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1. Introduction. In this paper we extend to the context of (¢)-groups and ideal
convergence some matrix theorems and applications to unconditional convergence
of series, proved for the real case in [2]. About the matrix theorems existing in
the literature, we quote the famous Basic Matrix Theorem (see [3]), which in the
real case was extended in [1] to the setting of the statistical convergence, and to
the context of (¢)-groups and Z-convergence generalized in [6]. Recall that there
are Riesz spaces such that order and (D)-convergence are not generated by any
topology: for example, L(X, B, 1), where y is a o-additive and o-finite non-atomic
positive R-valued measure, endowed with the almost everywhere convergence (see
[9, 11, 13)).

As an application of our main result, we also present a corollary, which is a
consequence of the Basic Matrix Theorem for (¢)-group-valued double sequences
involving P-ideals, proved in [6].

2. Preliminaries.

DEFINITION 2.1 An abelian group (R, +) is an (£)-group iff it is a lattice and the
following implication holds:

(1) a<b=a+c<b+c forallabceR.
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162 Unconditional convergence in lattice groups with respect to ideals

An (¢)-group R is said to be Dedekind complete iff every nonempty subset of R,
bounded from above, has supremum in R. A Dedekind complete (£)-group is said to
be super Dedekind complete iff every subset Ry C R, R # () bounded from above
contains a countable subset having the same supremum as R;.

Let R be an (£)-group. We say that a sequence (p,), of positive elements of
R is an (O)-sequence iff it is decreasing and A, p, = 0. A sequence (z,,), in R is
said to be order-convergent (or (O)-convergent ) to x € R iff there exists an (O)-
sequence (p,)n in R with |z, — z| < p,, Yn € N, and in this case we will write
(O) lim,, x,, = x. If A is any nonempty set, (mg))n are sequences in R and (z) are
in R for all A € A, we say that (O)lim, ,7:53‘) = 2O uniformly with respect to A € A
iff there exists an (O)-sequence (gy), in R with |:U£7>‘) —2W]| < g, for all n € N and
A € A. We say that the sequence (z,)y is (O)-Cauchy iff (O)lim, (z, — p4p) =0
uniformly with respect to p € N.

A bounded double sequence (as;):,; in R is called (D)-sequence or requlator iff
for all t € N we have a;; | 0 as | — 4o00. A sequence (x,), in R is said to be
(D)-convergent to © € R (and we write (D)lim,, x, = x) iff there exists a (D)-

sequence (a¢ ;) in R, such that to every ¢ € NN there corresponds ng € N such

that |z, — x| < \/ at o) for all n € N, n > ng. If (965?))71 and (zM) are as above,
t=1

we say that (D) lim, xﬁf‘) = =N uniformly with respect to X € A iff there exists a

(D)-sequence (a¢;)¢,; in R, such that for any ¢ € NN there exists ng € N such that
lzN — 2| < \/ a¢ o) for all n € N, n > ng and A € A. The sequence (), is

t=1
said to be (D)-Cauchy iff (D) lim,, (2, — Zp+p) = 0 uniformly with respect to p € N.
We say that an (¢)-group is (O)-complete iff every (O)-Cauchy sequence is (O)-
convergent, and (D)-complete iff every (D)-Cauchy sequence is (D)-convergent. We
recall that every Dedekind complete (£)-group is (O)-complete and (D)-complete
(see also [9, Chapter 2]).
An (¢)-group R is said to be weakly o-distributive iff for every (D)-sequence
(ae,1)e, we have:

A (\7 at,so(t)) =0.

%NN t=1

In general, the limit of a sequence (with respect to (D)-convergence) is not unique.
However, (O)-convergence of sequences implies always (D)-convergence; moreover,
if R is weakly o-distributive, then a sequence is (D)-convergent if and only if it is
(O)-convergent, and in this case we get uniqueness of the limit.

