
Commentationes Mathematicae

vol. 55, no. 2 (2015), 89–118

A survey on Lipschitz-free Banach spaces

Gilles Godefroy

Summary. Fis article is a survey of Lipschitz-free Banach spaces and

recent progress in the understanding of their structure. Fe results we

present have been obtained in the last fiýeen years (and quite oýen in

the last five years). We give a self-contained presentation of the basic

properties of Lipschitz-free Banach spaces and investigate some specific

topics: non-linear transfer of asymptotic smoothness, approximation

properties, norm-attainment. Section 5 consists mainly of unpublished

results. A list of open problems with comentary is provided.
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1. Introduction

LetM be ametric space equipped, for convenience, with a distinguished point 0.Fe space

Lip0(M) of real-valued Lipschitz functions defined on M which vanish at 0 is a Banach

space whose unit ball is compact in the topology of pointwise convergence on M. Fere-

fore, Lip0(M) is isometric to a dual space.Fe corresponding predual is the norm-closed

subspace of Lip0(M)∗ generated by the Dirac measures. Fis space, which has been inve-

stigated for many years in the important book [60], and in some subsequent works (see,

for instance, the early works of J. Johnson [38–40]), is called the Arens–Eels space over

M. Today it is usually called, following [28], the Lipschitz-free space over M and denoted

F(M).
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A simple diagram-chasing argument shows that Lipschitz-free spaces enjoy a canoni-

cal (anduseful) linearization property: every Lipschitzmapbetweenmetric spaces extends

to a linear continuous operator between the corresponding free spaces (see section 2 be-

low). We can expect that this universal property yields to an intricate structure of these

spaces, and, indeed, the free spaces constitute a nice collection of Banach spaces which

are very easy to define but diÚcult to analyse. Moreover, the arrow M → F(M) carries
the diversity of (separable) metric spaces over to (separable) Banach spaces, and although

this map is not one-to-one (see [18]), we can expect to meet all kinds of free spaces. Un-

derstanding these spaces is a fascinating research program and we hope that this survey

will motivate and help those who feel like contributing to this topic.

We refer to [5] as an authoritative book on non-linear geometry of Banach spaces as it

was in 2000.Fe second edition of the book [1] contains an updated chapter on this topic,

and we refer also to [31] for a recent survey which focuses mainly on the contribution of

Nigel Kalton (1946–2010). Fe present survey is by no means exhaustive and significant

articles are not mentioned in the bibliography. However, I still hope that this bibliography

contains most names of the recent contributors and thus the readers should be able to

gather updated knowledge of the frontline research by using it.

2. Lipschitz-free spaces: definitions and basic properties

We recall in this section the basic properties of Lipschitz-free Banach spaces and the no-

tation which is used in this paper and in most recent articles on this topic. Our main

reference is the article [28].

Lipschitz-free spaces. Let M be a pointed metric space, that is, a metric space equip-

ped with a distinguished point denoted 0. Fe space Lip0(M) is the space of real-valued

Lipschitz functions on M which vanish at 0. When equipped with the Lipschitz norm

defined by

∥ f ∥L = sup{∣ f (x) − f (y)∣
d(x , y)

∶ x /= y ∈ M}

the space Lip0(M) becomes a Banach space whose dual contains in particular the Dirac

measure δ(x) at any point x ∈ M.

Fe Dirac map δ∶M → Lip0(M)∗ (denoted δM when necessary) defined by the for-

mula ⟨g , δ(x)⟩ = g(x) is an isometric embedding from M to a subset of Lip0(M)∗. Inde-
ed, it follows from the definition of the dual norm that δ is 1-Lipschitz. On the other hand,

if we define

fx(z) = d(z, x) − d(x , 0)
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then fx ∈ Lip0(M), fx is 1-Lipschitz, and fx(y) − fx(x) = d(x , y). Hence δ is indeed an
isometry.

