =  1

Following [5] (see also [12]), we call a (linear) subspace Y of X  a x- 
subspace provided that for every /-sequence (x„) in X  there is an infinite 
subset M  of N with xMeY. (In fact, using (*), it is not hard'to see that the 
word “infinite” can be replaced by “non-empty” in this definition and that 
one may also require that хм Ф 0.)

Recall that a topological linear space X  is said to have property (K) if 
every sequence (x„) in X  with x„ -*0 contains a subsequence (x„fc) such that 

00

the series £  x„k is convergent. (This completeness-type property was first
k= 1

isolated by Mazur and Orlicz [14], p. 169; see also [12] for other references 
and relevant information.) Clearly, every x-subspace of an F-space has prop­
erty (K). The converse fails, which is discussed in Section 6 below.
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3. Existence of m-independent subsequences. We start with a simple 
lemma.

Lemma 1. Let X  be a topological linear space and let V be a neighbour­
hood of 0 in X. Then every sequence (x„) in X with x„ -»0 contains a

00
subsequence (x„fc) such that £  Xkx„ke V  whenever |Ak| < 1, keN,  and the

k= 1
series converges.

Proof. Take a neighbourhood U of 0 in X  with Ü a  V and a sequence 
([/„) of balanced neighbourhoods of 0 in X  with

C /J+... + Uk c  U, keN.
Then it is enough to choose a subsequence (x„ ) with x„keUk.

In the case where A = {0} the following result coincides with [13], 
Proposition 1. In the sequel we shall only need a rather special consequence 
of it (Corollary 1(b)); see the proofs of Theorems 6 and 8 below.

T heorem 1. Let X  be a topological linear space, let (x„) be a linearly 
independent sequence in X  with x„ -*0 and let A be an F „-subset of X  such 
that

in lin { x „ : neN} c= {0}.

Then there exists an m-independent subsequence (x„fc) such that

А п  фс„к)> c  {0}.

Proof. First observe that if X is a compact subset of X  and C is a 
closed subset of X  with К n C  = 0 , then for every r > 0 there is a subse­
quence (z„) of (x„) such that

00
(K+ { £  A„z„: |AJ ^  r, neN})r \C = 0 .

n — 1

In fact, we can find a neighbourhood V of 0 in X  with (K + V) r\C — 0  

([19], Theorem 1.10) and then apply Lemma 1 to - V

Let A — (J Ct, where the C/s are closed and Cj C2 <=...; we may
i = 1

also assume that OeCV Then, using what we have proved so far, we 
construct, by induction, 1 = nx < n 2 <. . .  so that, for every keN,

к oo

У. F У Aj хпj ф Ск
i= 1 J = fc+ 1

provided that ||(Я£)|| ̂  < к and max \л{\ ^  1 /к (cf. [11], proof of Proposition
l ^ i ^ nk

1). Then, as easily seen, (x„fc) has the desired properties.
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It is worth-while to note that Theorem 1 fails without the assumption 
that x„ —>0 even when A is closed and X  is a Banach space. This is shown 
by the following

Example. Let X  be an infinite-dimensional Banach space and choose (x„) 
to be a normalized basic sequence in X. Put

00

A = ( X 2~fc-V  "i < n2 <•••}•
fc= 1

Then, as easily seen, A is closed. Moreover,
00

A n  lin \x„: n e N\ = 0 , but £  2_kx„k eA n  фс„к)>.
k = 1

Corollary 1. Let X be a topological linear space, let (x„) be a sequence 
in X and let (y„) be a linearly independent sequence in X with y„ -►0.

(a) I f  lin n e N} n  lin (y„: n e N\ = [0}, then there exists an m-inde- 
pendent subsequence (y„k) such that lin [x„: n eN} n  <(y„k)) = {0}.

00
(b) I f  the series ]T x„ is bounded multiplier convergent and

n = 1
<(*„)> n  lin |yn: n e N } = {0}, then there exists an rn-independent subsequence 
(y„k) such that фс„) > n  <(y„k)> = {0].

