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1. Introduction. In this paper we extend to the context of (`)-groups and ideal
convergence some matrix theorems and applications to unconditional convergence
of series, proved for the real case in [2]. About the matrix theorems existing in
the literature, we quote the famous Basic Matrix Theorem (see [3]), which in the
real case was extended in [1] to the setting of the statistical convergence, and to
the context of (`)-groups and I-convergence generalized in [6]. Recall that there
are Riesz spaces such that order and (D)-convergence are not generated by any
topology: for example, L0(X,B, µ), where µ is a σ-additive and σ-finite non-atomic
positive ℝ̃-valued measure, endowed with the almost everywhere convergence (see
[9, 11, 13]).

As an application of our main result, we also present a corollary, which is a
consequence of the Basic Matrix Theorem for (`)-group-valued double sequences
involving P -ideals, proved in [6].

2. Preliminaries.

Definition 2.1 An abelian group (R,+) is an (`)-group iff it is a lattice and the
following implication holds:

a ¬ b =⇒ a+ c ¬ b+ c for all a, b, c ∈ R.(1)
∗corresponding author
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An (`)-group R is said to be Dedekind complete iff every nonempty subset of R,
bounded from above, has supremum in R. A Dedekind complete (`)-group is said to
be super Dedekind complete iff every subset R1 ⊂ R, R1 6= ∅ bounded from above
contains a countable subset having the same supremum as R1.

Let R be an (`)-group. We say that a sequence (pn)n of positive elements of
R is an (O)-sequence iff it is decreasing and ∧n pn = 0. A sequence (xn)n in R is
said to be order-convergent (or (O)-convergent ) to x ∈ R iff there exists an (O)-
sequence (pn)n in R with |xn − x| ¬ pn, ∀n ∈ ℕ, and in this case we will write
(O) limn xn = x. If Λ is any nonempty set, (x(λ)

n )n are sequences in R and (x(λ)) are
in R for all λ ∈ Λ, we say that (O) limn x

(λ)
n = x(λ) uniformly with respect to λ ∈ Λ

iff there exists an (O)-sequence (qn)n in R with |x(λ)
n − x(λ)| ¬ qn for all n ∈ ℕ and

λ ∈ Λ. We say that the sequence (xn)n is (O)-Cauchy iff (O) limn(xn − xn+p) = 0
uniformly with respect to p ∈ ℕ.

A bounded double sequence (at,l)t,l in R is called (D)-sequence or regulator iff
for all t ∈ ℕ we have at,l ↓ 0 as l → +∞. A sequence (xn)n in R is said to be
(D)-convergent to x ∈ R (and we write (D) limn xn = x) iff there exists a (D)-

sequence (at,l)t,l in R, such that to every ϕ ∈ ℕℕ there corresponds n0 ∈ ℕ such

that |xn − x| ¬
∞∨

t=1

at,ϕ(t) for all n ∈ ℕ, n ­ n0. If (x(λ)
n )n and (x(λ)) are as above,

we say that (D) limn x
(λ)
n = x(λ) uniformly with respect to λ ∈ Λ iff there exists a

(D)-sequence (at,l)t,l in R, such that for any ϕ ∈ ℕℕ there exists n0 ∈ ℕ such that

|x(λ)
n − x(λ)| ¬

∞∨

t=1

at,ϕ(t) for all n ∈ ℕ, n ­ n0 and λ ∈ Λ. The sequence (xn)n is

said to be (D)-Cauchy iff (D) limn(xn−xn+p) = 0 uniformly with respect to p ∈ ℕ.
We say that an (`)-group is (O)-complete iff every (O)-Cauchy sequence is (O)-

convergent, and (D)-complete iff every (D)-Cauchy sequence is (D)-convergent. We
recall that every Dedekind complete (`)-group is (O)-complete and (D)-complete
(see also [9, Chapter 2]).

An (`)-group R is said to be weakly σ-distributive iff for every (D)-sequence
(at,l)t,l we have:

∧

ϕ∈ℕℕ

( ∞∨

t=1

at,ϕ(t)

)
= 0.