Wedenote byF(M) the norm-closed linear spanof δ(M) in the dual space Lip0(M)∗.
Fis space is called in [28] the Lipschitz-free space over M and we will keep this notation in

this survey.Fe definition of the Lipschitz norm shows thatF(M) is a norming subspace

of Lip0(M)∗. But actually more is true: if Ψ is a continuous linear form on F(M), then
the function g = Ψ○δ∶M → R is Lipschitz and satisfies ⟨µ, g⟩ = Ψ(µ) for every µ ∈ F(M).
Ferefore, the Lipschitz-free space F(M) is an isometric predual of the space Lip0(M)
whosew∗-topology coincides on the unit ball of Lip0(M)with the pointwise convergence

on M.

It is clear that when M is separable, F(M) is separable as well since δ(M) spans

a dense subspace of that space. We should mention that although Lipschitz-free spaces

over separable metric spaces constitute a class of separable Banach spaces which are easy

to define, the structure of these spaces is very poorly understood to this day. Improving

our understanding of this class is a fascinating research program.

Fe free spaces provide a canonical linearization process: if we identify (through the

Dirac map) a metric space M with a subset of F(M), any Lipschitz map F from M to

a metric space N which maps 0 to 0 extends to a continuous linear map from F(M) to

F(N). Indeed the composition map

CF(g) = g ○ F

maps Lip0(N) to Lip0(M), therefore (CF)∗∶Lip0(M)∗ → Lip0(N)∗; and if we call F̂ the

restriction of (CF)∗ toF(M), then F̂ mapsF(M) toF(N) and satisfies F̂ ○ δM = δN ○ F
(where δE denotes the Dirac map associated with the metric space E). Fis linearization

procedure applies, in particular, to canonical injections: if A is a metric space and B is

a non-empty subset ofA, real-valued Lipschitz functions on B can be extended to Lipschitz

functions on A with the same Lipschitz constant by an inf-convolution formula. Namely,

if f ∶B → R is L-Lipschitz, then the formula

f (a) = inf{ f (b) + Ld(a, b) ∶ b ∈ B},

which goes back toMac Shane [54], defines an L-Lipschitz function f on Awhich extends

f . It follows that if j∶B → A is the canonical injection, then ĵ∶ F(B) → F(A) is a linear
isometric injection. We can, therefore, identify F(B) with a subspace of F(A).

So if wemove up to the free spaces, the Lipschitzmaps become linear but of course the

structure is shiýed from themap to the space: when the arrows become simple, the sets on

which they act bear the complexity. Fis may explain why the structure of Lipschitz-free

spaces is not easy to analyze.
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2.1. Example. Fe first example is provided by the real line whose free space is isometric

to L1. To check this, observe that every Lipschitz function f from R to R is di×erentiable

almost everywhere and, moreover,

f (x) − f (0) = ∫
x

0
f ′(t)dt.

Hence the map D( f ) = f ′ induces an isometry from Lip0(R) onto L∞(R), and so their

(unique) isometric preduals F(R) and L1(R) are isometric as well. More precisely, the

map J(δ(x)) = 1[0,x] extends to an isometry from F(R) onto L1(R).
Actually, metric spaces M whose free spaces are isometric to a subspace of L1 are

characterized in [24] as subsets of metric trees equipped with the shortest path metric.

On the other hand, the free space of the plane R2
does not embed isomorphically into

L1 [55]. Note that the Lipschitz-free spaces are oýen called Arens–Eells spaces and that

they can be interpreted in terms of the “transportation cost” (see [60]).

Fe free space of a Banach space. Banach spaces are, in particular, pointed metric spaces

(pick the origin as the distinguished point) and we can apply the previous construction.

Note that the isometric embedding δ∶X → F(X) is, of course, non-linear since there exist

Lipschitz functions on X which are not aÚne.

