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Simple linear lattices

A function lattice $  on a space 8 is said to be simple if for any ep e $  
we can find a finite system of characteristic functions %ve and real

П
numbers av(v =  1 , 2 , n) such that cp =  £  av%v, and the totality of

V = 1
characteristic functions in $  is called the character o f

An ordered space 23 is called a Boolean lattice if for any x ,y ,z e4 8  
we have а? л y e 23 and x v y e  23, there exists the minimum of 23 that is 
denoted by 0 but not necessarily the maximum of 23, (xv у) л z =  (хл z) v 
v (ул z), and for x >  у there exists a unique гое 23 such that x =  y y w 
and у a w  —  0,  and such w is denoted by x — y.

The character of a simple function lattice forms a Boolean lattice. 
Conversely, we prove that for any Boolean lattice 23 there exists a simple 
function lattice g  whose character is isomorphic to 23, and the linear 
lattice of all measures on 23 is isomorphic to the bounded linear functionals 
of Therefore from the many properties of the bounded linear functionals 
established by H. Hakano(1) we can derive the corresponding properties 
of meaures on a Boolean lattice.

. In this paper we will use notations and terminologies as in Nakano’s 
paper.

1. Lattice bases of linear lattices. Let L  be a linear lattice. A manifold 
В  я  L i s  called a lattice basis of L  if

1 ° every xe В  is normalable and positive,
2° fo r  any x, y e  В  we have xv  ye  В ,х  — хл  y e  B, and ( х - х л у ) л у  = 0 ,  
3° fo r  0 <  a e  L  we can fin d  0 Ф x e  В  and 0 <  a such that ax <  a. 
Since ха у — х — [хл (х — х л  y)) for x, y >  0 , by 2° we have
(1 .1 ) хлуе В  for any X, ye В.
We will prove
(1.2) [x~\y — ХЛ у fo r  any X, ye B.
P ro o f. I t  is clear that у =  у л ж +  (у — у л  х) and у л  хе  {ж}1-1. 

Since у — у л х е  {х }1- by 2е1, we obtain (1 .2 ) by definition.

(1) H. N akano, Linear lattices, Wayne State University Press, 1966.
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From (1.2) we conclude
(1.3) F or x, ye B  we have [x ] <  [y ] i f  and only i f  x <  y.
(1.4) F or x , y e  B  we have [æ] =  [y] i f  and only i f  x =  y.
We will prove
(1.5) Every x e B  is archimedean.
P ro o f. If  a e  L  and 0 < a ^ ( l / n ) x  for all n =  1 , 2 , . . . ,  then by 

3° we can find a >  0 and 0 <  be В  such that ab <  a. Consequently we 
have b <  2b <  x and hence (х — х л Ь ) л Ъ ^ ( 2 Ъ  — Ь ) л Ь = Ь > 0 .  This is 
a contradiction by 2°.

Let В  be ordered by the order <  induced on В  from L. Then we can 
easily prove

(1.6) В  is a Bolean lattice.
A linear lattice is said to be semi-continuous if each of its elements 

is normalable. A manifold О of a Boolean lattice $8 is called an orthogonal 
cover of 23 if (1 ) for any x, ye  £> we have x — у or ха у = 0, and (2 ) for any

П
fteSBwe can find a finite system ave £) (v =  1 , 2 , . . . ,  n) such that a <  V «„•

v = l

Theorem 1.1. I f  L  is archimedean and semi-continuous, then it has 
a lattice basis B . Furthermore i f  the whole projector lattice 23 o f L  has an 
orthogonal cover £), then there is a lattice basis В  o f L  such that 2$ =  { [x] : x  eB}.

P ro o f. Let A  be a maximal orthogonal system of positive elements 
of L. We will prove that

П
В  — { V u„€ K  and ®v€ L  (v =  1, 2, . . . ,  n)t n — 1, 2, . . .}

V=1

is a lattice basis of L. Condition 1° is clearly satisfied by B. Condition 2°
n  n

is also satisfied: For x , y e B , if x =  V and у =  V [2/„]<L, where
J > = I  V—  1

a ve К  (v — 1 , 2, . . . ,  n)  is an orthogonal system, then
П

x v y  =  V I X I v  Iy„\]ave B ,
V— I

n  n

х - х л у  =  V [ав] ( х - х л у )  =  V ([^e]«e -| > Д У в!К )
e=i e=i
П

=  V ( [ ^ - [ ^ В Д К е В ,
е=1 
п

{ х - х л у )  А у =  У [ а в] ( { х - х л у ) л у )  
е=1

п
=  V([®e]ae- W [ y e]ae)A [Ув]а в =  0,

е=1

because [ав]л? =  [x e] a e and [ae]y  =  [ye]a g for q =  1 , 2, . . . ,  n.
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Condition 3° is also satisfied by В  : For 0 <  a e  L , by the maximality 
of К  there exists be К  such that а л  b Ф 0 and [6] а Ф 0. Since L  is archi- 
medean by assumption we can find a > 0  such that ([b]a — ab)+ Ф 0. 
Then [(u —аЬ)+]& еБ and