In general, the limit of a sequence (with respect to (D)-convergence) is not unique.
However, (O)-convergence of sequences implies always (D)-convergence; moreover,
if R is weakly σ-distributive, then a sequence is (D)-convergent if and only if it is
(O)-convergent, and in this case we get uniqueness of the limit.

We now denote by l1(R) the set of all sequences of the type (xj)j , with xj ∈ R for

all j ∈ ℕ and such that
∨

q




q∑

j=1

|xj |


 ∈ R. As R is complete, if (xj)j belongs to
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l1, then S := (O) lim
n

n∑

j=1

xj exists in R (see [8]). For every element (xj)j in l1(R),

we shall also write S = (O) lim
n

n∑

j=1

xj =
∞∑

j=1

xj , and say that S is the sum of the

sequence (xj)j . Similarly as in the classical case, it is easy to check that, if the sum

of a series
∞∑

j=1

xj exists in R, then (D) limj xj = 0.

A series
∞∑

j=1

xj in R is said to be unconditionally convergent iff there is a regu-

lator (at,l)t,l with the property that to every ϕ : ℕ → ℕ there corresponds a finite
set A0 ⊂ ℕ such that ∣∣∣∣∣

∑

i∈A1

ai −
∑

i∈A2

ai

∣∣∣∣∣ ¬
∞∨

t=1

at,ϕ(t)

whenever we take two finite subsets of ℕ, A1, A2 with A1, A2 ⊃ A0.

The following well-known result will be useful in the sequel (see [9, 14, 15]).

Lemma 2.2 Let R be a Dedekind complete (`)-group (not necessarily weakly σ-
distributive), (a(n)

t,l )t,l, n ∈ ℕ, be a sequence of regulators in R. Then for every
u ∈ R, u ­ 0 there exists a (D)-sequence (at,l)t,l in R such that:

u ∧
[ ∞∑

n=1

( ∞∨

t=1

a
(n)
t,ϕ(t+n)

)]
¬
∞∨

t=1

at,ϕ(t) for all ϕ ∈ ℕℕ.

We now recall the Maeda-Ogasawara-Vulikh representation theorem in its (`)-group
version (see [4, 10]).

Theorem 2.3 Given a Dedekind complete (l)-group R, there exists a compact Haus-
dorff extremely disconnected topological space Ω, unique up to homeomorphisms,
such that R can be embedded as a solid subgroup of C∞(Ω) = {f ∈ ℝ̃Ω : f is con-
tinuous, and {ω : |f(ω)| = +∞} is nowhere dense in Ω}. Moreover, if (aλ)λ∈Λ is
any family such that aλ ∈ R for all λ, and a = ∨λ aλ ∈ R (where the supremum
is taken with respect to R), then a = ∨λ aλ with respect to C∞(Ω), and the set
{ω ∈ Ω : (∨λ aλ)(ω) 6= supλ aλ(ω)} is meager in Ω.

From now on we denote by ∨ and ∧ (resp. sup and inf) the lattice (pointwise)
supremum and infimum respectively.

Definition 2.4 Let X be any nonempty set. A family of sets I ⊂ P(X) is called
an ideal of X iff A ∪ B ∈ I whenever A,B ∈ I and for each A ∈ I and B ⊂ A we
get B ∈ I. An ideal is said to be non-trivial iff I 6= ∅ and X 6∈ I. A non-trivial
ideal I is said to be admissible iff it contains all singletons.
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An admissible ideal I is said to be a P -ideal iff for any sequence (Aj)j in I there
are sets Bj ⊂ X, j ∈ ℕ, such that the symmetric difference Aj∆Bj is finite for all

j ∈ ℕ and
∞⋃

j=1

Bj ∈ I (see also [12]).

Let X = ℕ, and for every A ⊂ ℕ and j ∈ ℕ set

dj(A) =
card(A ∩ {1, . . . , j})

j
.

