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Simple linear lattices

A function lattice § on a space § is said to be simple if for any ge §
we can find a finite system of characteristic funetions y,e¢ § and real

numbers a, (» =1,2,...,#n) such that ¢ = Y a,y,, and the totality of
y=1

characteristic funections in & is called the character of §.

An ordered space B is called a Boolean lattice if for any =, y, z¢B
we have A ye¢B and av ye B, there exists the minimum of B that is
denoted by 0 but not neeessarily the maximum of B, (xv y)Az = (zA2) v
v (yAz), and for & >y there exists a unique weB such that & = yv w
and y Aw = 0, and such w is denoted by « —y.

The character of a simple function lattice forms a Boolean lattice.
Conversely, we prove that for any Boolean lattice B there exists a simple
function lattice § whose character is isomorphic to B, and the linear
lattice of all measures on B is isomorphic to the bounded linear functionals
of &. Therefore from the many properties of the bounded linear functionals
established by H. Nakano(') we can derive the corresponding properties
of meaures on a Boolean lattice.

. In this paper we will use notations and terminologies as in Nakano’s
paper. ‘

1. Lattice bases of linear lattices. Let L be a linear lattice. A manifold
B < L is called a lattice basis of L if

1° every xe B is normalable and positive,

2° for any x, ye Bwe havexv Yye B,x —xAye B,and (1 —zAy)AYy = 0,

3° for 0 << ael. we can find 0 % xe B and 0 << a such that ar < a.

Since #A y = @ —(zA (x—zAy)) for @,y >0, by 2° we have

(1.1) zAye B for any x,ye B.

We will prove

(1.2) [2]y = xAy for any z,ye B.

Proof. It is clear that y =yax+(y—yax) and yame{z}lh.
Since ¥y —y Awe{z}! by 2% we obtain (1.2) by definition.

(1) H. Nakano, Linear lattices, Wayne State University Press, 1966.
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From (1.2) we conclude

(1.3) For x, ye B we have [2] < [y] if and only if v < y.

(1.4) For z, ye B we have [2] = [y] if and only if x = y.

We will prove

(1.5) Hwvery xe B is archimedean.

Proof. If ae L and 0 <<a<<(1/n)x for all » =1,2,..., then by
3° we can find a > 0 and 0 << be B such that ab < a. Consequently we
have b < 2b <2 and hence (x —2Ab)A b= (20—b)A b = b > 0. This is

a contradiction by 2°.
Let B be ordered by the order < induced on B from L. Then we can

easily prove

(1.6) B is a Bolean lattice.

A linear lattice is said to be semi-conlinuous if each of its elements
is normalable. A manifold © of a Boolean lattice B is called an orthogonal
cover of B if (1) for any », ¥« O we have x = y or aA y = 0, and (2) for any
ae B we can find a finite system a,¢ 0 (v = 1, 2, ..., n) such that a < \7} a,.

p=1
THEOREM 1.1. If L is archimedean and semi-continuous, then it has
a lattice basis B. Furthermove if the whole projector lattice B of L has an
orthogonal cover D, then there is a lattice basis B of L such that B = {[x]: x<B}.
Proof. Let K be a maximal orthogonal system of positive elements
of L. We will prove that

n
B ={VIx]a,: a,¢K and ¢, L (v =1,2,...,%), n=1,2,...}
y=1

is a lattice basis of L. Condition 1° is clearly satisfied by B. Condition 2°

n n
is also satisfied: For z,ye B, if ¢ = V [#,]e, and ¥ = V [y,]a,, where
v=1

v=1

a,c K (v =1,2,...,7n) is an orthogonal system, then

n
wvy = \/[lwvlv |yv|]av€B7
y=1

n

s—any = V [a)@—ong) = V (lade, —[5)la)

e=1

([wg] - [wg][yg])a’ge B7

1

v
(@—wry)ny = VIa](@—zay)ry)
V ([0, L]l d e A [91a, = 0,

1
because [a,]z = [z,]a, and [a,]y = [y,]a, for ¢ =1,2,...,n.
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Condition 3° is also satisfied by B: For 0 < ae L, by the maximality
of K there exists be K such that aan b £ 0 and [b]a # 0. Since L is archi-
medean by assumption we can find a > 0 such that ([b]a—ab)t # 0.
Then [(@a—ab)T]be B and

a>[(a—ab)*la= al(a—ab)T]b #0

because [(a —ab)*1[b] = [([b]a—ab)*| 0.