a ^  [(a — ab)+]a  >  a[(a — ab)+)b Ф 0

because [{a — ab)+] [6] =  [([&]u — ab)+\ Ф 0.
Next we suppose that the whole projector lattice ф of L  has an 

orthogonal cover £). Setting К  =  {a : a  =  0, or u > 0  and [а]е£)} we 
obtain a maximal orthogonal system К  of positive elements. Then as 
shown just above, the set В  is a lattice basis of L . For any by the 
definition of orthogonal covers we can find a finite system ave К

n n  n

(v =  1 , 2, . . . ,  n) such that [a?] <  V [л,]. Then [гс] =  V [®] [а,] =  [V [ » „ ]  >
n v=l V—l V=1

and V [x ]ave B . So we conclude ф = { [# ] :  xe B }.
V = 1

2. Simple linear lattices. A lattice basis В  of L  is said to be simple 
if for any a e L  we can find a finite system xve В  and real numbers av

П
(v =  1 , 2 , . . . ,  n) such that a  =  £  avxv  A linear lattice is said to be simple

v= 1
if it has a simple lattice basis.

We state a partition theorem that is easily proved by induction.

P a r t it io n  T h e o r e m . F or any fin ite system xv {v =  1, 2 , . . . ,  n) of 
a Boolean lattice 23 there exists a fin ite orthogonal system (y =  1 , 2 , . . .
. . . ,  m) such that xv =  V f or each v =  1 , 2, . . . ,  n.

ар<хг
T h e o r e m  2.1. I f  В  is a simple lattice basis o f L , then

(1) fo r  any a e  L  we can fin d  xve В  and av (v =  1, 2, . . . ,  n) such that
П

a  =  £  avxv and x va  хи =  0 fo r  v Ф y,
V= 1
(2) { [a ? ] :  x e  L }  =  { [a ? ] :  X e B } ,

OO 0 0

(3) В  *xv I x e L  implies xe В  and xv j  x in B , and
V=I v=l

OO OO

(4) В  *xv j  x in В  implies xv \ x in L.
v=l v=l

ш
P ro o f. (1) Let ! ? «  =  where Ьи e В  for all y =  1, 2, . . . ,  m.

f*=i
Since В  is a Boolean lattice, by the Partition Theorem there exists an 
orthogonal system ave В  (v =  1 , 2 , . . . ,  n) such that — V av =  £  av

n  a v< b p
for all /г =  1, 2, . . . ,  m. Therefore a =  £  ai>av for some av (v =  1, 2 , . . . ,  n),

f=i
and we can easily prove that a is normalable and archimedean.
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(2 ) follows immediately from (1 ).
o o

(3) Suppose В  э xv | xe L . Without loss of generality we may
V= 1 m

assume x >  0 and hence x — for some orthogonal system О < у ^ в
n=\

and 0 <  cLp (ju =  1 , 2, . . . ,  m). Then [xv] >  [yM] for all у =  1, 2, . . . ,  m and 
v =  1 , 2 , . . . ,  and by (1.2) and (1.3) we have

OO

Ум =  [у#.]®, I W ®  =  « Л -V = 1
This means =  1 for all y, hence x e B .  Now it is clear by definition

OO

that xv j  x in B .
OO

(4) Let В  ? xv I x in В  and L * y  <  xv for all v. Then 0 <  y+ <  xv
v  — 1 m

for all v. If  y + =  £  for some orthogonal system a^e В  and >  0 

(/1 =  1, 2, . then [a„] <  [a?J and <  a?, by (1.3). Thus by (1 .2 )
m

we have =  [ a jy + <  [ a ^ =  a/t <  for all у  andr. Since B *\ J а ^ х Р
1m m m

for all we have V ^ < ® b у assumption. Hence у <  y+ =  V V aM
/i~  1 ,«=1  / / = 1

o o

<  a?, and we conclude that j  ж in L.
v = l

In  this proof we also proved
T h e o r e m  2.2. Every simple linear lattice is archimedean and semi- 

continuous.
If  a linear lattice L  has a lattice basis B , then the linear manifold 

S  generated by В  is called the simplicity of B. 8 is a linear lattice since
П

for any ye 8 if y =  JT avav for some orthogonal system ave В  (v =  1, 2, . . .
f=i

then у =  £  £  ( ~ av)av> and hence y + exists in 8 and is
av>0 av<0

equal to ^  avav.
av> 0

T h e o r e m  2.3. I f  an archimedean linear lattice L  has a lattice basis В , 
then fo r  the simplicity 8 o f  В  we have a =  V x fo r  0 ^  a e  L .