We now denote by I!'(R) the set of all sequences of the type (z;);, with z; € R for

a
all j € N and such that \/ Z |z;| | € R. As R is complete, if (z;); belongs to

q j=1
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n
I*, then S := (O)lim ij exists in R (see [8]). For every element (x;); in I*(R),
=1

n o0
we shall also write S = (O) 117rln Z:lmj = z:lxj, and say that S is the sum of the
j= j=
sequence (x;);. Similarly as in the classical case, it is easy to check that, if the sum
o0

of a series Z x; exists in R, then (D)lim; z; = 0.

j=1
oo

A series Z x; in R is said to be unconditionally convergent iff there is a regu-
j=1
lator (ag,;):,; with the property that to every ¢ : N — N there corresponds a finite

set Ag C N such that
S oa-Ya
I€EA; i€ As

o0
< \/ Qt,o(t)
t=1

whenever we take two finite subsets of N, Ay, Ay with A1, A5 D Ao.

The following well-known result will be useful in the sequel (see [9, 14, 15]).

LEMMA 2.2 Let R be a Dedekind complete (€)-group (not necessarily weakly o-

distributive), (ay;'))t,l, n € N, be a sequence of requlators in R. Then for every
u € R, u > 0 there exists a (D)-sequence (ay;)e; in R such that:

uh lz <\/ at,w(t+n)>‘| < \/ ap oty forall p € N,

n=1 t=1 t=1

We now recall the Maeda-Ogasawara-Vulikh representation theorem in its (£)-group
version (see [4, 10]).

THEOREM 2.3 Given a Dedekind complete (1)-group R, there exists a compact Haus-
dorff extremely disconnected topological space 2, unique up to homeomorphisms,
such that R can be embedded as a solid subgroup of Coo(Q2) = {f € R® . f is con-
tinuous, and {w : |f(w)] = +oo} is nowhere dense in Q}. Moreover, if (ax)xea is
any family such that ay € R for all A, and a = Vyay € R (where the supremum
is taken with respect to R), then a = Vyax with respect to Coo(S2), and the set
{we Q: (Vaay)(w) #supy, ax(w)} is meager in .

From now on we denote by V and A (resp. sup and inf) the lattice (pointwise)
supremum and infimum respectively.

DEFINITION 2.4 Let X be any nonempty set. A family of sets Z C P(X) is called
an ideal of X iff AU B € Z whenever A, B € 7 and for each A € 7 and B C A we
get B € Z. An ideal is said to be non-trivial iff Z # @) and X ¢ Z. A non-trivial
ideal 7 is said to be admissible iff it contains all singletons.



164 Unconditional convergence in lattice groups with respect to ideals

An admissible ideal 7 is said to be a P-ideal iff for any sequence (A;); in Z there
are sets B; C X, j € N, such that the symmetric difference A;AB; is finite for all

j € Nand U Bj; € T (see also [12]).
j=1
Let X =N, and for every A C N and j € N set
card(AN{1,...,j})

dj(A) = ;

The limit d(A) := lim; d;(A), if it exists, is called the (asymptotic) density of A. It
is known that the ideal Z; := {A C N : d(A4) = 0} is a P-ideal, as well as the ideal
Ty of all finite subsets of N. For other examples of P-ideals see [12].

Now, given a fized admissible ideal Z, together with its dual filter
F=FIT):={X\1:Ie1},

we recall the order and the (D)-convergence related with it introduced in [6].
When we deal with an ideal Z, we always suppose that Z is admissible, without
saying it explicitly.
If 7 is an ideal of N, we say that a sequence (), in R (OZ)-converges to x € R
iff there exists an (O)-sequence (o,), with the property that

(2) {neN:|z, —z|<0o,} €F

for all p € N. Similarly, if Z is an ideal of N?, a double sequence (xi,5)i; in R is
(OZ)-convergent to & € R iff there is an (O)-sequence (o), with the property that

{(Z,]) S N2 : |l‘i,]’ —€| < O'p} eF

for all p € N.
A sequence (z,,), in R (DI)-converges to x € R iff there exists a (D)-sequence
(at,1)e, with the property that

oo
(3) {neN:|z, — x| < \/ at o} €F
t=1
for all ¢ € NN, A double sequence (x;;);; in R is (DI)-convergent to & € R iff
there is a regulator (a;;)¢; such that
{(,5) eN*:faiy =&l <\ arp} € F

t=1

for any ¢ € NN.