The limit d(A) := limj dj(A), if it exists, is called the (asymptotic) density of A. It
is known that the ideal Id := {A ⊂ ℕ : d(A) = 0} is a P -ideal, as well as the ideal
Ifin of all finite subsets of ℕ. For other examples of P -ideals see [12].

Now, given a fixed admissible ideal I, together with its dual filter

F = F(I) := {X \ I : I ∈ I},

we recall the order and the (D)-convergence related with it introduced in [6].
When we deal with an ideal I, we always suppose that I is admissible, without

saying it explicitly.
If I is an ideal of ℕ, we say that a sequence (xn)n in R (OI)-converges to x ∈ R

iff there exists an (O)-sequence (σp)p with the property that

{n ∈ ℕ : |xn − x| ¬ σp} ∈ F(2)

for all p ∈ ℕ. Similarly, if I is an ideal of ℕ2, a double sequence (xi,j)i,j in R is
(OI)-convergent to ξ ∈ R iff there is an (O)-sequence (σp)p with the property that

{(i, j) ∈ ℕ2 : |xi,j − ξ| ¬ σp} ∈ F

for all p ∈ ℕ.
A sequence (xn)n in R (DI)-converges to x ∈ R iff there exists a (D)-sequence

(at,l)t,l with the property that

{n ∈ ℕ : |xn − x| ¬
∞∨

t=1

at,ϕ(t)} ∈ F(3)

for all ϕ ∈ ℕℕ. A double sequence (xi,j)i,j in R is (DI)-convergent to ξ ∈ R iff
there is a regulator (at,l)t,l such that

{(i, j) ∈ ℕ2 : |xi,j − ξ| ¬
∞∨

t=1

at,ϕ(t)} ∈ F

for any ϕ ∈ ℕℕ.

In [6] the following result is proved.
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Proposition 2.5 Every (OI)-convergent (double) sequence is (DI)-convergent to
the same limit. Moreover, if R is a super Dedekind complete and weakly σ-distributive
(`)-group, then the converse implication holds too.

From now on, we always suppose that R is a super Dedekind complete weakly
σ-distributive (`)-group. Examples of such spaces are ℝℕ and L0(X,B, µ), where µ
is a positive, σ-additive, σ-finite and non-atomic ℝ̃-valued measure (see also [9]).

If R = ℝ, instead of (OI) and (DI) we will write simply (I), since in this setting
these two concepts of convergence coincide.

Moreover, let us define

(I)
∞∑

j=1

xj := (OI)[(DI)] lim
n

n∑

j=1

xj .

In [6] the following result is proved.

Proposition 2.6 Let I be any fixed admissible ideal of ℕ. If (D) limn xn = x, then
(DI) limn xn = x.

Moreover, if (xn)n is a monotone sequence in R and x ∈ R, then (DI) limn xn =
x if and only if (D) limn xn = x.

A consequence of Proposition 2.6 is that, if a series
∞∑

j=1

xj is of positive terms in R

and S is its sum, then (I)
∞∑

j=1

xj = S (and vice-versa).

Also the following results were proved in [6].

Proposition 2.7 Let I be a P -ideal, and (xn)n be a sequence in R, such that
(DI) limn xn = x ∈ R. Then there exists a subsequence (xnq )q of (xn)n, such that
(D) limq xnq = x.

Definition 2.8 We say that a sequence (xn)n in R (OI∗)- [(DI∗)]-converges to
ξ ∈ R iff there exists A ∈ F(I) with

(O) lim
n→+∞,n∈A

xn = ξ [(D) lim
n→+∞,n∈A

xn = ξ].

Proposition 2.9 Suppose that (DI∗) limn xn = ξ. Then (DI) limn xn = ξ.

Proposition 2.10 Let R be a super Dedekind complete weakly σ-distributive (`)-
group, (xn)n be a sequence in R, (DI)-convergent to ξ ∈ R. If I is a P -ideal, then
(xn)n (DI∗)-converges to ξ.
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Proposition 2.11 Let (xi,j)i,j be a bounded double sequence in R, I be any P -
ideal, F = F(I) be its dual filter, and let us suppose that (DI) limi xi,j = xj for
every j ∈ ℕ.