P ro o f. If  y <  a — x for all 8 *x  <  a, then у <  0. For if not, we have 
0 <  y+ a — x for all 8 *x  <  a. By 3° of Section 1, there exists a >  0 
and В  *b >  0 such that ab <  y + <  a. Since 8 *ab  <  a, we have ab <  y+
<  a — ab, i. e., 8 *2ab  <  a. Thus by induction we have 0 <  nab <  a for 
all natural numbers w. This is a contradiction because L  is archimedean 
by assumption. Hence we have 0 =  Д (a — x), i. e., a =  V æ-

Six*Za Ssx â
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3. Isomorphism. For two Boolean lattices 231 and 23 2 we say that 23 x 
is isomorphic to 232 and we write 23 x 232 if there is a mapping T  from 
23x onto ©2 such that for any x, у e 23i we have T(x)  <  T(y)  if and only if 
x <  y. Such a mapping T  is called an isomorphism  from 23x to 232. Every 
isomorphism is one-to-one by definition.

A mapping T  from an ordered linear space L x onto another ordered 
linear space L 2 is called an isomorphism  from L x onto L 2 and we write 
L x L 2 if (1 ) T  is linear, i. e., T(ax +  fy )  =  aT(x) +j3T(y), and (2 ) 
T(x)  ^  0 if and only if x ^  0. Thns every isomorphism is one-to-one 
because T(x)  = 0  means both T(x)  >  0 and T( — x) >  0, and they imply 
x =  0.

Theorem 3.1. F or a simple linear lattice L , every simple lattice basis 
В  of L  is isomorphic to the whole projector lattice ф o f L.

P ro o f. By (1.3) and (2) of Theorem 2.1, we can easily prove that by 
setting T(b) =  [6] for every be В  we obtain an isomorphism T  from the 
Boolean lattice В  to the Boolean lattice ф.

We can easily prove
Theorem 3.2. Let В  be a simple lattice basis o f L  and M be a mapping 

from  В  into another linear space К  satisfying the condition that M( a v  b) 
=  M(a)-\-M(b) i f  а л  b =  0. Then setting

П П

T [ y i ava)  =  ] ? av№(av),
V=1 1>=1

where ave В  (v =  1, 2 , . . . ,  n), we obtain a linear mapping T  from  L  into K . 
Isomorphism Theorem 3.3. F or two simple linear lattices L x and L 2,

i f
{[ж]: x e L x} {[#]: x e L 2},

then fo r  any simple lattice bases B x and B 2 o f L x and L 2 respectively there 
exists an isomorphism T from  L x to L 2 such that T B X =  B 2.

P ro o f. By the assumption and Theorem 3.1, there exists an iso­
morphism К  from B x to B 2. By Theorem 3.2 we can define a linear mapping

n n n
T  from L x into L 2 by avav) =  avK (a v) for all avave L x, where

V=1 V=] V=1
0 <  a„€ B x (v =  1, 2, . . . ,  n). Then it is clear that T  is onto, linear, and 
T (B X)

I t  is obvious by Theorem 2.1 (1) that x ^  0 implies T(x)  >  0. Suppose
П

T(x)  ^  0 and x =  avav for some orthogonal system B x * av >  0
V=1

(v — 1 , 2, . . . ,  n). Then we have 0 <  [ K( a v)][T(x)) =  avK (a v). Since 
K (a v) >  0, we have 0 <  av for all v =  1, 2, . . . ,  n, i. e., x  >  0. Therefore 
T(x)  >  0 if and only if x >  0.
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4. Simple function lattices. A function lattice $  on a space S  is said 
to be simple if for any cpe $  we can find a finite system of characteristic

П
functions %v€ $  and real numbers av (v =  1 , 2 , . . . ,  n) such that <p — £  avXv

»>=i
For a simple function lattice $  the system of all characteristic functions 
in ^ is called the character of We can easily prove

T h e o r e m  4.1. A simple function lattice $  is simple as a linear lattice 
and the character o f  $  is a simple lattice basis.

E x i s t e n c e  T h e o r e m  4.2. F or any Boolean lattice $  there exists a simple 
function lattice whose character is isomorphic to 58.