Proof. Clearly, lin <jx„: neN}  is tr-compapt. Also, <(*„)> is cr-compact as 
the union of the compact sets

0 0 -

\ Z  1ШН® < k \> k e N >
n= 1

00

provided that Y , x n bounded multiplier convergent. Hence both the
n— 1

assertions follow directly from Theorem 1.
We note that the corollary above can be used to give an alternative 

proof of Proposition of [12].

4. Relation between /-sequences and x-subspaces. Most of the material of 
this section complements that of [12], Section 2. Namely, we show that a x- 
subspace of X  is, in various respects, large in X. Some of these results are 
applied in the next section. We also present two simple results on spaces 
with property (L) (Proposition 1 and Corollary 3).

Lemma 2. Let Y be a x-subspace of a topological linear space X. I f  (xn) is 
an l-sequence in X, then

(a) Every x eX ^O j can be represented in the form
x = у + Лхм,

where yeY,  2 ^ 1  and M is an infinite subset of N.
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(b) There is a sequence (Mk) of disjoint infinite subsets of N such that 
xMke Y  for every k e N  and (xMk) is an 1-sequence in X.

(c) There is a family \Mt: t eR}  of almost disjoint infinite subsets of N 
such that \xMf. t e R  J is a linearly independent family of elements of Y.

Proof, (a) Let xeX\{0}; then, by omitting a finite number of terms in 
(xn), we may assume that x<£lin (x„: neN}.  It follows that (2~nx — xn) is an /- 
sequence in X, whence there is an infinite set M a  N such that

(X 2- ) x - x MeY.
neM

This yields the assertion.
In view of (*), in the rest of the proof we may and do assume that the 

sequence (x„) is, in addition, m-independent. Further, for every infinite set 
L a  N, let L' denote any infinite subset of L with xv  e У. Now, let (Lk) be a 
sequence of disjoint infinite subsets of N and let \Lt: teR)  be a family of 
almost disjoint infinite subsets of N. Then the sets Mk = Lk and Mt = L, are 
easily seen to satisfy (b) and (c), respectively. (Cf. [5], Lemma, and [12], 
Corollary 2.)

Theorem 2. Let Y be a x-subspace of a topological linear space X. I f  Z is 
a sub space of X  with property (L), then

(a) Y + Z = X;
(b) d im (7nZ ) ^  2X°.

Proof. These assertions follow from Lemma 2(a) and (c), respectively.

The next result is also given in [8], Remarks.

Corollary 2. I f  Y is a x-subspace of a topological linear space X and Y 
has property (L), then Y = X.

T heorem 3. I f  X  has property (L) and Y is a x-subspace of X, then
(a) codim Y < 2S°;
(b) Y is sequentially dense in X.

Proof. Let (x„) be an /-sequence in X. Then (a) follows directly from 
Theorem 2(a) applied to Z = lin \xM: M <=z N).

(b) By Lemma 2(b), there is an /-sequence (y„) in X  such that yn e Y for 
every neN.  Fix x e l \ [0 } .  Applying Lemma 2(a), we find yeY,  2 ^ 1  and 
M c  N such that x — y + 2yM. Then

П
v„= F + Л Z  1м(к)ук ^ х  as n oo

k= 1

and v„eY for every neN.
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Theorem 3, with a different proof and with “dense” in place of “sequen­
tially dense” in (b), was given in [12], Theorem 2.

Proposition 1. I f  X  is a topological linear space with property (L) and Y 
is a closed subspace of X, then either Y or X /Y  has property (L).

Proof. Let Q: X  -*X/ Y  be the quotient map and let (x„) be an /-
00

sequence in X. Then £  Q(xn) is subseries convergent in X/Y  Suppose X/Y
n= 1

does not have property (L). Then we must have

dim lin \Q(xn): neN)  < N0.
It follows that there exist u1, ..., щ in X  and a sequence (y„) in Y such that 
\Q(ui), ■ • Qiuk)} is linearly independent and

к

xn = Уп + X neN,
i = 1

where the Ani’s are scalars. Put zn = xn—yn. Since

Q\ lin \ulf ..., uk\
00 00

is an isomorphism and the series £  @(z„) (= £  6 W ) is subseries con-
n= 1 n -  1

oo oo

vergent, so is the series £  zn. It follows that £  yn is subseries convergent in
n— 1 n= 1

Y Clearly, (y„) contains a linearly independent subsequence and therefore Y 
has property (L).