Fis Dirac map has a linear leý inverse β∶ F(X) → X (denoted βX when necessary)

which is the quotient map such that x∗(β(µ)) = ⟨x∗, µ⟩ for all x∗ ∈ X∗; that is, β(µ) is
the restriction of µ to the subspace X∗ of Lip0(X) and this restriction belongs to X since

it trivially does for the dense subspace ofF(X) spanned by δ(X). In other words, β is the

extension to F(X) of the barycenter map.
Fe barycenter map β provides an extension result which explains the terminology

“free space” by analogy to free groups. Indeed, if F∶M → X is a Lipschitzmap fromametric

spaceM to a Banach space X such that F(0) = 0, then the linear map F = βX ○ F̂ has norm
equal to the Lipschitz constant of F and satisfies F ○ δM = F. Fat is, Banach space-valued

Lipschitz maps defined on a metric space M extend canonically to bounded linear maps

on F(M).
Following [28], let us say that a Banach space X has the liýing property if there is

a continuous linear map R∶X → F(X) such that βR = IdX , or, equivalently, if for Banach

spaces Y and Z and continuous linear maps S∶ Z → Y and T ∶X → Y , the existence of
a Lipschitz map L such that T = SL implies the existence of a continuous linear operator

L such that T = SL. Indeed, the operator L = βZL̂R does the job in this case. We note

that ∥L∥ ⩽ ∥R∥∥L∥L . In all examples where a linear section R∶X → F(X) has been shown

to exist, we have moreover that ∥R∥ = 1. Hence the isometric liýing property holds true,

where this notation means that a linear operator can be found with ∥L∥ = ∥L∥L .



A survey of Lipschitz-free Banach spaces 93

Fis setting provides canonical examples of Lipschitz-isomorphic spaces. Indeed, if

we let ZX = Ker(βX), it follows easily from βXδX = IdX that the space ZX ⊕ X = G(X) is
Lipschitz-isomorphic to F(X). Fe linear map

δ̂X ∶ F(X) → F(F(X))

is a linear liýing of the quotient map βF(X) and thus, for any Banach space X, the free

space F(X) over X has the liýing property. Since the liýing property passes over to com-

plemented subspaces and X is complemented in G(X), it follows that G(X) is linearly iso-
morphic toF(X) if and only if X has the liýing property [28].Ferefore, anyBanach space

X which fails to have the liýing property provides a couple of spaces (namely F(X) and
G(X)) which are Lipschitz-isomorphic but not linearly isomorphic. It turns out (see [28])

that all non-separable reflexive spaces, including the spaces ℓ∞(N) and c0(Γ) when Γ is

uncountable, fail to have the liýing property and this provides canonical examples of pairs

of Lipschitz-isomorphic but not linearly isomorphic spaces. However, we will see below

that this technique fails to provide a pair of separable examples.

We should mention at this stage that the first couple of Lipschitz- but not linearly

isomorphic Banach spaces was discovered in [2]. It was shown later ([15], see [16, Fe-

orem VI.8.9]) that if K is a scattered compact space with a finite Cantor derivation index,

then C(K) is Lipschitz-isomorphic to the space c0(Γ) of the same density character. Fe

proof relies on the existence of Lipschitz (but not linear!) liýings from quotient spaces

isomorphic to c0(Γ) spaces. If K is separable and not metrizable, the space C(K) is not
isomorphic to a c0(Γ) space.

Fe liýing property for separable spaces. Fe following result from [28] shows a useful

regularity property of separable spaces.

2.2. Feorem. Every separable Banach space X has the isometric liýing property.

Proof. Wewill actually give two proofs. In the first proof, since X is separable, there exists

a Gaussian measure γ whose support is dense in X. Fen we can use the result (see [6])

that if L is a Banach-space valued Lipschitz map defined on X, then the convolution

(L ∗ γ)(x) = ∫
X
L(x − t)dγ(t)

is Gâteaux-di×erentiable.We apply this to themapL = δX and then, in the above notation,

T = (δX ∗ γ)′(0) satisfies βXT = IdX .