In [6] the following result is proved.
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PROPOSITION 2.5 Ewvery (OT)-convergent (double) sequence is (DT)-convergent to
the same limit. Moreover, if R is a super Dedekind complete and weakly o-distributive
(€)-group, then the converse implication holds too.

From now on, we always suppose that R is a super Dedekind complete weakly
o-distributive (£)-group. Examples of such spaces are RN and LO(X, B, i), where p
is a positive, o-additive, o-finite and non-atomic R-valued measure (see also [9]).

If R =R, instead of (OZ) and (DZ) we will write simply (Z), since in this setting
these two concepts of convergence coincide.

Moreover, let us define

i (OT)[(DT)]1im Z ;.

j=1

In [6] the following result is proved.

PROPOSITION 2.6 Let T be any fized admissible ideal of N. If (D) lim,, ,, = x, then
(DI)lim, z,, = x.
Moreover, if (x5)n is a monotone sequence in R and x € R, then (DZ)lim,, x,, =
x if and only if (D)lim,, x, = z.
A consequence of Proposition 2.6 is that, if a series Z x; is of positive terms in R
j=1

and S is its sum, then (7) Z z; =S (and vice-versa).
j=1
Also the following results were proved in [6].

PROPOSITION 2.7 Let T be a P-ideal, and (x,), be a sequence in R, such that
(DI)lim, x, = x € R. Then there exists a subsequence (T, )q of (Tn)n, such that
(D)limg 2, = .

DEFINITION 2.8 We say that a sequence (zy,), in R (OZ*)- [(DZ*)]-converges to
& € R iff there exists A € F(Z) with

o) li n = D li n=£].

( )n—>+}>I£n€Ax f [( )n—>+g§,{n€Am 5]

PROPOSITION 2.9 Suppose that (DZ*)lim, x, = §. Then (DZ)lim, z, = &.

PROPOSITION 2.10 Let R be a super Dedekind complete weakly o-distributive (£)-
group, (x,)n be a sequence in R, (DT)-convergent to & € R. If T is a P-ideal, then
(zn)n (DI*)-converges to &.
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PROPOSITION 2.11 Let (x;):; be a bounded double sequence in R, I be any P-
ideal, F = F(I) be its dual filter, and let us suppose that (DZ)lim; z; ; = x; for
every j € N.

Then there exists By € F such that (D) limp— o0 heBy Th,j = j for all j € N
and with respect to a same (D)-sequence (Gy1)¢1-

DEFINITION 2.12 A sequence (x,), is said to be (DI)-Cauchy iff there exists a
regulator (at;)¢,; such that to every ¢ € NN there corresponds v € N with

{neN:|z, —z,| L \/ eyt €T
t=1

The following Cauchy-type condition, proved in [6], will be useful in the sequel.

PROPOSITION 2.13 Let T C N be any admissible ideal. A sequence (xy,)y s (DT)-
convergent if and only if it is (DT)-Cauchy.

We now introduce the R-valued measures (see also [7]).

DEFINITION 2.14 a) Given a finitely additive order bounded set function m : A —
R, we define the semivariation of m (on A), v(m) : A — R, as follows: v(m)(A) =
VBea,Bca|m(B)|, A€ A

b) A finitely additive set function m : A — R is said to be (s)-bounded iff
for every disjoint sequence (H,),, in A we have (O)lim,, v(m)(H,) = 0. The maps
mj : A— R, j € N, are called uniformly (s)-bounded iff (O) lim,[V; v(m;)(H,)] =0
whenever (H,,), is a sequence of pairwise disjoint elements of A.

c) A finitely additive map m : A — R is said to be o-additive iff for every
disjoint sequence (H,), in A we get: (O) lim,, v(m)({J;2,, H;) = 0. The set functions
m; : A — R, j €N, are called uniformly o-additive iff for each disjoint sequence
(Hn)n in A, (0)lim, [V v(m;) (U2, Hi)] = 0.

d) A sequence of set functions (m;); is said to be (RO)-convergent to mg in
A iff there exists an (O)-sequence (p;); such that for every | € N and A € A
there is ig € N with |m;(A) — mo(A)| < p; for all i > ig. In this case we say that

e) A sequence of set functions (m;); (RD)-converges to my, or shortly (RD) lim; m; =

my, iff there exists a (D)-sequence (b ), such that V¢ € NN, VAe A, Jig e N
such that

(4) Imi(A) —mo(A)| < \/ by VieNi>i.

t=1
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f) We say that (m;); is (RD)-Cauchy iff there is a (D)-sequence (b;;):,; such
that to each ¢ € NN and A € A there corresponds an integer jo with

(5) mi(A) = miyp(A)| < \/ by VieNi>ig, VpeN.
t=1

REMARK 2.15 Observe that a sequence (m;); is (RD)-convergent iff it is (RD)-
Cauchy (see [9]).