In the sequel we shall only need the following simple consequence of 
Proposition 1 (see Remark 2 of Section 6).

Corollary 3. I f  X t and X 2 are topological linear spaces such that 
X 1 x X 2 has property (L), then either X t or X 2 has property (L).

5. Operators and x-subspaces. We start with a lemma. Note that its first 
assertion does not characterize x-subspaces; see [2], Theorem 3a.

Lemma 3. Let Z  be an F-space and let Y be a proper x-subspace of a 
topological linear space X. For every continuous linear operator T : Z -* X  we 
have

(a) dim T (Z) <  N 0 provided T (Z) c  Y ;
(b) dim(7 n T ( Z )) ^  2*° provided dim T(Z) ^  N 0 .

Proof. Since T(Z) has property (L) whenever dim T (Z )^ N 0, the 
assertion of the lemma follows immediately from Corollary 2 and Theorem 
2(b), respectively.

A special case of our next result has been previously obtained by Pol
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([16], Theorem 2.1); see also van Mill [15] for spaces which are even poorer 
in continuous linear operators.

T heorem 4 (1). Let X x and X 2 be F-spaces, let У] be a x-subspace of X x 
and let Y2 be a proper x-subspace of X 2. I f  S: Yx -»• Y2 is a continuous linear 
operator, then either £(>]) or 1 (0) is fi nite-dimensional.

Proof. By Theorem 3(b), Yx is dense in Xx. It follows that S extends to 
a continuous linear operator T: X 1 ->X2. If Г(Хх) c  Y2, then T( Xx) and, a 
fortiori, 5(7!) is finite-dimensional, by Lemma 3(a).

Consider the case where T( X l) ф Y2. We claim that T~1(0) is then 
finite-dimensional. Otherwise, in view of Theorem 2(a), we would have

Yt + T - ' i  0) = X lt whence T(X1) a Y 2,

a contradiction.

Corollary 4 (cf. [16], Theorem 2.1(iii)). Let Y be a proper x-subspace of 
an F-space and let Y be linearly homeomorphic to the product Z 1 x Z 2 of two 
topological linear spaces. Then either Z 1 or Z 2 is finite-dimensional.

Finally, Lemma 3 above and Theorem 2 of [11] yield the following 
generalization of a result due to Kruse ([10], Theorem A).

Corollary 5. Let X  be an F-space with dimX = 2 ‘N°. Then there are
2Z N° (dense) subspaces Y of X such that assertions (a) and (b) of Lemma 3 hold 
for every continuous linear operator T: Z ->X, where Z  is an arbitrary F- 
space.

6. Dense subspaces with property (K) which are not x-subspaces. The
existence of such subspaces for a class of F-spaces is due to Burzyk ([12], 
Example). His proof yields the following more general result, which is also an 
easy consequence of Corollary 2 above.

P roposition 2. Let X  and Z  be topological linear spaces and let Z have 
property (L). I f  Xj and Z 1 are subspaces of X  and Z, respectively, such that 
X l xZ j is a x-subspace of X  xZ , then X^ = X.

In particular, in the situation of [12], Theorem 4, X l x X 2 is not a x- 
subspace of X  x X.

It is still unknown whether every infinite-dimensional F-space contains a 
proper dense subspace with property (K), be it a x-subspace or not. (It is so 
if property (K) is weakened to that of being a Baire space; cf. [3], Theorem 3 
and its proof.) The answer to this problem is known to be affirmative if

(fi A version of this result was established by the authors jointly with I. Labuda during 
the 11th Winter School on Abstract Analysis, Zelezna Ruda, Czechoslovakia, 1983.
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dimX = 2S° ([11], Theorem 2). Another partial solution is contained in the 
following theorem.

