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O n binary non-associative products and their relation 
to a classical problem oî Euler

1. Introduction. Marshall Hall [4], Chapter 3, raises the question: 
in how many ways can the sequence xxx2 ... xn be combined in this order by 
a binary non-associative products Letting an represent the number of 
"ways for a sequence of length Vf and adopting the convention ax =  1, 
Table 1 can easily be constructed.

T a b le  1

n Different binary non-associative products an — number of 
different products

2 x xx z 1

3 (xx) (xzx 3), (xxx 2){x3) 2

4 (x x)(x 2x 3x a)(2 ways); (ххх 2х 3) (хА)(2 ways) 

(*i**) (*3* 4) U way)

5

5 (х х)(х 2х 3х̂ х ь)(5 ways); (ххх 2х 3х л){х6) (5 ways) 

& xx 2) i xzx Ax b)(2 ways); ( x xx 2x 3) (xAx 6) (2 ways)

14

6 (хх) (х2х 3х ^ 6х в)(1^  ways); {ххх 2х 3х ^ х ь) (х3) (Ы  ways) 

(ххх 2) (х3х Ах ах 6){5 ways); {x1x 2x 3x 4) ( x bx i )(5 ways) 

(xxx 2x 3)(x4x sx e)(4: ways)

42

From Table 1 it is clear that the last product is some composite of 
the first r letters multiplied by some composite of the last n — r, of the 
form {xx... xr){xr+l... xn). Noting that the first r letters can be combined 
a r ways and the last n — r letters in an_r ways, it follows that

П—1
(1) an =  a1an_l Jr a2an_2 +  ••• + a n- i a i =  ^  aian-n

»=i
n >  2.
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Hall [4], in order to determine an, introduces the generating function 
f(x), where

(2)
oo

f(%) =
i= 1

At this point the question of convergence of (2) is postponed and Hall 
later states that “to prove the convergence of (2) on the basis of (1) alone
is exceedingly difficult”, 
immediately follows.

Squaring (2) yields equation (3) from which (4)

(3) (f{x)f =  - x + f { x ) ,

, l —l l̂ — ix
<4) m -  2 ■

Now expand (4) as a power series and it follows that the series for 
f(x) converges for \x\ <  and has for the coefficient of xn

(5)
(* )(-* )

n\
(2n -2)!  

n\(n — 1)!

For these values, f(x) and hence the recursion (1) has for a solution

(6 )
(2n — 2 )l _  _l_/2n-2\

n\{n — 1)! n \w— 1 /
n >  1.

Silberger [6] provides a brief history of the integer (6) and he points 
out that most of the proofs of (6) use generating functions. His paper, 
however, contains an elementary combinatorial proof of (6) which uses 
neither generating functions nor equation (1). He also proves that a„ 
is odd if and only if n is a power 2.

In 1751 Leonhard Euler posed the problem, in how many ways can 
a convex n-gon be partitioned into triangles by diagonals which do not intersect 
inside the n-gon, to the mathematician Christian Goldbach. Letting En 
represent the number of possible divisions for a polygon of n sides, Euler 
developed the formula

<7) Д.
2-6-10 ... (4w —10) 

(n -1 )!

However, this was not easy for Euler and he said, “The process of induction 
I employed was quite laborous”. This problem, its solution and a short 
history of it appear as Problem 7 in Dome [1]. In fact, Dorrie also mentions 
and gives the references to the work done on this problem by Segner
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(1758), Rodrigues (1838), Catalan (1838), and Urban (1941). This work 
includes the relation, since both satisfy the same recurrence, that

(8) Д и -i =  «»•
In the next section the solution to the problem of Marshall Hall, 

proving (6) by using (1) and not (2), is provided by elementary combina
torial methods. Also, in this section, a combinatorial proof, shorter and 
more elementary than Silberger [6], that an is odd if and only if n is a power 
of 2 is given. In Section 3 relation (8) is explored. A one to one correspond
ence is established between the division into triangles of the convex (n +1)- 
gon and the non-associative parsing of the n letter word. A geometric 
proof that there are an odd number of partitions of the convex (w-fl)-gon 
into triangles if and only if n is a power of 2 is also given. In Section 4 
an asymptotic expression for the an, some applications and other inter
pretations are given.