Next we suppose that the whole projector lattice B of L has an
orthogonal cover O. Setting K = {a: a =0, or a>>0 and [a]le D} we
obtain a maximal orthogonal system XK of positive elements. Then as
shown just above, the set B is a lattice basis of L. For any xe¢ L by the
definition of orthogonal covers we can find a finite system a,¢ K

(v = 1 2, ..., n) such that [z] < \/ [a,]. Then [z] = V [z][a,] = [\n/ [z]a,),
and \/ [#]a,e B. So we conclude 5B = {[#]: ze B}. "~

=

2. Simple linear lattices. A lattice basis B of L is said to be simple
if for any aeL we can find a finite system z,¢ B and real numbers a,

n
(» =1,2,...,n) such that a = DY a,z,. A linear lattice is said to be simple
r=1

if it has a simple lattice basis.
We state a partition theorem that is easily proved by induction.

PARTITION THEOREM. For any finite system «, (v =1,2,...,%) of
a Boolean lattice B there ewists a finite orthogonal system a,e B (u =1, 2, ...
ooy m) sSuch that ¢, = \ a, for each v =1,2,...,n
<%y
THEOREM 2.1. If B is a simple laitice basis of L, then

1) for any ae L we can find x,¢ B and a, (v = 1,2, ..., n) such that
n

a = ‘am, and x, Az, =0 for v # pu,
=1
(2) {[#]: we L} = {[#]: we B},

(3) B>z, ¢ ve L implies e B and z, | x in B, and
v=1 r=1

(4) Box, | w in B impliesx, | x in L.
y=1 r=1

m
Proof. (1) Let L>a = > p,b,, where b, eB forall y =1,2,...,m
=1

vy

P
Since B is a Boolean lattice, by the Partition Theorem there exigts an
orthogonal system a,¢ B (v = 1, 2, ) such that b, = ) a,
a,,<b a,<b
forall y =1, 2, ..., m. Therefore a = Z a,a, for some a, (v = 1,2, . ,ﬂn),

v=1

and we can easily prove that a is normalable and archimedean.
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(2) follows immediately from (1).

(3) Suppose B>z, | e L. Without loss of generality we may

v=1

’ m
assume z > 0 and hence # = }' a, y, for some orthogonal system 0 < y,< B
u=1

and 0 < a, (g =1,2,...,m). Then [#,]>[y,] for all 4y =1,2,...,m and
y =1,2,..., and by (1.2) and (1.3) we have

Yo = [yy]xv l[l-l [yu:lw = 0, Y,-

This means a, = 1 for all u, hence xe B. Now it is clear by definition

00

that », | «in B.
=1

V==

(4) Let B>z, | # in B and L>y <z, for all ». Then 0 <yt <,

y=1
m
for all ». If y* = D' a,a, for some orthogonal system a,e B and a, >0
pu=1
(# =1,2,...,m), then [a,]< [#,] and a, <2, by (1.3). Thus by (1.2)
m

we have a,a, =[a,]y" <[a,]o, =a,< w, for all x and». Since B> \/la#< @,
=
m

m m
for ally, we have \/ a, < # by assumption. Hencey < y* = V ¢,a,< V a,
p=1 p=1 p=1

< @, and we conclude that z, | zin L.

v=1

In this proof we also proved
THEOREM 2.2. Every simple linear lattice is archimedean and semi-
continuous. ‘

If a linear lattice L has a lattice basis B, then the linear manifold
S generated by B is called the simplicity of B. § is a linear lattice since

n
for any ye Sif y = >’ a,a, for some orthogonal system a,e B (» =1, 2, ...
r=1

...;n), then y = > a,a,— > (—a,)a,, and hence y* exists in § and is
a,=0 a,<0
equal to > a,a,. :
0,20
TaEOREM 2.3. If an archimedean linear lattice L has a lattice basis B,

then for the simplicity 8 of B we have a = \ 1z for 0 << ae L.