3. The main results. In this section we will prove the main theorem and we
give a corollary. We begin with the following

DEFINITION 3.1 We say that a subset W of P(N) which contains the ideal Zg,
of all finite subsets of N has property (M) iff for every disjoint sequence (F),), of
elements of Zg, there exist B € W and an infinite subset M C N with

o0
Given a series Z a; in R and B C N, let us denote by S,(LB) the quantity

i=1
E a;.

i=1,...,n;i€B

oo
Let W satisfy property (M). We say that the series Z a; satisfies property (A)
i=1
with respect to Z iff there exists a sequence (zy)n, (OT)-convergent to 0 and such
that to every infinite set B € W there corresponds S®) in R with

(6) |55 = sP| <z,
whenever n € N. We often denote the quantity S®) by the symbol (Z) Z a;.
i€B

‘We now turn to our main theorem.

THEOREM 3.2 Suppose that T is a P-ideal of N, W satisfies property (M) and
(@i j)i,; is such that:

o0

i) the series Z a;; satisfies property (A) for all i € N with respect to a same
j=1

sequence (xy,)n, independent on i;

it) the family Z aij is order equibounded.

jeA ieN,AcN
Moreover, assume that:
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iii) (a; ;)i is an order convergent sequence for all j;

w) for all i € N and for each infinite subset B € W the series | (T) Z a;
JjEB
(O)-converges (with respect to a same (O)-sequence independent of B and i).

Then for each disjoint sequence (Ap), in P(N) the sequence Z a;; | s

jEA, ;
order convergent uniformly in n € N and the sequence Z ai (O)-converges
jEeA, .
to 0 uniformly in i € N.
oo
PrOOF First of all we show that, if Z a; is a series of having property (A), then
i=1

to the sequence (z,,),, existing by property (A), there corresponds an (O)-sequence
(0p)p such that {n € N: |z,| < 0,} € F for all p € N, where F is the dual filter
associated with Z. Hence, since (OZT)-convergence implies (DZ)-convergence, then
a regulator (z;;):,; can be found, with

(7) {neN:|z,| < \/ Zept) ) € F
t=1

for each p € NV, Let 2 be as in Theorem 2.3 and N C €2 be a meager set such that
the sequence (o,(w)), is an (O)-sequence for all w € @\ N. For such w’s we get:

(8) {neN:|z,| <oy} C{neN:|z,(w)| <op(w)} € F:

indeed, since F is a filter and the left hand of (8) belongs to F, then a fortiori

the right hand of (8) belongs to F too. This implies that for each w € Q\ N

and for every infinite set B € W the real series Z a;(w) Z-converges. Now, since
i€B

7 is a P-ideal, we can argue analogously as in the first part of the proof of [2,

Lemma 2.2] (with the difference that we have to consider a set of the dual filter F

associated to Z rather than a set of asymptotical density one): so, we deduce that
o0

Z a;(w) is unconditionally convergent for all w ¢ N, and so in particular that the

i=1
series Z a;(w) converges uniformly with respect to C' C N for such w’s. By the
ieC
(oo}
Maeda-Ogasawara-Vulikh Theorem 2.3, this implies that Z a; (O)-converges (and
i=1
a fortiori (D)-converges) uniformly with respect to the parameter C C N, with a
corresponding associated regulator (o ;).
Let now (a;,;);,; be a double sequence in R, satisfying ii), such that the series

o0
Z a; ; has property (A) for every ¢ € N as in i). So for all 4 it is possible to find
j=1
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a regulator (aiil) )¢.1, having the same role as above. By the Fremlin Lemma 2.2,

thanks to ii), these regulators can be zeplaced”by one regulator (b ;): 1, playing still
the same role: that is, in another words, (by;):; is such that to every ¢ € NN and

p,q € N there corresponds a positive integer h with

9) Z (ap,j — aq;)| < \/ b, (t)
i=1

jeC

whenever C C {h+1,h+2,...}.