Then there exists B0 ∈ F such that (D) limh→+∞,h∈B0 xh,j = xj for all j ∈ ℕ
and with respect to a same (D)-sequence (ât,l)t,l.

Definition 2.12 A sequence (xn)n is said to be (DI)-Cauchy iff there exists a

regulator (at,l)t,l such that to every ϕ ∈ ℕℕ there corresponds ν ∈ ℕ with

{n ∈ ℕ : |xn − xν | 6¬
∞∨

t=1

at,ϕ(t)} ∈ I.

The following Cauchy-type condition, proved in [6], will be useful in the sequel.

Proposition 2.13 Let I ⊂ ℕ be any admissible ideal. A sequence (xn)n is (DI)-
convergent if and only if it is (DI)-Cauchy.

We now introduce the R-valued measures (see also [7]).

Definition 2.14 a) Given a finitely additive order bounded set function m : A →
R, we define the semivariation of m (on A), v(m) : A → R, as follows: v(m)(A) =
∨B∈A,B⊂A |m(B)|, A ∈ A.

b) A finitely additive set function m : A → R is said to be (s)-bounded iff
for every disjoint sequence (Hn)n in A we have (O) limn v(m)(Hn) = 0. The maps
mj : A → R, j ∈ ℕ, are called uniformly (s)-bounded iff (O) limn[∨j v(mj)(Hn)] = 0
whenever (Hn)n is a sequence of pairwise disjoint elements of A.

c) A finitely additive map m : A → R is said to be σ-additive iff for every
disjoint sequence (Hn)n in A we get: (O) limn v(m)(

⋃∞
l=nHl) = 0. The set functions

mj : A → R, j ∈ ℕ, are called uniformly σ-additive iff for each disjoint sequence
(Hn)n in A, (O) limn[∨j v(mj)(

⋃∞
l=nHl)] = 0.

d) A sequence of set functions (mi)i is said to be (RO)-convergent to m0 in
A iff there exists an (O)-sequence (pl)l such that for every l ∈ ℕ and A ∈ A
there is i0 ∈ ℕ with |mi(A) −m0(A)| ¬ pl for all i ­ i0. In this case we say that
(RO) limimi = m0.

e) A sequence of set functions (mi)i (RD)-converges tom0, or shortly (RD) limjmj =

m0, iff there exists a (D)-sequence (bt,l)t,l such that ∀ϕ ∈ ℕℕ, ∀A ∈ A, ∃ i0 ∈ ℕ
such that

|mi(A)−m0(A)| ¬
∞∨

t=1

bt,ϕ(t) ∀ i ∈ ℕ, i ­ i0.(4)
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f) We say that (mi)i is (RD)-Cauchy iff there is a (D)-sequence (bt,l)t,l such

that to each ϕ ∈ ℕℕ and A ∈ A there corresponds an integer j0 with

|mi(A)−mi+p(A)| ¬
∞∨

t=1

bt,ϕ(t) ∀ i ∈ ℕ, i ­ i0, ∀ p ∈ ℕ.(5)

Remark 2.15 Observe that a sequence (mi)i is (RD)-convergent iff it is (RD)-
Cauchy (see [9]).

3. The main results. In this section we will prove the main theorem and we
give a corollary. We begin with the following

Definition 3.1 We say that a subset W of P(ℕ) which contains the ideal Ifin

of all finite subsets of ℕ has property (M) iff for every disjoint sequence (Fn)n of
elements of Ifin there exist B ∈ W and an infinite subset M ⊂ ℕ with

∪n∈M Fn ⊂ B ⊂ ∪n∈ℕ Fn.

Given a series
∞∑

i=1

ai in R and B ⊂ ℕ, let us denote by S
(B)
n the quantity

∑

i=1,...,n;i∈B
ai.