T heorem 5. Let X  be an F-space such that there exists an infinite­
dimensional closed subspace Z  with dimX/Z — 2S°. Then X contains a dense 
sub space Y such that

(i) Y has property (K);
(ii) Y has property (L);

(iii) codim Y = 1.
In particular, Y is not a x-subspace of X.

Note that, in view of Theorem 8 and Remark 5 below, (i) is not implied 
by the conjunction of (ii) and (iii).

P ro o f (cf. [5], proof of Theorem). Let W be a (dense) proper x-subspace 
of X/Z  ([11], Theorem 2). We may and do assume that codim W = 1. Let 
Q: X -*X/Z  be the quotient map and put Y = Q~1(W). As easily seen, (iii) 
holds. Moreover, since Z c  Y, (ii) holds, which, in view of Corollary 2, yields 
the final part of the assertion. As Q is open, it follows that Y is dense in X. 
Finally, it is easy to check that, W having property (K), Y also has this 
property.

R em ark 1 (cf. [5], Remark). The assumption of Theorem 5 is satisfied 
provided that X  is an F-space whose topological dual X'  is infinite­
dimensional. Indeed, equip X'  with its (Hausdorff) weak* topology. Then, in 
view of [9], Proposition 2.2, and [18], Chapter II, Proposition 7, there exists 
a biorthogonal system (/„, x„) with f neX'  and xneX.  Choose M cz N so 
that M and N \ M  are both infinite. Define a continuous linear operator T : 
X - R M by T(x) = (f„(x))neM and put Z = T"[(0). Then

\x„: n e N \ M \  c  Z

and N0 ^  dim X/Z  ^  dimRM = 2K°. It follows that dim X/Z — 2X° (see, e.g., 
[11], Corollary 2).

In particular, the assumption of Theorem 5 is satisfied if X  is an infinite­
dimensional Banach (or Fréchet) space. On the other hand, this assumption
fails for some F-spaces with dimension > 2N°, which is a recent result of
Popov [17] (answering Problem 1 of [5]). The case where dim A = 2X° (and 
X  is separable) is- apparently open.

Our next result yields still another class of examples of spaces with 
property (K) which are not >f-subspaces of their completions.

T heorem 6. Every F-space X with dim A  = 2 X° contains a dense subspace 
Y such that
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(i) Y has property (K);
(ii) Y does not have property (L);
(iii) Y is not a x-subspace of X.

P roof (cf. [12], proof of Theorem 4(2)). Fix an m-independent sequence
00

(x„) in X  such that £  x n is bounded multiplier convergent; the existence of
n — 1

such sequences follows easily from (*) because X  is an F-space of infinite 
dimension (cf. [11], Proposition 1 and Lemma 4). We may and do assume 
that codim To) > ^  N0(3). Indeed, we have

<(*2»)>n  <{x2n-l)> =  10».

Arrange the family of all m-independent sequences (y„) in X  such that
00

£  y„ is bounded multiplier convergent and фс„)> n  <(y„)> = |0] into a
n= 1
transfinite sequence ((>’£))<*<<? where <p is the initial ordinal of cardinality 2 °. 
(This family is non-empty by Corollary 1(b).) Moreover, let (U!X)a<(p be a base 
for the topology of X.

We shall construct inductively two increasing sequences (Xa)a<(/, and 
(Юа«р of subspaces of X  such that for all a < q>

(1) )(x„)>nlin(Xa u  YJ = (O’-;
(2) dim lin (Хя u  YJ ^  X0 4- card a ;
(3) Xa nTa = {0};
(4) Yan U a ^ 0 :
(5) there exist infinite sets Мя, La c  N with yj, eXa and ÿ*L eYa. 

Suppose the construction has been carried out for all (1 < i. Put

X * = [ ) X fi and T* = (J Yp.
/?<« P<a

Clearly, X я and Y* are subspaces of X. Moreover, in view of (2) and (3), we 
have

dim lin(X“ u  Ya) ^  N0 + carda and Xa n T a = ',0 i.

