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Abstract. In this paper, we present criteria for local uniform rotundity and weak local
uniform rotundity in Musielak-Orlicz sequence spaces equipped with the Luxemburg
norm.
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1. Introduction. It is well known that among the many kinds rotundities of
Banach space, local uniform rotundity is the most important one. One reason is
that this kind of rotundity ensures the fixed point property. Criteria for locally
uniform rotundity of Orlicz space have been obtained in [2] and [15], locally uniform
rotundity of Musielak-Orlicz function space was discussed also and the result and
the proof are similar to those of Orlicz space (see [16]). Because of the complicated
structure of Musielak-Orlicz sequence spaces, although the criteria for rotundity and
uniform rotundity were obtained by A. Kamińska in [14] and [17], criterion for locally
uniform rotundity has not been found. In this paper, we will give criteria for local
uniform rotundity and weak local uniform rotundity of Musielak-Orlicz sequence
spaces equipped with the Luxemburg norm.

A Banach space (X, ‖ · ‖) is called rotund (X ∈ R), if x, y ∈ X, ‖x‖ = ‖y‖ = 1
and ‖x+ y‖ = 2 imply x = y.

A Banach space X is called an uniformly rotund (X ∈ UR), if for any two
sequences xn and yn in X, the conditions ‖xn‖ = 1 and ‖yn‖ = 1 for any n ∈ N
and ‖xn + yn‖ → 2 imply ‖xn − yn‖ → 0.
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132 Local uniform rotundity in Musielak-Orlicz spaces

A Banach space X is called (weakly) locally uniformly rotund (X ∈ LUR, (X ∈
WLUR)), if ‖xn‖ = 1 for any n ∈ N , ‖x‖ = 1 and ‖xn + x‖ → 2 imply that
‖xn − x‖ → 0 ((xn − x)

w→ 0).
Obviously,

UR⇒ LUR⇒ LWUR⇒ R.

A map M = (Mi)∞n=1, where Mi : (−∞,∞) → [0,∞] for all i ∈ N , is said
to be a Musielak-Orlicz function, if Mi is a nonzero function that is convex, even,
vanishing and continuous at zero and left continuous on (0,∞) for all i ∈ N (see
[9]). By N = (Ni)∞i=1 we denote complementary function of M , that is, Ni(v) =
supu>0{u|v| −Mi(u)} for any i ∈ N . It is easy to show that N is also Musielak-
Orlicz function.

Mi(u) is said to be strictly convex on the interval [a, b], if

Mi

(
u+ v

2

)
<
Mi(u) +Mi(v)

2

for all u, v ∈ [a, b], u 6= v.
It is said that M satisfies the condition δ2 (we write M ∈ δ2), if there exist

constants i0 ∈ N , u0 > 0, K > 1 and a sequence c = (ci)∞i=i0+1 ∈ l1+ such that

Mi(2u) ≤ KMi(u) + ci

for all i > i0 and u ∈ R, satisfying Mi(u) ≤ u0.
Given any Musielak-Orlicz function M , we define on l0 a convex modular ρM by

ρM (x) =
∞∑
n=1

Mi(x(i)).

The linear space lM = {x : ρM (λx) < ∞ for some λ > 0} equipped with the
Luxemburg norm

‖x‖ = inf{λ > 0 : ρM (x/λ) ≤ 1}
or the Orlicz norm

‖x‖o = sup

{ ∞∑
i=1

x(i)y(i) : ρN (y) ≤ 1

}
= inf
k>0

1
k

(1 + ρM (kx))

is a Banach space, denoted by (lM , ‖ · ‖) or (lM , ‖ · ‖o) respectively, and it is called
a Musielak-Orlicz sequence space.