Let W satisfy property (M). We say that the series
∞∑

i=1

ai satisfies property (A)

with respect to I iff there exists a sequence (xn)n, (OI)-convergent to 0 and such
that to every infinite set B ∈ W there corresponds S(B) in R with

|S(B)
n − S(B)| ¬ xn(6)

whenever n ∈ ℕ. We often denote the quantity S(B) by the symbol (I)
∑

i∈B
ai.

We now turn to our main theorem.

Theorem 3.2 Suppose that I is a P -ideal of ℕ, W satisfies property (M) and
(ai,j)i,j is such that:

i) the series
∞∑

j=1

ai,j satisfies property (A) for all i ∈ ℕ with respect to a same

sequence (xn)n, independent on i;

ii) the family


∑

j∈A
ai,j



i∈ℕ,A⊂ℕ

is order equibounded.

Moreover, assume that:
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iii) (ai,j)i is an order convergent sequence for all j;

iv) for all i ∈ ℕ and for each infinite subset B ∈ W the series


(I)

∑

j∈B
ai,j



i

(O)-converges (with respect to a same (O)-sequence independent of B and i).

Then for each disjoint sequence (An)n in P(ℕ) the sequence


∑

j∈An
ai,j



i

is

order convergent uniformly in n ∈ ℕ and the sequence


∑

j∈An
ai,j



n

(O)-converges

to 0 uniformly in i ∈ ℕ.

Proof First of all we show that, if
∞∑

i=1

ai is a series of having property (A), then

to the sequence (xn)n, existing by property (A), there corresponds an (O)-sequence
(σp)p such that {n ∈ ℕ : |xn| ¬ σp} ∈ F for all p ∈ ℕ, where F is the dual filter
associated with I. Hence, since (OI)-convergence implies (DI)-convergence, then
a regulator (zt,l)t,l can be found, with

{n ∈ ℕ : |xn| ¬
∞∨

t=1

zt,ϕ(t)} ∈ F(7)

for each ϕ ∈ ℕℕ. Let Ω be as in Theorem 2.3 and N ⊂ Ω be a meager set such that
the sequence (σp(ω))p is an (O)-sequence for all ω ∈ Ω \N . For such ω’s we get:

{n ∈ ℕ : |xn| ¬ σp} ⊂ {n ∈ ℕ : |xn(ω)| ¬ σp(ω)} ∈ F :(8)

indeed, since F is a filter and the left hand of (8) belongs to F , then a fortiori
the right hand of (8) belongs to F too. This implies that for each ω ∈ Ω \ N
and for every infinite set B ∈ W the real series

∑

i∈B
ai(ω) I-converges. Now, since

I is a P -ideal, we can argue analogously as in the first part of the proof of [2,
Lemma 2.2] (with the difference that we have to consider a set of the dual filter F
associated to I rather than a set of asymptotical density one): so, we deduce that
∞∑

i=1

ai(ω) is unconditionally convergent for all ω 6∈ N , and so in particular that the

series
∑

i∈C
ai(ω) converges uniformly with respect to C ⊂ ℕ for such ω’s. By the

Maeda-Ogasawara-Vulikh Theorem 2.3, this implies that
∞∑

i=1

ai (O)-converges (and

a fortiori (D)-converges) uniformly with respect to the parameter C ⊂ ℕ, with a
corresponding associated regulator (αt,l)t,l.

Let now (ai,j)i,j be a double sequence in R, satisfying ii), such that the series
∞∑

j=1

ai,j has property (A) for every i ∈ ℕ as in i). So for all i it is possible to find
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a regulator (α(i)
t,l )t,l, having the same role as above. By the Fremlin Lemma 2.2,

thanks to ii), these regulators can be żeplaced”by one regulator (bt,l)t,l, playing still
the same role: that is, in another words, (bt,l)t,l is such that to every ϕ ∈ ℕℕ and
p, q ∈ ℕ there corresponds a positive integer h with

∣∣∣∣∣∣
∑

j∈C
(ap,j − aq,j)

∣∣∣∣∣∣
¬
∞∨

i=1

bt,ϕ(t)(9)

whenever C ⊂ {h+ 1, h+ 2, . . .}.
Now, since by hypothesis (ai,j)i is (O)-convergent (or equivalently (D)-conver-

gent) for every j ∈ ℕ, then for each j there exists a corresponding regulator (β(j)
t,l )t,l.