Using Corollary 1 of [11], we can find an infinite set Ma a N  such that 

x ф lin (Xя u  Ya и  <(xn) )), where x = уяМя.

(2) We note that condition (3) thereof should read: dim X f  =$ carda for i =  1,2.
(3) Actually, this is always so. In fact, by [19], Theorem 1.22, and the Baire category 

theorem, codim T O )  > ^o-
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Put X a = lin(X“u  {x]). By the same argument, we can find an infinite set 
La <= N  such that

У Ф lin (Xa u  Ya и  <(x„) >), where у = yaL(x.

Finally, since lin(Aa u  У* u  фс„)>и |y}) Ф  X, we can find 

ueUa\lin (Xa и  Ya u  <(x„)> u  {>’}).

Put Ya = lin(ya u  (y, u}). As easily seen, Xa and Ya satisfy (l)-(5).
Put Y = y  Ya. Clearly, У is a subspace of X. In view of (4), У is dense

a. <<p
in X. We infer from (1) that <(*„)> n  У = {0}. This yields (iii) and, in view of 
(5) and (*), (i). Suppose (ii) fails and fix an /-sequence (y„) in У Then, by 
passing to a subsequence and using (*), we may assume that (y„) is m-

00
independent and £  y„ is bounded multiplier convergent. In view of Corol-

n= 1
lary 1(b), we have (y„fe) = (y“) for some rii <n2 < ... and a < ç. From this 
and (5) we get Xar\Y ф 10 j, which contradicts (3).

Rem arks. 2. Under the additional assumption that X  = Z xZ, where 
Z is an F-space, Theorem 6 also follows from Theorem 4 of [12] and 
Theorem 3(b), Proposition 2 and Corollaries 2 and 3 above.

3. Theorem 6 partially solves a problem due to J. Burzyk and the 
second author (1980). The problem is concerned with the existence, in an 
arbitrary infinite-dimensional F-space X, of a dense subspace with property 
(K) which is not a x-subspace and does not contain any infinite-dimensional 
closed subspace of X. Without the denseness condition the answer is also
positive in case dim A > 2K°. Indeed, it is then enough to apply Theorem 6
to a closed subspace of X  with dimension 2X°.

7. Subspaces of codimension 1 without property (K). We shall present 
two results on the existence of such subspaces. Since a metrizable topological 
linear space with property (K) is a Baire space ([3], Theorem 2), the first of 
these results is, in some respects, weaker than the following one due to Arias 
de Reyna ([1], Theorem 1) and Valdivia ([20], Theorem 1): Every infinite­
dimensional separable Baire topological linear space contains a (dense) 
subspace of codimension 1 which is not a Baire space. This last result was, 
however, obtained under Martin’s axiom, and it is not known whether it 
holds in ZFC.

T heorem 7. Every topological linear space X  with property (L) contains a 
dense subspace Y such that

(i) У does not have property (K);
(ii) codim У = 1.
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Proof. Denote by S the linear subspace of RN (over R) generated by the 
set |1M: M cz N\. Let pi: 2N ->R be an additive set function such that pi{M) 
= 0 if and only if M c: N is finite. (The existence of such set functions was 
proved in [6], Proposition 5; see also Proposition 3 of Section 8 below.) 
Denote by the unique linear functional on S with /^(M) = pi(M) for all 
M cJV.

Let (x„) be an m-independent /-sequence in X  (see (*)) and put
00

T(s) = Y, s (n) xn for seS.
n= 1

Then T: S -> X  is a linear isomorphism. Define

g: T(S) -+R by g(T(s)) = ^(s) for s gS.

Then g is a linear functional with g(x„) = 0 for all n e N  and д(хм) Ф 0 for all 
infinite M a  N. Extend g to a linear functional /  on the whole of X  and put 
У = / -1 (0). Clearly, (i) and (ii) hold. The denseness of У in I  is seen as 
xne Y  and xN$Y.

We shall need the following simple lemma.