2. Results.

Lemma 2.1 N ∈ δ2 if and only if there exist constants θ ∈ (0, 1), δ ∈ (0, 1), i0 ∈ N ,
u0 > 0 and a sequence c = (ci)∞i=i0+1 ∈ l1+ such that

Mi(θu) ≤ (1− δ)θMi(u) + ci

for all i > i0 and u ∈ R, satisfying Mi(u) ≤ u0.
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Proof This lemma was proved in [3], but we present here a simpler proof. Suffi-
ciency. Let qi(v) be the right derivative of Ni(v), then

Mi (qi (v)) +Ni (v) = vqi (v) =
1

θ (1− δ)
θqi (v) (1− δ) v

≤ 1
θ (1− δ)

(Mi (θqi (v)) +Ni ((1− δ) v))

≤Mi (qi (v)) +
1

θ (1− δ)
ci +

1
θ (1− δ)

Ni ((1− δ) v) ,

we have

Ni(v) ≤
1

θ(1− δ)
Ni((1− δ)v) +

ci
θ(1− δ)

for i > i0 and Mi(qi(v)) ≤ u0.

and thus, N ∈ δ2
The proof of the necessity is similar to the proof of the sufficiency, we omit it.�

Lemma 2.2 (see [1] and [10]) If M ∈ δ2 and Mi vanishes only at zero for any
i ∈ N , then ‖xn‖ → 0 if ρM (xn)→ 0.

Lemma 2.3 If there exists a sequence of positive numbers (u(i)) such that Mi(u(i))
= 1, M ∈ δ2, Mi vanishes only at zero for any i ∈ N , ‖xn‖ ≤ 1, ‖x‖ = 1 and
‖xn + x‖ → 2, then ρM (xn)→ 1.

Proof Assume the result is not true. Then we can assume without loss of generality
that there exists ε > 0 such that ρM (xn) ≤ 1 − ε for n ∈ N . In the sequel we shall
consider two cases.

1. |x(i)| < sup{u ≥ 0 : Mi(u) < ∞} for any i ∈ N . Since M ∈ δ2, there exist
constants i0 ∈ N , u0 > 0, K > 1 and a sequence c = (ci)∞i=i0+1 ∈ l1+ such that

Mi(2u) ≤ KMi(u) + ci

for all i > i0 and u ∈ R, satisfying Mi(u) ≤ u0. Let A = {i : i ≤ i0, or i >
i0 and Mi(x(i)) > u0}. Since ρM (x) = 1, we deduce that A is a finite set and there
exists δ ∈ (0, 1) such that (1 + δ)|x(i)| < sup{u ≥ 0 : Mi(u) <∞} for i ∈ A. Hence

ρM ((1 + δ)x) ≤
∑
i∈A

Mi((1 + δ)x(i)) +
∑
i/∈A

Mi(2x(i))

≤
∑
i∈A

Mi((1 + δ)x(i)) +
∑
i/∈A

(KMi(x(i)) + ci) <∞.

Now, we can take θ ∈ (0, ε) satisfying ρM
(

1+θ
1−θx

)
< 1 + ε2. Then

ρM

(
(1 + θ)

xn + x

2

)
= ρM

(
1 + θ

2
xn +

1− θ
2

1 + θ

1− θ
x

)
≤ 1 + θ

2
ρM (xn) +

1− θ
2

ρM

(
1 + θ

1− θ
x

)
≤ 1

2
((1 + ε)(1− ε) + 1 + ε2) = 1,
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whence we have ‖x+xn2 ‖ ≤ 1
1+θ , which contradicts the condition ‖x+ xn‖ → 2.

2. Let now |x(i1)| = sup{u ≥ 0 : Mi1(u) < ∞} for some i1. Without loss of
generality, we can assume that i1 = 1. We have |x(1)| = u(1), that is M1(x(1)) = 1,
whence x(i) = 0 for all i ≥ 2.

As in case 1 it is easy to get δ > 0 such that
∑∞
i=2Mi((1 + δ)x(i)) < ∞. Since

M1(xn(1)) ≤ ρM (xn) ≤ 1− ε, so |xn(1)| ≤M−1
1 (1− ε). Hence∣∣∣∣x(1) + xn(1)

2

∣∣∣∣ ∈ [u(1)−M−1
1 (1− ε)
2

,
u(1) +M−1

1 (1− ε)
2

]
.