By equiboundedness and applying the Fremlin Lemma again, these regulators can
be żeplaced”with a unique regulator (ct,l)t,l, with the property that for each ϕ ∈ ℕℕ

and s ∈ ℕ there corresponds a positive integer h with
∣∣∣∣∣∣
∑

j∈D
(ap,j − aq,j)

∣∣∣∣∣∣
¬
∞∨

i=1

ct,ϕ(t)(10)

whenever p, q ­ h and D ⊂ {1, . . . , s}. For all t, l ∈ ℕ set et,l := 2 (zt,l + bt,l + ct,l)
and dt,l := 2 et,l.

We now prove that the regulator (dt,l)t,l is such that for every subset A ⊂

ℕ the sequence


∑

j∈A
ai,j



i

is (D)-Cauchy with respect to the regulator (dt,l)t,l.

Otherwise, A is an infinite set and there exists ϕ ∈ ℕℕ with the property that for
all i ∈ ℕ there is k ∈ ℕ, k > i, such that

∣∣∣∣∣∣
∑

j∈A
(ai,j − ak,j)

∣∣∣∣∣∣
6¬
∞∨

t=1

dt,ϕ(t).(11)

At the first step, let i1 = 1 and k1 > 1 such that
∣∣∣∣∣∣
∑

j∈A
(ai1,j − ak1,j)

∣∣∣∣∣∣
6¬
∞∨

t=1

dt,ϕ(t).

There is l1 ∈ ℕ \ {1} with
∣∣∣∣∣∣
∑

j∈C
(ai1,j − ak1,j)

∣∣∣∣∣∣
¬
∞∨

t=1

bt,ϕ(t)(12)

whenever C ⊂ {l1 + 1, l1 + 2, . . .}. Then
∣∣∣∣∣∣

∑

j∈A∩{1,...,l1}
(ai1,j − ak1,j)

∣∣∣∣∣∣
6¬
∞∨

t=1

et,ϕ(t),(13)
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because otherwise
∣∣∣∣∣∣
∑

j∈A
(ai1,j − ak1,j)

∣∣∣∣∣∣
¬

∣∣∣∣∣∣
∑

j∈A∩{1,...,l1}
(ai1,j − ak1,j)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

j∈A,j>l1
(ai1,j − ak1,j)

∣∣∣∣∣∣

¬
∞∨

t=1

et,ϕ(t) +
∞∨

t=1

ct,ϕ(t) ¬
∞∨

t=1

dt,ϕ(t),

which contradicts (11). Thus (13) is satisfied. Furthermore, by (10), the regulator
(ct,l)t,l is such that there is a natural number r1 > k1 such that

∣∣∣∣∣∣
∑

j∈D
(ap,j − aq,j)

∣∣∣∣∣∣
¬
∞∨

t=1

ct,ϕ(t)(14)

whenever p, q ­ r1 and D ⊂ {1, . . . , l1}.
At the second step, let i2 > r1 and k2 > i2 with

∣∣∣∣∣∣
∑

j∈A
(ai2,j − ak2,j)

∣∣∣∣∣∣
6¬
∞∨

t=1

dt,ϕ(t).(15)

There is an integer l2 > l1 with
∣∣∣∣∣∣
∑

j∈C
(ai2,j − ak2,j)

∣∣∣∣∣∣
¬
∞∨

t=1

bt,ϕ(t)

whenever C ⊂ {l2 + 1, l2 + 2, . . .}. Then
∣∣∣∣∣∣

∑

j∈A∩{l1+1,...,l2}
(ai2,j − ak2,j)