The authors would like to thank Mr. Mark Villarino for helpful sug
gestions on various aspects of this problem.

2. Further properties of the integer an. Returning to (1) it is easy 
to see that

(9) ax =  1, a2 =  1, % =  2, a4 =  5, as =  14, ae =  42, a7 =  132,
as =  429, ...

Observing (9) and computing further values of the an, one is lead to 
conjecturing that

(10) an ~  4an_j,

or more precisely that

(11 ) &n
4 n —a 
n — b

n >  2.

If (11) is valid it is easy to establish, by choosing n =  2, 3 respec
tively, that a =  6 and b =  0, and (11) becomes

(12) 0>n 4 6 '
n,

2 .

It shall be proven that (12) and hence also (10) are indeed valid. It 
is interesting to note that (12) is equivalent to (6) since

4w —6 4w —6 An —10 4^ — 14 An — (An — 6) 2 ^
( l n __  j  •  "  " , 4  •  • •  * V T  1 5n n n — A n  — 2, 3 2
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it follows that

(13) (2 » -3 )(2 n -5 )(2 n -7 )r ... 5-3-1------------------------ -----------------------------------  £

Now multiply the numerator and denominator by (n — 1)! and (6) follows. 
A combinatorial proof of (6), and hence also (12), will now be provided. 
However, the following well-known combinatorial identity (Knuth [5], 
p. 58) is first needed. For a proof of this Lemma and for further information 
about a much larger class of this type of combinatorial identity, the reader 
is  referred to Gould and Kaucky [3].

Lemma. For m, r, s, t integers and г Ф tj, it follows that

(14) V  /r~#\ /*— r
Z j \ 3 I 1 m~j ! r - j t
7=0

r +s —tm 
m

Theorem 1. For the sequence an defined by (1), with ax =  1, relation 
(6) holds.

Proof. By induction for n = 1 , 2 , 3  the Theorem clearly holds. 
Now assume (6) holds for all n <  к and consider n =  k, clearly

«ft
к- 1

=  ^ a {a'k—i
к- 1
у  1 - 1Ф-J k — i i к

Since,
1

1 11 + 1
( k - i )i к \ i  ' k — i

it follows that

ak —
k-i ,

i y  I
к A j  \ гi= 1 x

H 1 1 
1 ^+
 ‘

\ [2i - 2\ (2k- 
i j \ i - l ] [ k -

— 2i — 2 
-г-1

But &! =  S2 == S, thus ak — 2S л ----  and
к

k—i — l

Since

_ V I  1 /2 i — 2\ 12k — 2i — 2 L V . L (  2j \  /2k — 4 — 2j\
~  2 ~l i \ * - l /  \  k - i - l  7-f-l \ j ) \  T c - 2 - j  ) ‘i=l 7=0 J

1 (2j) 1 /2j + l\
j +  1 b '/ 2j +  l  V 3 I

k- 2

7 = 08 =
1

2 j + l ‘

it follows that
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Now apply (14) with m =  k — 2, r =  1, s =  0, t =  —2. This yields that

S = and ak 2 / 2 f c - 3 \
к U - 2  j

£ / 2 й - 2 \
к U - 1/

Q. E. D.

Now return to the generating function f(x) of equation (2), it follows 
immediately, by (12) and the ratio test, that the series converges for all 
\x\ <  £. Thus the convergence of (2) has been established without having 
to first square the infinite series.

T h e o r e m  2. The integer an of (1) is odd if and only if n is a power of 2.
Proof. From (1) it is clear that

s
2 n

« W i =  £  a<«2n-f+i =  0 (mod 2 )
г=Х

and
2n —1

«2n  =  £  a i a 2n - i  =  a l  =  a n  (mod 2)
i= 1

from which the Theorem is immediate.

3. Euler’s problem. Now the connection between Euler’s problem and 
the binary non-associative product is established. The procedure will be 
to give a rule for the decomposition of an arbitrary convex polygon and 
to show inductively that this decomposition parallels a particular method 
of generating successively the desired products. As an offshoot of this 
decomposition it is easy to see the geometric significance of the parity of an.