Sz<a

Proof. If y < a—2 for all 8 >2 < a, then y < 0. For if not, we have
0<y*<a—= for all §>2 < a. By 3° of Section 1, there exists o > 0
and B»>b > 0 such that ab < y* < a. Since S2>ab < a, we have ab << y"
< a—ab, i. e, 832ab < a. Thus by induction we have 0 < nab < a for
all natural numbers n. This is a contradiction because I is archimedean

by assumption. Hence we have 0 = A (¢—a), i.e,a = V =z
Srr<a Srx<a
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3. Isomorphism. For two Boolean lattices B, and B, we say that B,
is 4somorphic to B, and we write B, ~ B, if there is a mapping 7 from
B, onto B, such that for any x, y<B; we have T'(x) < T'(y) if and only if
# < y. Such a mapping 7 is called an isomorphism from B, to B,: Every
isomorphism is one-to-one by definition.

A mapping T from an ordered linear space L, onto another ordered
linear space L, is called an isomorphism from L, onto L, and we write
Ly, ~ L, if (1) T is linear, i.e., T(ax+py) = «T(2)+pT(y), and (2)
T(x) >0 if and only if # > 0. Thus every isomorphism is one-to-one
because I'(x) = 0 means both T'(z) > 0 and T(—=z) > 0, and they imply
xz =0.

THEOREM 3.1. For a simple linear lattice L, every simple lattice basis
B of L is isomorphic to the whole projector lattice P of L.

Proof. By (1.3) and (2) of Theorem 2.1, we can eagily prove that by
setting 7(d) = [b] for every be B we obtain an isomorphism 7T from the
Boolean lattice B to the Boolean lattice P.

We can easily prove

THEOREM 3.2. Let B be a simple lattice basis of L and M be a mapping
from B inio another linear space K satisfying the condition that M (av b)
= M{a)+M(b) if anb = 0. Then setting

n

a,0,) = Y aM(a,),

va=1

l\ﬂs

|

Il

v

where a,e B (v =1,2, ..., ﬂ), we obtain a linear mapping T from L into K.

IsoMorPHISM THEOREM 3.3. For two simple linear lattices L, and L,,
if

{[#]: ®e Ly} ~ {[z]: we Ly},

then for any simple laitice bases B, and B, of L, and L, respectively there
exists an isomorphism T from L, to L, such that TB, = B,. ‘

Proof. By the assumption and Theorem 3.1, there exists an iso-
morphism K from B; to B,. By Theorem 3.2 we can define a linear mapping

n n n
T from L, into L, by T(Y e,a,) = Y o,K(a,) for all > a,a,¢ L;, where
v=]

y=] y=1

0<a,e¢eB, (v*=1,2,...,n). Then it is clear that 7 is onto, linear, and
T(B,) = B,.
It is obvious by Theorem 2.1 (1) that x > 0 implies T (z) > 0. Suppose

n
Tx)>0 and 2 = ) a,a, for some orthogonal system B,>a,> 0
y=1

(» =1,2,...,n). Then we have 0<[K(a,)](T(»)) = a,K(a,). Since
K(a,) >0, we have 0 < ¢, for all v =1, 2,...,n, i. e., > 0. Therefore
T(x) > 0 it and only if x> 0. '
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4. Simple function lattices. A function lattice § on a space § is said
to be simple if for any pe & we ean find a finite system of characteristic

n
functions y, ¢ ¥ and real numbers o, (v =1, 2, ..., n) such that ¢ = } a,y,.

v=1

For a simple function lattice §& the system of all characteristic functions
in & is called the character of §. We can easily prove

THEOREM 4.1. A simple function lattice § is simple as a linear lattice
and the character of § is a simple lattice basis.

Ex1sTENCE THEOREM 4.2. For any Boolean lattice § there exists a simple
function lattice whose character is isomorphic to B.