Now, since by hypothesis (a; ;); is (O)-convergent (or equivalently (D)-conver-
gent) for every j € N, then for each j there exists a corresponding regulator ( é,Jl))t,l'
By equiboundedness and applying the Fremlin Lemma again, these regulators can
be zeplaced”with a unique regulator (c;;)s,i, with the property that for each ¢ € NN

and s € N there corresponds a positive integer h with

=

Il
—

(10) Z(ap,j —agj)| <

jeD %

Ct ()

whenever p,q > h and D C {1,...,s}. For all t,l € N set e, := 2 (2, + by + i)
and dy; == 2ey.
We now prove that the regulator (d;;):; is such that for every subset A C

N the sequence Z a;; | is (D)-Cauchy with respect to the regulator (di ;).

JjEA i

Otherwise, A is an infinite set and there exists ¢ € NN with the property that for
all 4 € N there is k € N, k£ > 4, such that

(11) D (aij —ar )| £\ dig):
t=1

JEA

At the first step, let 97 = 1 and k; > 1 such that

D @iy —ar )| £\ digy.
t=1

JEA

There is [; € N\ {1} with

(12) Z (ailxj - akl,j) < \/ btﬂP(t)
t=1

jeC

whenever C' C {l; + 1,11 +2,...}. Then

(13) o (i —ak )| £V enpw)

JEAN{L,....11} t=1
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because otherwise

D (@i —ak, )| < S (@ —an )|+ D (@i —ak,;)

JEA JjEAN{L,...,I1} JEA, >
o0 o0 o0

< Voo + V ooy <V digioys
t=1 t=1 t=1

which contradicts (11). Thus (13) is satisfied. Furthermore, by (10), the regulator
(ct,1)¢, is such that there is a natural number 71 > ky such that

(14) D api —aq;)| <V crp

jeD t=1

whenever p,q > r1 and D C {1,...,01}.
At the second step, let io > r1 and ko > iy with

(15) D (@i —ary )| £\ dign)-
t=1

jeA

There is an integer l5 > [; with

D (g —arg)| <V b
t=1

jeC

whenever C' C {ly + 1,12 +2,...}. Then

o0
(16) > (Ginj — iy )| £\ €tipo) :
t=1

FEAN{I1+1,...,l2}

otherwise we should have

D @iy — ar, 5)| < > (@irg = Wy )| + | Y (@iyy —ar, )| +

jEA JEAN{l141,...,12} JEA, <l

o0

| D (g~ k)| <V enpw + V e+ ooy <V dig,
t=1 t=1 t=1 t=1

JEA, >1s

which contradicts (15). Thus (16) is fulfilled.

Proceeding by induction, we get the existence of three strictly increasing sequ-
ences in N: (i), (kr)r, (), with the properties that i, < k. < 4,41 for all r € N,
and:

o0
) Z(aiw —ag, ;)| < \/ Ct,p(t) Whenever D C {1,...,l,_1};
j€D t=1
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ji) Z (@i, j —ar, ;)| < \/ b, o) whenever C' C {l, + 1,1, +2,...};
t=1

jec
) 1D (s —ar )| £V epw if Fr=AN{l,_1+1,....1}
JEF, t=1

for r > 2. If we consider the disjoint sequence (F}),, then by property (M) there are
W € W and an infinite subset P C N with the property that U,.cp F;. C W C U,y Fi.

Note that, by virtue of iv) and (7), we get that the sequence | (Z) Z a;; | is
jeEw
(D)-Cauchy with respect to the regulator (z;;):,;. Moreover, thanks to unconditio-
nal convergence, the quantities Z ai j,t € N, do exist in I, and hence do coincide
JEW

with the corresponding ones (7) Z a; j, ¢ € N. Thus the sequence Z a;; | is

jeEw jEW i
(D)-Cauchy with respect to the regulator (z;;);. From this and j), jj), for r € P
with r large enough we get:

> (@i —an )| < | D (@i —an, )| +
j€F, jew

+ S (g —ae )|+ D (@i —ak )
JEW,j<In—1 JEW,j>1,

<V 2o + V bewy + V crom <V e
t=1 t=1 t=1 t=1

obtaining a contradiction with jjj). Thus we proved that for every subset A C N

the sequence Z a;; | is (D)-Cauchy with respect to a same regulator (d; ).,
JEA i

independent on the choice of A.