For any convex polygon P  choose an arbitrary but fixed vertex, V. 
In stage one of the decomposition,* V is connected sequentially to each 
non-adjacent vertex, say W (see Figure 1, (a) through (d), in which the 
process is illustrated for a seven sided polygon, n =  6). Each such connec
tion reduces the problem of further dissection of P  to a lower order dis
section. To ensure that the decomposition avoids duplication of previously 
considered subpolygons, it is only necessary to join F', a vertex adjacent 
to F, to W, since V' W will then intersect all previous decompositions. 
In the general case, this creates a triangle and two convex polygons of 
lower order having a total of n-\- 2 sides (п +  З in the degenerate cases). 
After n — 2 steps, any remaining possibilities must be included in the 
decomposition obtained by joining V' to V", the other vertex adjacent 
to V (Figure 1 (e)). That this is a new decomposition is obvious, since 
V V" must intersect all previously constructed rays emanating from V. 
Further, the possibilities are now exhausted for any other decomposition 
must include a line joining F to a vertex.
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(с)

(d )

Six and three sides 
14 x 1 =  14

Five and three sides 
5 x 1 = 5

Fonr and four sides 
2 x 2  =  4

Three and five sides 
5 x 1 = 5

Three and six sides 
1 x 14 =  14

Reference to Table 1 shows that the binary non-associative product 
can be considered as arising from a similiar decomposition The sequence 
xx ... xn is subdivided by enclosing xx ... x{ and xk+x ..xn in. parentheses 
as two factors of the product. Further subdivision and the establishment 
of the recurrence follow inductively.
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To see that the decomposition of the polygon into triangles is in 
fact in one-to-one correspondence with formation of the binary non- 
associative product, note first that the identification can be made tri
vially for n — 1 and n — 2. Assume that the correspondence is established 
for n <  N, and order the 2-factor products in the order of parenthesis 
insertion, that is the г-th product is characterized by the insertion of a left 
(opening) and a right (closing) parenthesis between x{ and xi+1. The suc
cessive steps of the polygonal decomposition considered in their natural 
order of counterclockwise succession are assigned as correspondents. 
The correspondence is clearly one-to-one and the decomposition to lower 
orders takes place in the identical manner; for consider decomposition 
of the sequence by insertion of parenthesis following xt , 1 <  i <  n — 1. 
We have (хг ... Xj)(xi+1 ... xn). Under the defined correspondence this 
product is associated with the polygonal decomposition obtained by de
signating W as the г-th vertex following V' in the counterclockwise direction. 
The decomposition of P gives two subpolygons, having (i +1) and (n — i  +1) 
sides respectively and proceeding inductively, it is clear the correspon
dence is established; a trivial modification is required for the degenerate 
cases i =  1 and i — n — 1, but involves no additional complexity.

To complete this section a geometric proof of Theorem 2 will now 
be given. Becalling (8), Table 1, and the decomposition of the (w +  l)-gon, 
it follows that if n is odd, an and En+1 are both even. Also, if n is even, 
by the decomposition of the (w-bl)-gon, there is an isolated decomposition 
corresponding to (Pn+2/2)2; all other terms, by symmetry, occur twice. 
It now follows that En+1 is odd if and only if Pw+2/2 is odd; but En+2/2 
is odd if and only if Еп+т is odd. Continuing this process, it is clear that 
En+1 is odd if and only if n is a power of 2.

4. Applications. Applying Stirling’s formula (15) to (6) with (n-\-1) 
replacing n yields (16), an approximation which enables one to estimate 
the an+1J using a logarithm table, for large values of n.

Sequence (1) has many possible interpretations. For example, let 
cn represent the number of ways that 2n points on the circumference 
of a circle can be joined in pairs by n chords which do not intersect within 
the circle. This of course satisfies a relation similar to (1) and it is easy 
to show that

(16)

(15)

( 1 7 )
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Feller [2], Chapter 3, points ont that the integers an arise in problems 
of arrangements and in fact are a special case of the well-known ballot 
problem. In this chapter Feller also shows that the an are related to pro
blems of coin tossing and random walks.

As a final illustration, the reader is referred to Knuth [5], p. 553» 
The application given here is the determination of the number of possible 
rearrangements of a sequence, using a stack (linear list for which all 
insertions and deletions are made at one end of the list) for temporary 
storage.
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