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On distributive lattices

In this paper we generalize Glivenko’s theorem and then show how
this simplifies the proof that the clusters of a linear lattice form a complete
Boolean algebra.

Let § be a linear lattice. A set of § is called a manifold if is not empty.
A manifold M is said to be a cluster it M = M-+, where ML = {z||z|A |y
== 0 for every ye M}. In [1] it is proved that the clusters form a Boolean
algebra by the order of inclusion. In [2] we gave two different proofs.
In these proofs we used stars: a manifold M of 8§ is called a star if xze M
and 0 <y < |#| imply e M. The purpose of this paper is to simplify the
proof of {1] by stars instead of ideals.

_According to [1], a Brouwerian lattice L is a lattice such that for
any a, be L, {z]an z < b} contains a greatest element which is denoted
by b : a. In a Brouwerian lattice with 0, 0 : @ is denoted by a*.

GLIVENKO’S THEOREM. If L is a Browwerian laitice with 0, then the
correspondence & - a** is a lattice-epimorphism of L onto the Boolean
algebra of elements of L such that a = a™*

In [1], p. 45, it is shown that a Brouwerian lattice is a distributive
lattice. Thus, if I is a Brouwerian lattice with 0, then L is a distributive
lattice with 0 and zay = 0 if and only if z<y*. We now generahze
Glivenko’s theorem by these conditions.

In a previous paper [2], we proved the

LEMMA. Let A be a lattice with 0. If there is a map & — &' from A into
A such that

1

(i) »
(i) zAy = 0 if and only if e < y’, and

:,7}’

(iii) (xvy) =2 Ay,
then A is a Boolean algebra.

Using this lemma we can prove the

THEOREM. Let L be a distributive lattice with 0. If there is a map x —&'
from L into L such that

(1) zAy = 0 if and only if <y,
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then A {w lwe L} is a Boolean algebra and a funmction f: L — A defmed
by f(x " is a lattice-epimorphism.

Proof. Since z' < #', we have
(2) Az =0
by (1). This implies
(3) ‘ <.

Sinece ¥ < x implies #'A ¥ < ' A # which implies #'A y = 0 by (2), we
have ' < 9’ by (1). Therefore

(4) y < @ implies ' < ¥'.
By (3) and (4), we conclude
(5) x" =2
Since xv ¥ > o, ¥y, we obtain (xvy) < 2'Ay’ by (4). Since
(AYIAN(vy) =@ Ay rz)v @Ay Ay) =0
by (2), we obtain a'A ¥y’ < (xv ¥)’' by (1). Therefore
(6) (zvy) =a'AYy'.

According to (b), ze A if and only if "' = x.

Tt is easily shown that A is a lattice under the same order as L with
meet “a” and join “v”, where for a,bed, aab =arb and avb
= (av b)". Also 0 <z implies ' < 0’ by (4). So

OII :OIIAOI :0,
the last equality following from (2). Thus 0e A and A is a lattice with 0
and satisfies (i) by (5), (ii) by (1), and (iii) by the following. For a, be 4,

we have
(@v b)Y = (avd)” =(avh) =a'Ab =a" ab

by (6). Thus by the lemma, A iz a Boolean algebra.
Let »,ye L. By {4) 2 <y implies ¥’ < #’ which in turn implies x
< y”'. Thus

(7) x < y implies f(x) <f(y).
By (5) and (6), '

rr

rrr III)I

flavy) =(@vy)” =@nry) =@"ry
= @'vy") =" vy =f@ 7 f)
Since zA ¥y < @, ¥, we have that f(xa y) < f(2), f(y) by (7).
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Thus

(8) fleny) <flx) a fy).
On the other hand, by setting 2 = (zA y)'A (2"’ A ¥"') we have
nxny =0, z2ax’ =0, and z2zAy =0

by (2). Thus

so that
snxe<y'any’ =0,
which implies 2z << 2" and thus
zLa'Anx =0.
Consequently, z = 0 which implies #' A y" < (#A y)’. Therefore

flany) =(@ry)" Za" ry" = f) 2 f(y)

By (8) and the above f(xa y) = f(x) o f(y) and f is a lattice-homo-
morphism. By (5) f is trivially onto and thus f is a lattice-epimorphism.
As an application, let 8 be a linear lattice. As defined in 2], a manifold
M is called a star if ve M and 0 <<y < |#| implies ye¢ M. For any system
of stars M, (le A) it is obvious that (U M, and () M, are also stars.

Aed Aed
Therefore the stars of § form a distributive lattice under the inclusion

order with {0} as the zero of this lattice. According to the lemma in [2],
we have MNN = {0} if and only if M < N* for M and N stars. Thus
the clusters of 8 (0 = M < Sis called a cluster if M = M'1) form a Boolean
algebra and the map f(M) = M1+ is a lattice-epimorphism by our gener-
alization of Glivenko’s theorem.
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