Since limθ→0
M1((1+θ)u)
M1(u) = 1 hold uniformly on the interval [(u(1)−M−1

1 (1− ε))/2,
(u(1) +M−1

1 (1− ε))/2], we can take θ ∈ (0, ε) small enough such that

M1

(
(1 + θ)

xn(1) + x(1)
2

)
≤
(

1 +
ε2

2

)
M1

(
xn(1) + x(1)

2

)
.

Then

ρM

(
(1 + θ)

x+ xn
2

)
= M1

(
(1 + θ)

x(1) + xn(1)
2

)
+

∞∑
i=2

Mi

(
1 + θ

2
xn(i) +

1− θ
2

1 + θ

1− θ
x(i)

)

≤
(

1 +
ε2

2

)
M1

(
x(1) + xn(1)

2

)
+

1 + θ

2

∞∑
i=2

Mi(xn(i))

≤
(

1 +
ε2

2

)
M1(x(1)) +M1(xn(1))

2
+

1 + θ

2

∞∑
i=2

Mi(xn(i))

≤ 1
2
((1 + ε2/2)M1(x(1)) + (1 + ε)ρM (xn))

≤ 1
2
(1 + ε2/2 + (1 + ε)(1− ε)) ≤ 1.

Therefore ‖(x+ xn)/2‖ ≤ 1
1+θ , a contradiction. �

The following are the main results of this paper.

Theorem 2.4 The following conditions are equivalent:

1. (lM , ‖ · ‖) is locally uniformly rotund.

2. (lM , ‖ · ‖) is weakly locally uniformly rotund.

3. The following condition are satisfied:

(i) there exists a sequence positive numbers (u(i)) such that Mi(u(i)) = 1 for
any i ∈ N ,

(ii) each function Mi vanishes only at zero,
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(iii) the function M satisfies the condition δ2,

(iv) a) for any i ∈ N function Mi is strictly convex on [0, u(i)] or
b) the function N satisfies the condition δ2 and there exists a sequence

positive numbers (a(i)) such that Mi(a(i)) +Mj(a(j)) ≥ 1 for i 6= j
and function Mi is strictly convex on [0, a(i)] for any i ∈ N .

Proof The implication 1 ⇒ 2 is obvious. We show now the implication 2 ⇒ 3.
Since WLUR implies R, by Theorem 3 and Theorem 5 in [17], we get the necessity
of condition (i)− (iii). If condition (iv) does not hold, we can assume that N /∈ δ2
and there exist i ∈ N such that Mi is affine on the interval [a, b], where a(i) ≤ a <
b ≤ u(i). Without loss of generality, we can assume that i = 1.

For any u0 > 0 and θ ∈ (0, 1), let us define

ci = sup
{
Mi(u) : Mi

(u
2

)
> (1− θ)Mi(u)

2
; Mi(u) ≤ u0

}
.

Then
∑
i>i0

ci =∞ for any i0 ∈ N . In fact, if it does not hold, then there exists i0,
satisfying

∑
i>i0

ci <∞. By the definition of ci we have

Mi

(u
2

)
≤ (1− θ)Mi(u)

2
+ ci,

for all i > i0 and u ∈ R, satisfying Mi(u) ≤ u0. By Lemma 2.1, we get N ∈ δ2, a
contradiction. Since N /∈ δ2, for any n ∈ N and i ≥ 3, we find uni > 0, such that
Mi(uni ) <

1
n , Mi((uni )/2) > (1− (1/n))Mi(uni )/2 and

∑∞
i=3Mi(uni ) =∞. Let c ≥ 0

be such that M1(b) +M2(c) = 1 and let us define

x = be1 + ce2, xn = ae1 + ce2 +
in−1∑
i=3

uni ei + vninein n = 1, 2, . . . ,

where in is the smallest natural number for which
∑in
i=3Mi(uni ) ≥ M1(b) −M1(a)

and vnin ∈ [0, unin ] satisfies condition
∑in−1
i=3 Mi(uni ) + Min(vnin) = M1(b) −M1(a).