P ro o f. Let (£ be the space of all maximal ideals of 58, as defined in 
Section 8 in H. Жакапо paper. We set Ua =  {p : aepe (£} for ae5B, then 
we have Uau  7Jb =  Vayb, Uan  Ub =  UaAb, Ua -  Ub =  TJa_b for a  >  b, 
and (E =  U  Ua , as proved in H. Жакапо paper (see p. 30). Let %a he the

аеЗЗ
characteristic function of ?7a, i. e., яа(р) =  1 if p e Z7a, and xa(v) =  0 if

71
p 4 TJa . If  we set В  =  {%a: a e  58} and $  =  { ]?  avxav: a„e58 and ave ( — 00,00)

V=1
(v =  1 ,  2 , . . . ,  n), n — 1 , 2 , . . then we can easily prove that $  is a simple 
function lattice and В  its character isomorphic to 58.

The following theorem is an immediate consequence of the definition 
of a simple linear lattice:

T h e o r e m  4.3. Let L x and L 2 be linear lattices. I f  L i is simple and 
L x & L 2, then L 2 is also simple.

Ch a r a c t e r iz a t io n  T h e o r e m  4.4. A linear lattice L  is isomorphic 
to some simple function lattice $  i f  and only i f  L  is simple.

P ro o f. If  L  pa then by Theorem 4.1 $  is simple as a linear lattice. 
Hence by Theorem 4.3 L  is also simple.

Conversely, let L  be simple with a simple lattice basis B . Since В  
is a Boolean lattice, by the Existence Theorem 4.2, there exists a simple 
function lattice % such that В  pu {[/]: f e  $}• By Theorem 3.1 we also 
have В  & {[ж]: x e L ) .  Hence L  pu gr by Isomorphism Theorem 3.3.

5. Measures. A function m on a Boolean lattice $  is called an additive 
function  if

(1 ) m( xv  y) =  m(x) +  m(y) fo r  х л у  = 0.
An additive function m is called a measure if
(2 ) sup|m(s)| <  00 for  every xe  58.

For any additive functions m and n on 58 and real numbers a and /5 
we define

(3) (am +  firi)(x) =  am(x) +  fn(x)  fo r  every #e58, and
(4) m <  n i f  m(x)  <  n(x) fo r  every xe  58.
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We can easily prove that the measures on © form a linear lattice 93 
such that for m e 93 and xe-S  we have

(5) m+(x) =  supm(2),
z ^ x

(6) m~(x) — — infm(£), and
zs^x

(7) |т|(ж) =  sup (m(y) — m(z)).
y s /z K x

~  OO OO

A measure me SB is said to be continuous if xv j  0 implies \m\(xv) j  0;
V =  1  V = * l

and it is said to be universally continuous if хл j  0 implies \m\ (xf) j  0 .
ХеЛ ХеЛ

6 . Isomorphism theorem. Let В  be a simple lattice basis of a linear 

lattice L.  Let L  be the collection of all linear ’functionals on L.  Then for 
every xe L  setting xB (x ) = x { x )  for xe В  we obtain an additive function 
xB on B. Conversely, for any additive function m on В  there exists a unique
л л л л П »
x e L  such that хв  =  т:  By Theorem 3.2 avav) =  ^  avm (av), where

V ~  1  1 > = 1

aPe B , defines a linear functional x  on L  and xB =  m. Such afunctional 
x is unique, since if two linear functionals coincide on a simple lattice 
basis of L  they must coincide throughout L. Therefore we can state

I s o m o r p h is m  T h e o r e m  6.1. xB (xeL)  is an isomorphism from  L  to 
the ordered linear space o f all additive functions В  on В .

T h e o r e m  6.2. x is bounded i f  and only i f  xB is a measure.

P ro o f. If  x is bounded, then we have

sup \xB{z)\ =  sup \x(z)\ <  sup \x(y)\<  oo.
B sZ ^ X  B sZ ^ X  0 ^ y < :X ,y eL

Conversely, we suppose that xB is a measure. For xe L  with 0 <  x
П

<  a e  L , we have x — ]?  avxv for some orthogonal system 0 <  xve В  and
»>=i

real numbers av (v =  1 , 2 , . . . ,  n), and by Isomorphism Theorem 6.1 we 
can find 0 <  y e L  such that yB =  \xB\ and

n n n

И ®)1 =  I £  avxB{xv) I <  a,la?®(a?,)К  |a?®| (xv) =  y { x ) ^ y ( a ) .
v=l t>=l v=l

Therefore we have sup \x(x)\ ^ y ( a )  <  oo.