Proof. Let € be the space of all maximal ideals of B, as defined in
Section 8 in H. Nakano paper. We set U, = {p: aepe G} for aecB, then
we have U,VU, = U,yp, UNUp = Uypy, Uy~ Uy = U,_, for a>=b,

and € = (JU,, as proved in H. Nakano paper (see p. 30). Let y, be the
acB

characteristic function of U,,i.e., y,(p) =1 if pe U,, and y,(p) = 0 if
pé U, weset B ={y,: aeBland F = { D a,x4: ¢,¢Band a,¢ (~— oo, o)
=1

(»=12,...,n),n =1,2,...}, then we can easily prove that ¥ is a simple
function lattice and B its character isomorphic to 8.

The following theorem is an immediate consequence of the definition
of a simple linear lattice:

THEOREM 4.3. Let L, and L, be linear lattices. If L, is simple and
L, ~ Ly, then L, is also simple.

CHARACIERIZATION THEOREM 4.4. A linear latiice L is isomorphic
to some simple function lattice § if and only if L is simple.

Proof. If L ~ §, then by Theorem 4.1 § is simple as a linear lattice.
Hence by Theorem 4.3 L is also simple.

Conversely, let L be simple with a simple lattice basis B. Since B
is @ Boolean lattice, by the Existence Theorem 4.2, there exists a simple
function lattice & such that B =~ {[f]: fe¢ §}. By Theorem 3.1 we also
have B =~ {[#]: we L}. Hence I ~ § by Isomorphism Theorem 3.3.

5. Measures. A function m on a Boolean lattice ¥ is called an additive
function if

(1) m(zv y) = m(z)+m(y) for zry = 0.

An additive function m is called a measure if

(2) sup|m(2)| << co for every xe B.

<z
For any additive functions m and #» on B and real numbers o and 8
we define .
(3) (am—pn)(x) = am(x)+ pn(x) for every xeB, and
(4) m < n if m(x) < n(x) for every xeB.
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We can easily prove that the measures on B form a linear lattice B
such that for me®B and x¢B we have
(5) m™* (2) = supm(2),
<z

(6) m™ (x) = —infm(z), and
<z
(7) Im|(2) = y%llgx(m(y)—m(z))-

(=)

A measure me B is said to be continuous if xz, | 0 implies |m|(x,) | 0;

=1 y=]l

and it is said to be wniversally continuous if x, | 0 implies [m|(xz;) | 0.
Aed Aed

6. Isomorphism theorem. Let B be a simple lattice basis of a linear

lattice L. Let I be the collection of all linear funetionals on L. Then for
every e L setting «? (#) = «(x) for w< B we obtain an additive function

2% on B. Conversely, for any additive function m on B there exists a unique
n

- ~ ~ A n
we L sueh that «® = m: By Theorem 3.2 #(} a,a,) = Y a,m(a,), where
y=1

»=1
a,¢ B, defines a linear functional # on I and 2% = m. Such a functional
z is unique, sinee if two linear functionals coincide on a simple lattice
basis of L they must coincide throughout L. Therefore we can state
ISOMORPHISM THEOREM 6.1. 2% (e L) is an isomorphism from I to
the ordered linear space of all additive functions Bon B.

THEOREM 6.2. @ is bounded if and only if &® is a measure. .
Proof. If  is bounded, then we have
sup [0%(2)| = sup |o(z)| < sup |z(y)| < oo

Bz<le Biz<z osy<a,yel

Conversely, we suppose that 2% is a measure. For ve I with 0 <z

n
< ae L, we have # = ) a,x, for some orthogonal system 0 < z,¢ B and

y=1

real numbers a, (v =1, 2, ..., n), and by Isomorphism Theorem 6.1 we
can find 0 < ye L such that y® = |27 and

n n

<Y ala?(@) < ) 0la”(2) = y(@) < y(a).