We have
∑in−1
i=3 Mi(uni ) > M1(b) − M1(a) − 1/n and ρM (x) = ρM (xn) = 1, so

‖x‖ = ‖xn‖ = 1. Simultaneously

ρM

(
x+ xn

2

)
= M1

(
a+ b

2

)
+M2(c) +

in−1∑
i=3

Mi

(
uni
2

)
+Min

(
vni
2

)

≥ M1(a) +M1(b)
2

+M2(c) +
(

1− 1
n

) in−1∑
i=3

Mi(uni )
2

≥ 1
2

(
M1(b) +M1(a) + 2M2(c) +

(
1− 1

n

)(
M1(b)−M1(a)−

1
n

))
→ 1.

Hence ‖x + xn‖ → 2. But x(1) − xn(1) = b − a > 0, which contradict with that
WLUR of lM .
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3 ⇒ 1. Let ‖x‖ = 1, ‖xn‖ = 1 for any n ∈ N and ‖x + xn‖ → 2. By M ∈ δ2,
we have ρM (xn) = 1. Moreover, since ‖x + x+xn

2 ‖ → 2, by Lemma 2.3, we have
ρM (x+xn2 )→ 1. Hence,

0 ← ρM (x) + ρM (xn)
2

− ρM
(
x+ xn

2

)
=

∞∑
i=1

(
Mi (x (i)) +Mi (xn (i))

2
−Mi

(
x (i) + xn (i)

2

))
.

By convexity of Mi(u), all terms of the last series are nonnegative, whence we get

(1)
Mi(x(i)) +Mi(xn(i))

2
−Mi

(
x(i) + xn(i)

2

)
→ 0.

for any i ∈ N . In the sequel, we will consider in two cases.

Case 1. First we assume that all functions Mi is strictly convex on the intervals
[0, ui]. Since |x(i)|, |xn(i)| ∈ [0, u(i)] for any i, n ∈ N , by (1), we have limn→∞ xn(i) =
x(i) for i = 1, 2, . . .. Hence, for any i0 ∈ N , we get

∑
i>i0

Mi(xn(i)) = ρM (xn)−
i0∑
i=1

Mi(xn(i))→ 1−
i0∑
i=1

Mi(x(i)) =
∑
i>i0

Mi(x(i)),

whence it follows that
∑
i>i0

Mi(xn(i)) converge to zero, uniformly with respect to
n ∈ N , as i0 →∞. Therefore

ρM

(
xn − x

2

)
≤

i0∑
i=1

Mi

(
xn(i)− x(i)

2

)
+

1
2

∑
i>i0

(Mi(xn(i)) +Mi(x(i)))→ 0,

as n→∞. By Lemma 2.2, we deduce that ‖x−xn2 ‖ → 0, that is, ‖x− xn‖ → 0.

Case 2. Let now the function N satisfies the condition δ2 and there exists a
sequence (a(i))ni=1 of positive numbers such that Mi(a(i)) +Mj(a(j)) ≥ 1 for i 6= j
and all functions Mi are strictly convex on the intervals [0, a(i)]. Without loss of
generality, we can assume that x(i) ≥ 0 and xn(i) ≥ 0 for any n, i ∈ N .

If xn(i) → x(i) for any i ∈ N , then in the same way as in case 1, we get
‖xn − x‖ → 0. Now suppose that there exists i1, we may assume that i1 = 1, such
that

(2) |xn(1)− x(1)| ≥ c > 0

whence
|M1(xn(1))−M1(x(1))| ≥ d

with some d > 0 and for n = 1, 2, . . .. From (1) we know that x(1) ∈ [a, b] ⊂
[a(1), u(1)], where [a, b] is an affine interval of M1. In virtue of the definitions of the
numbers a(i) from condition (iv − b), we get that x(i) ∈ [0, a(i)] for any i ≥ 2. If
x(i) < a(i), then, by (1), we deduce that xn(i)→ x(i). If x(i) = a(i), then we have
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x(1) = a(1) < a(1) + c ≤ xn(1) for n ∈ N . Hence xn(i) < a(i) for n ∈ N , that is,
xn(i) and x(i) are in the strictly convex interval of Mi. By (1), we can also deduce
that xn(i)→ x(i). So, we always have xn(i)→ x(i) for i 6= 1.