By Isomorphism Theorem 6.1 and Theorem 6.2 we have 
T h e o r e m  6.3. xB (xe L ) is an isomorphism from  the linear lattice L  o f  

all bounded linear functionals on L  to the linear lattice В  o f all measures 
on B.
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Since L  is not necessarily continuons, we must slightly change the 
definitions in Nakano book of the continuity and universal continuity of 
a bounded linear functional xe L . A functional xe L  is said to be continuous

o o  ^  o o

if L  *xv I 0 implies. \x\(x„) j  0. x is said to be universally continuous if
V = 1  V = 1

Ъ * х л I 0 implies \x\(xv)-\ 0. In  the case that L  is continuous we can
ЛеЛ ЛеЛ

easily prove by means of Theorem 19.2 of Nakano that these definitions 
are equivalent respectively to their original ones in Nakano’s book (see 
p. 68 and 81).

The proof of Theorem 19.4 of Nakano is also available for 
T h e o r e m  6.4. F or  a semi-continuous linear lattice L , xe JO is continuous

o o  ^  o o

i f  and only i f  for  any L * a ^ 0  and [a?„] | 0 we have \x\([xv]a) j  0.
j>=i )>=i

Let L c be the linear lattice of all continuous linear functionals on L, 
and let L  be the linear lattice of all universally continuous linear functionals 
on L.

T h e o r e m  6.5. xB is continuous i f  and only i f  x e  L c. xB is universally 
continuous i f  and only i f  xe L .

^ ^  OO

P ro o f. If  xe L c and В  *x„ j  0 in B , then by (4) of Theorem 2.1, it
»=i

OO

is also true that xv j  0 in L. Hence we have
r = l

^  ~  ~  o o

\xB\{xv) == \x\B (xP) =  \x\{x„) I ' 0 ,

since \xB\ — \x\B by Isomorphism Theorem 6.1.
Conversely, we assume that xB is continuous and suppose that 0 <  a
m

— £  a^a^e L  for some orthogonal system 0 a^e В  and 0 <  (y
o o

=  1, 2, . . . ,  m), and [xv] j  0. By Theorem 2.1 we can assume xve В  for
»-=i

OO

all v =  1, 2, . . .  Purthermore we have xv j  0 by the isomorphism [ж] [xe B)
r= l

from В  onto the whole projector lattice ф of L. By (1.2) we have \x\([#„]«)
m M o o

=  2  a p\x \B {œ* A a /*) I 0* Therefore x is continuous by Theorem 6.4.
fl =  l  r = l

The second part of the theorem can be proven similarly.
T h e o r e m  6 . 6 .  F or any Boolean lattice 23, 23 is reflexive. 23° is a normal 

manifold о / 23, and 23 is a  normal manifold of4Bc, where 23c consists all contin­
uous measures, and 23 consists o f all universally continuous measures.
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P ro o f. Let 23 be isomorphic to a simple lattice basis В  of a simple 
linear lattice L. Then by Theorem 6.3 we need only to prove the corres­
ponding theorem for L.

Since L  is universally continuous, to show L  is reflexive, by Theorem 
24.4 of Жакапо, we only have to show that L  is monotone complete. 
(A linear lattice 8 is said to be monotone complete if 8 * a x \ and sup ж (a,)

АеЛ АеЛ

<  oo for all 8 *x  >  0, then there exists some ae  8 such that a x f a.)
АеЛ

So suppose L  *xx f and supS(æ*)< oo for all 0 < 0 €_L. For every
АеЛ АеЛ

0 <  xe L  we can consider xe L  by the duality ж (ж) =  ж (ж) for же L. Then 
for 0 <  же L  we have йиржд(ж) <  oo. Therefore by Theorem 18.2 of Жакапо

АеЛ

there exists âe L  such that xx f a.
АеЛ

By the definition of L c it is clear that L c is a semi-normal manifold 
of L. To prove that I f  is a normal manifold of L, by Theorem 4.9 of Жакапо, 
we only have to prove that 0 <  axe L c and àx \ à  imply ae L c: For any

АеЛ

L * a v f 0 and e >  0 we can find A0e L,  by (5) of Theorem 18.2 of Жакапо,
j>=i

such that a{af j  <  a Xo {ax)-\-e. Since а — ац  >  0, we have 

â ( a v) =  aXo(av) +  { a - a Xo)(av) ^  aXo(av)-\-e
OO

for v — 1 , 2 , . . .  Since cLXo(av) j  0, we obtain infct( av) <  £. Since s ^  0 is
v = l

arbitrary we conclude that â  e L c.
Similarly we can prove that A is a normal manifold of L. From this 

and the fact that L c is a normal manifold of L  we conclude that A is a nor­
mal manifold of I f .
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