∣∣∣∣∣∣
6¬
∞∨

t=1

et,ϕ(t) :(16)

otherwise we should have
∣∣∣∣∣∣
∑

j∈A
(ai2,j − ak2,j)

∣∣∣∣∣∣
¬

∣∣∣∣∣∣
∑

j∈A∩{l1+1,...,l2}
(ai2,j − ak2,j)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

j∈A,j¬l1
(ai2,j − ak2,j)

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣
∑

j∈A,j>l2
(ai2,j − ak2,j)

∣∣∣∣∣∣
¬
∞∨

t=1

et,ϕ(t) +
∞∨

t=1

bt,ϕ(t) +
∞∨

t=1

ct,ϕ(t) ¬
∞∨

t=1

dt,ϕ(t),

which contradicts (15). Thus (16) is fulfilled.
Proceeding by induction, we get the existence of three strictly increasing sequ-

ences in ℕ: (ir)r, (kr)r, (lr)r, with the properties that ir < kr < ir+1 for all r ∈ ℕ,
and:

j)

∣∣∣∣∣∣
∑

j∈D
(air,j − akr,j)

∣∣∣∣∣∣
¬
∞∨

t=1

ct,ϕ(t) whenever D ⊂ {1, . . . , lr−1};
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jj)

∣∣∣∣∣∣
∑

j∈C
(air,j − akr,j)

∣∣∣∣∣∣
¬
∞∨

t=1

bt,ϕ(t) whenever C ⊂ {lr + 1, lr + 2, . . .};

jjj)

∣∣∣∣∣∣
∑

j∈Fr
(air,j − akr,j)

∣∣∣∣∣∣
6¬
∞∨

t=1

et,ϕ(t) if Fr = A ∩ {lr−1 + 1, . . . , lr}

for r ­ 2. If we consider the disjoint sequence (Fr)r, then by property (M) there are
W ∈ W and an infinite subset P ⊂ ℕ with the property that ∪r∈P Fr ⊂W ⊂ ∪r∈ℕ Fr.

Note that, by virtue of iv) and (7), we get that the sequence


(I)

∑

j∈W
ai,j



i

is

(D)-Cauchy with respect to the regulator (zt,l)t,l. Moreover, thanks to unconditio-
nal convergence, the quantities

∑

j∈W
ai,j , i ∈ ℕ, do exist in R, and hence do coincide

with the corresponding ones (I)
∑

j∈W
ai,j , i ∈ ℕ. Thus the sequence


∑

j∈W
ai,j



i

is

(D)-Cauchy with respect to the regulator (zt,l)t,l. From this and j), jj), for r ∈ P
with r large enough we get:

∣∣∣∣∣∣
∑

j∈Fr
(air,j − akr,j)

∣∣∣∣∣∣
¬

∣∣∣∣∣∣
∑

j∈W
(air,j − akr,j)

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣
∑

j∈W,j¬lr−1

(air,j − akr,j)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

j∈W,j>lr
(air,j − akr,j)

∣∣∣∣∣∣

¬
∞∨

t=1

zt,ϕ(t) +
∞∨

t=1

bt,ϕ(t) +
∞∨

t=1

ct,ϕ(t) ¬
∞∨

t=1

et,ϕ(t),

obtaining a contradiction with jjj). Thus we proved that for every subset A ⊂ ℕ

the sequence


∑

j∈A
ai,j



i

is (D)-Cauchy with respect to a same regulator (dt,l)t,l,

independent on the choice of A.
Now for every i ∈ ℕ let us define mi : P(ℕ) → R by setting mi(A) :=

∑

j∈A
ai,j ,

A ∈ P(ℕ). By the above, the sequence (mi)i is (RD)-Cauchy and by Remark 2.15
it is (RD)-convergent. By [5, Theorem 3.4], (mi)i is (RO)-convergent to the same
limit.

By unconditional convergence of the series mi(A) :=
∑

j∈A
ai,j , i ∈ ℕ, the mi’s

are σ-additive, and σ-additivity can be intended with respect to the semivariation
v(·).