L em m a  4 (cf. [7], Corollary 4.2). Let Y and W be topological linear 
spaces. I f  Y is metrizable and has property (K) and there exists a surjective 
open continuous linear operator T: Y ->W, then W also has property (K).

Proof. Let w„eW  and w„ ->0. For every neighbourhood U of 0 in Y, 
we have wneT(U) for n large enough. Accordingly, we can choose a 
subsequence (w„fc) of (vv„) and a sequence (yfe) in Y such that T(yk) = w„k and
yk —» 0. The assertion readily follows from this.

T heo rem  8. Let X  be an F-space such that there exists a closed subspace
Z with dim X/Z — 2N°. Then X  contains a (dense) subspace Y such that

(i) Y does not have property (K);
(ii) У contains a dense subspace Y0 with property (K);

(iii) codim У = 1.
In particular, Y is a Baire space.

Proof. We first note that the additional assertion follows from (ii). 
Indeed, as Y0 is a Baire space ([3], Theorem 2), so is Y, by [7], Theorem 1.15.

We next prove the rest of the result under the additional assumption
00

that Z = (0). Let (x„) be an m-independent sequence such that Y  xn
n= 1

bounded multiplier convergent in X  and let У0 be a dense subspace of X  
which has property (K) and satisfies

<(х„)>пУ0 =  {0}
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(see the proof of Theorem 6). Let g be a linear functional on <(*„)> such that 
g(xM) = 0 if and only if M cz N is finite (see the proof of Theorem 7). Extend 
g to a linear functional /  on the whole of X  with f \  Y0 = 0 and put 
У= / -1 (0). Then (i) and (iii), clearly, hold. Since Y zz Y0, (ii) also holds.

In the general case, by what we have proved so far, there exists a 
subspace W of X/Z  such that (i)—(iii) hold. Let Q: X  -+X/Z be the quotient 
map and put Y — Q~1{W). Then (ii) and (iii) are easily seen to hold and (i) 
follows from Lemma 4.

Rem arks. 4. Theorem 8 is a partial strengthening of [3], Theorem 3.
5. The proof of Theorem 8 can be modified so that the following 

additional condition holds:

(iv) Y has property (L).

Indeed, it is enough to take g with g\ ^(x2„-i)> = 0 and g(xM) = 0 if and 
only if M c 2 N  is finite.

8. Appendix. We shall give a new proof of the result due to Godefroy 
and Talagrand which has been used in the proofs of Theorems 7 and 8 
above. This proof is, in contrast to the original one, purely algebraic. Also, 
it can easily be adapted to yield a more general result (Proposition 3' 
below).

P roposition 3 ([6], Proposition 5). There exists an additive set function 
p: 2N such that p(M) = 0 if and only if M c. N is finite.

Proof. Denote by Q the field of rational numbers and let SQ be the 
linear subspace of QN generated by the set [1M: M cz N\. Let В be a subset 
of the latter set such that

B u  !l {n}: neN]

is a Hamel basis for SQ. Let, further, \Xb: beB)  be a set of real numbers 
which is independent over Q. Then there exists a unique ^-linear operator 
T: Sq -^R such that

T(fi) = Ab and T(1 jn}) = 0

for beB  and neN.  Put p(M) = T(1M) for M cz N. We claim that p is as 
desired. Indeed, we have

m p

1M = Z  ribi+ Ê  Sj 1
i= 1 j= 1
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for some rb Sj GQ and bt eB and rijeN. If now g(M) = 0, then £  r; = 0,
i =  1

whence rt =  0, i =  1, m. It follows that M is finite.

Proposition 3'. I f  SR is an algebra of subsets of a set Q with
card SR ^  2K°, then there exists an additive set function g: 4R-+R such that 
g(M) Ф 0 for every non-empty set M e  SR.

The latter result yields the former when applied, via the Stone represen­
tation theorem, to the Boolean algebra 2N modulo the' ideal of finite sets.

Added in proof. For a result related to Theorem 1 see Z. Li peck  i, Residual sets of compact 
operators and of vector-valued measures, in preparation.
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