y=1 y=]1

(@) = | 34,8,
y=1

Therefore we have sup laE(w)l < g}(a) < oo,
<zr<a

By Isomorphism Theorem 6.1 and Theorem 6.2 we have
THEOREM 6.3. o® (v< L) is an isomorphism from the linear lattice L of

all bounded linear functionals on L to the linear lattice B of all measures
on B.
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Since L is not necessarily continuous, we must slightly change the
definitions in Nakano book of the continuity and universal continuity of

a bounded linear functional ze L. A funetional z e L is said to be continuous

if Lex, J, 0 implies. |£| (z,) | O. z is said to be universally continuous if

y=1

Loz, | 0 implies lwl .4 0. In the case that L is continuous we can
Aed leA
eagsily prove by means of Theorem 19.2 of Nakano that these definitions

are equivalent respectively to their original ones in Nakano’s book (see
p. 68 and 81).

The proof of Theorem 19.4 of Nakano is also available for

THEOREM 6.4. For a semi-continuous linem" lattice L, xe L is continuous
if and only if for any L2>a> 0 and [z,] i 0 we have |:v| [x,]a) i 0.

y=1

Let L° be the linear lattice of all continuous linear functlonals on I,
and let I be the linear lattice of all universally continuous linear functionals
on L.

THEOREM 6.5. 2% is continuous if and only if we L°. @ is universally

continuous if and only if we L.

Proof. It e L° and B >, ¢ 0 in B, then by (4) of Theorem 2.1, it

v=1
oo

is also true that z, | 0 in L. Hence we have

v=1

() = (2P (2,) = |2](2,) 1:0

since |2F] = |#|® by Isomorphism Theorem 6.1.
Conversely, we assume that ” is continuous and suppose that 0 < a
m

= a,a,e L for some orthogonal system 0<a,eB and 0<a, (4
=1

M
=1,2,...,m), and [#,] | 0. By Theorem 2.1 we can assume z,¢ B for

y=1
co

all v = 1, 2, ... Furthermore we have #, | 0 by the isomorphism [#](ze¢ B)

v=1

from B onto the whole pro;ector lattice P of L. By (1.2) we have [m[ ([z,]a)

=D ”lwlB (@, A a, ¢ 0. Therefore « is continuous by Theorem 6.4.

u=1
The second part of the theorem can be proven mmﬂaﬂy

THROREM 6.6. For any Boolean lattice %, B is refleme B is a normayg
manifold of 58, and B is a normal manifold of 23“, where BE consists all contin-
uous measures, and B consists of all universally continuous measures.
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Proof. Let B be isomorphic to a simple lattice basis B of a simple
linear lattice L. Then by Theorem 6.3 we need only to prove the corres-

ponding theorem for L.
Since L is universally continuous, to show L is reflexive, by Theorem

24.4 of Nakano, we only have to show that L is monotone complete.

(A linear laftice S is said to be monotone complete it S >a, + and supZ(a,)
ded AeA

< oo for all §>% > 0, then there exists some ae S such that a; 1 a.)
Aed

So suppose L 3%, 1 and sup a(3F,) << oo for all 0 < ae L. For every
AeA AeA

0 < we L we can consider ze 7 by the duality (%) = #(») for Z« L. Then

for 0 < ze L we have sup&,(x) < oo. Therefore by Theorem 18.2 of Nakano
AeA

there exists de L such that &, } .
Aed

By the definition of 1° it is clear that L° is a semi-normal manifold
of L. To prove that L¢is a normal manifold of I, by Theorem 4.9 of Nakano,
we only have to prove that 0 < d,¢ L° and 4, | @ imply de L°: For any

AeA
Lsa, 1 0and ¢ > 0 we can find A5¢ L, by (5) of Theorem 18.2 of Nakano,

r=1

such that a(a,) < @, (a;)+e. Since a—a,, > 0, we have

a(a,) = &10(%) ‘T(a'—‘izo)(av) < ‘;Ao(av)‘|'8

for » =1, 2, ... Since @, (a,) | 0, we obtain infa(a,) < e. Since ¢ > 0 is

r=1 v2=]
arbitrary we conclude that &e L.
Similarly we can prove that L is a normal manifold of L. From this
and the fact that Z°is a normal manifold of L we conclude that I is a nor-
mal manifold of L.
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