Since, by hypothesis, the family


∑

j∈A
ai,j



i∈ℕ,A⊂ℕ

is (O)-equibounded, then
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the mi’s turn to be (O)-equibounded.
Thus, by virtue of the Schur theorem [7, Theorem 3.7], the mi’s turn to be uni-

formly σ-additive (with respect to the semivariation v(·)). Hence, the limit measure
m0 is σ-additive too. and the sequence (mi)i order converges uniformly to m0. From
this the assertion of the theorem follows.

We include here a new proof of this last fact.
We know from σ-additivity of mi, i ­ 0, that to every disjoint sequence (Hk)k

in P(ℕ) there corresponds a regulator (At,l)t,l such that for each map ϕ : ℕ → ℕ
there is an integer k0, such that

v(mn)


 ⋃

k­k0

Hk


 ¬

∞∨

t=1

At,ϕ(t)

for all n ∈ ℕ ∪ {0}. Choose now Hk := {k}, k ∈ ℕ, and let (At,l)t,l be the cor-
responding (D)-sequence. Moreover, thanks to Lemma 2.2 there exists a regulator
(Bt,l)t,l such that, for every h ∈ ℕ and ϕ : ℕ → ℕ an integer n0 corresponds, such
that

∑

q¬h
|mn({q})−m0({q})| ¬

∞∨

t=1

Bt,ϕ(t)

whenever n ­ n0. Setting Ct,l = At,l ∨ Bt,l, t, l ∈ ℕ, we shall prove that for each
ϕ : ℕ→ ℕ there exists n∗ ∈ ℕ such that

|mn(F )−m0(F )| ¬ 3
∞∨

t=1

Ct,ϕ(t)

for all F ⊂ ℕ and n ­ n∗.
Indeed, fix ϕ : ℕ → ℕ. By uniform σ-additivity, an integer k0 corresponds, such
that

v(mn)({k0, k0 + 1, ...}) ¬
∞∨

t=1

At,ϕ(t)

for any n ∈ ℕ ∪ {0}. Now, there is an integer n∗, such that

∑

q¬k0

|mn({q})−m0({q})| ¬
∞∨

t=1

Bt,ϕ(t)

holds, as soon as n ­ n∗. Thus, fixed arbitrarily F ⊂ ℕ, we have, for each n ­ n∗:
|mn(F )−m0(F )| ¬ |mn(F ∩ {1, ..., k0})−m0(F ∩ {1, ..., k0})|+

+v(mn)(F ∩ {k0 + 1, k0 + 2, ...}) + v(m0)(F ∩ {k0 + 1, k0 + 2, ...}) ¬

¬
∞∨

t=1

Bt,ϕ(t) + 2
∞∨

t=1

At,ϕ(t) ¬ 3
∞∨

t=1

Ct,ϕ(t). □

In the following corollary, we employ a technique, involving fundamental properties
of P -ideals and theorems on interchange of limits, used to prove our version of the
Basic Matrix Theorem given in [6].
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Corollary 3.3 Under the same hypotheses and notations as in the previous the-
orem, let us replace iii) with the following condition:
iii’) (ai,j)i is (OI)-convergent for all j ∈ ℕ.

Then there exist (aj)j in R and a set K belonging to the dual filter of I such
that:

(D) lim
i∈K

[∨j∈ℕ |ai,j − aj | ] = 0;(17)

(D) lim
j∈ℕ

[∨i∈K |ai,j | ] = 0.(18)

Moreover, if J ⊂ P(ℕ2) is the ideal of ℕ2 generated by the finite unions of the
Cartesian products of the elements of I, then (DJ ) limi,j ai,j = 0.

Proof: By Proposition 2.11 there exists a set K belonging to the dual filter F of
I such that the double sequence (ai,j)i∈K,j∈ℕ satisfies iii) with respect to a same
regulator. By proceeding analogously as in Theorem 3.2 and [6, Theorem 3.1], we
get in particular the relations (17) and (18).

The last part of the thesis is a consequence of this and [6, Lemma 2.15]. ■
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