Now for every i € N let us define m; : P(N) — R by setting m;(A) := Z @i g,

JjEA

A € P(N). By the above, the sequence (m;); is (RD)-Cauchy and by Remark 2.15
it is (RD)-convergent. By [5, Theorem 3.4], (m;); is (RO)-convergent to the same
limit.

By unconditional convergence of the series m;(A) := z aij, © € N, the m;’s

jeEA

are o-additive, and o-additivity can be intended with respect to the semivariation

v(-).

Since, by hypothesis, the family Z a; is (O)-equibounded, then

jeA ieN,AcN
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the m;’s turn to be (O)-equibounded.

Thus, by virtue of the Schur theorem [7, Theorem 3.7], the m;’s turn to be uni-
formly o-additive (with respect to the semivariation v(-)). Hence, the limit measure
my is o-additive too. and the sequence (m;); order converges uniformly to mg. From
this the assertion of the theorem follows.

We include here a new proof of this last fact.

We know from c-additivity of m,, ¢ > 0, that to every disjoint sequence (Hy)g
in P(N) there corresponds a regulator (A;;)¢; such that for each map ¢ : N — N
there is an integer kg, such that

00
v(mn) U Hk < \/ At,cp(t)
t=1

k>ko

for all n € NU {0}. Choose now Hj := {k}, k € N, and let (A;;);,; be the cor-
responding (D)-sequence. Moreover, thanks to Lemma 2.2 there exists a regulator
(Bt.1)¢, such that, for every h € N and ¢ : N — N an integer ng corresponds, such
that

Z Imn({q}) — mo({g})] < \/ By (1)
q<h t=1

whenever n > ng. Setting Cy; = As; V By, t,1 € N, we shall prove that for each
¢ : N — N there exists n* € N such that

[ (F) = mo(F)| < 3\/ Cr e

t=1

for all FF C N and n > n*.
Indeed, fix ¢ : N — N. By uniform o-additivity, an integer k¢ corresponds, such
that

v(mn)({ko, ko + 1,..3}) < \/ Arpo
t=1

for any n € NU {0}. Now, there is an integer n*, such that

> Imal{a}) =mo({ah)l < \/ Bio

q<ko

holds, as soon as n > n*. Thus, fixed arbitrarily F' C N, we have, for each n > n*:
[ (F) — mo(F)| < [mp(FNAL....ko}) — mo(FNA{L, ... ko })|+
+o(mp)(FN{ko+ 1, ko+2,..}) +v(mo)(FN{ko+ 1,ko +2,..}) <

<V Bupy +2\ Avpry <3\ Crp- D

t=1 t=1 t=1

In the following corollary, we employ a technique, involving fundamental properties
of P-ideals and theorems on interchange of limits, used to prove our version of the
Basic Matrix Theorem given in [6].
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COROLLARY 3.3 Under the same hypotheses and notations as in the previous the-
orem, let us replace iii) with the following condition:

iii’)

(@i ;)i is (OI)-convergent for all j € N.

Then there exist (aj); in R and a set K belonging to the dual filter of T such
that:

(17)

(18)

(D) [V, laig —aj]] = 0;

(D) lim [\/ieK\ai,jH =0.
jeN

Moreover, if J C P(Nz) is the ideal of N* generated by the finite unions of the
Cartesian products of the elements of T, then (DJ)lim; ja;; = 0.

Proof: By Proposition 2.11 there exists a set K belonging to the dual filter F of

7 such that the double sequence (a; ;)

iek,jeN satisfies iii) with respect to a same

regulator. By proceeding analogously as in Theorem 3.2 and [6, Theorem 3.1], we
get in particular the relations (17) and (18).

The last part of the thesis is a consequence of this and [6, Lemma 2.15]. ™
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