Since ‖x + xn‖ → 2, for any n ∈ N we can find yn ∈ (lN , ‖ · ‖o) such that
‖yn‖o = 1, yn(i) ≥ 0 for any i ∈ N and limn→∞

∑∞
i=1(x(i) + xn(i))yn(i) = 2. Then

we have
∑∞
i=1 x(i)yn(i) → 1 and

∑∞
i=1 xn(i)yn(i) → 1. By definition of the Orlicz

norm, we can find kn ≥ 1 such that

1
kn

(1 + ρN (knyn)) ≤ ‖yn‖o +
1
n

= 1 +
1
n

for n = 1, 2, . . .. Hence we have

0 ← 1
kn

(1 + ρN (knyn))−
∞∑
i=1

x(i)yn(i)

=
1
kn

(ρM (x) + ρN (knyn))−
∞∑
i=1

x(i)yn(i)

=
∞∑
i=1

(
Mi(x(i))

kn
+
Ni(knyn(i))

kn
− x(i)yn(i)

)
>

∑
i>i0

(
Mi(x(i))

kn
+
Ni(knyn(i))

kn
− x(i)yn(i)

)
.

Therefore limi0→∞
∑
i>i0
|Ni(knyn(i))/kn − x(i)yn(i)| = 0, uniformly with respect

to n ∈ N . Since M ∈ δ2, we get
∑
i>i0

x(i)yn(i) ≤ ‖
∑
i>i0

x(i)ei‖‖yn‖o for any
n ∈ N , hence limi0→∞

∑
i>i0

Ni(yn(i)) = 0, uniformly with respect to n ∈ N .
Moreover, since N ∈ δ2 and Ni vanishes only at zero for i ≥ 2, by Lemma 2.2, we
get limi0→∞ ‖

∑
i>i0

yn(i)ei‖o = 0, uniformly with respect to n ∈ N . We have

0 ←
∞∑
i=1

(xn(i)− x(i))yn(i) = (xn(1)− x(1))yn(1)

+
i0∑
i=2

(xn(i)− x(i))yn(i) +
∑
i>i0

(xn(i)− x(i))yn(i).

Since ‖
∑i0
i=2(xn(i) − x(i))ei‖ + ‖x + xn‖ ‖

∑
i>i0

yn(i)ei‖o → 0 as i0, n → ∞, we
have

∑i0
i=2(xn(i) − x(i))yn(i) +

∑
i>i0

(xn(i) − x(i))yn(i) → 0 as i0, n → ∞ and in
consequently limn→∞(xn(1)− x(1))yn(1) = 0.

But yn (1) do not converge to 0 as n → ∞. In fact, if yn(1) → 0 and x(1) 6=
0, then ρM (

∑∞
i=2 x(i)ei) ≤ 1 − M1(x(1)) < 1, which contradicts the condition

‖
∑∞
i=2 x(i)ei‖ ≥

∑∞
i=2 x(i)yn(i) → 1. If yn(1) → 0 and x(1) = 0, then

ρM (
∑∞
i=2 xn(i)ei) ≤ 1 − M1(xn(1)) ≤ 1 − d for any n ∈ N , which contradicts

the condition ‖
∑∞
i=2

xn(i)+x(i)
2 ei‖ ≥

∑∞
i=2

xn(i)+x(i)
2 yn(i) → 1 and Lemma 2.3. So,

xn(1)→ x(1), which contradicts the condition (2). �
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