Fe second proof is essentially self-contained. It consists in replacing the Gaussian

measure by a cube measure and this will be useful later. It underlines the simple fact that

being separable is equivalent to being “compact-generated”.
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Let (x i)i⩾1 be a linearly independent sequence of vectors in X such that

vect[(x i)i⩾1] = X

and ∥x i∥ = 2
−i
for all i. Let H = [0, 1]N be the Hilbert cube and Hn = [0, 1]Nn

be the

copy of the Hilbert cube where the factor of rank n is omitted, that is, Nn = N/{n}. We
denote by λ (resp.λn) the natural probability measure on H (resp. Hn) obtained by taking

the product of the Lebesgue measure on each factor.

Let E = span[(x i)i⩾1] and denote by R∶ E → F(X) the unique linear map which for

all n ⩾ 1 and all f ∈ Lip0(X) satisfies

R(xn)( f ) = ∫
Hn

[ f (xn +
∞

∑
j=1
j/=n

t jx j) − f (
∞

∑
j=1
j/=n

t jx j)] dλn(t).

Pick f ∈ Lip0(X). If the function f is Gâteaux-di×erentiable, Fubini’s theorem shows that

for all x ∈ E
R(x)( f ) = ∫

H
⟨{∇ f }(

∞

∑
j=1

t jx j), x⟩ dλ(t).

Fus ∣R(x)( f )∣ ⩽ ∥x∥∥ f ∥L in this case. But since X is separable, any f ∈ Lip0(X) is

a uniform limit of a sequence f j of Gâteaux-di×erentiable functions such that ∥ f j∥L ⩽
∥ f ∥L . It follows that

∥R∥ ⩽ 1.

We may now extend R to a linear map R∶X → F(X) such that ∥R∥ = 1 and it is clear

that R(x)(x∗) = x∗(x) for all x ∈ X and all x∗ ∈ X∗.

Fe above proof follows [28]. We refer to [25] for an elementary approach along the

lines of the second argument which uses only finite-dimensional arguments and is acces-

sible at the undergraduate level.

Figiel’s theorem. Wewill apply the liýing property to the construction of linear isometries

from separable Banach spaces to Banach spaces when existence of isometries is assumed.

We first show an improvement due to Figiel of the classical Mazur–Ulam theorem. For

this purpose we need the following lemma.

2.3. Lemma. Let E be a finite-dimensional normed space, with norm ∥ ⋅∥. Pick x ∈ E a point
of di×erentiability of the norm ∥ ⋅ ∥ with ∥x∥ = 1. Fen {∇∥ ⋅ ∥}(x) is the only 1-Lipschitz

map φ∶ E → R such that φ(tx) = t for all t ∈ R.

Proof. Let φ∶ E → R a 1-Lipschitz map such that φ(tx) = t for all t ∈ R. Pick y ∈ E.
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For all t /= 0, one has

1 = ∣tφ(y) − tφ((φ(y) + 1/t)x)∣ ⩽ ∥x − t(y − φ(y)x)∥.

Ferefore, the right-hand -side function attains itsminimumat t = 0. Di×erentiation gives

⟨{∇∥ ⋅ ∥}(x), y − φ(y)x⟩ = 0

and thus {∇∥ ⋅ ∥}(x) = φ.

2.4. Lemma. Let E be a normed space of finite dimension n, let F be a normed space and

let ϕ∶ E → F be an isometry such that ϕ(0) = 0. We assume that vect[ϕ(E)] = F. Fen

there exists a unique continuous linear map T ∶ F → E such that T ○ ϕ = IdE and, moreover,

∥T∥ = 1.

Proof. We first consider the one-dimensional case. Let j∶R→ F be an isometry such that

j(0) = 0. For all k ∈ N there exists x∗k ∈ F∗ with norm 1 such that ⟨x∗k , j(k) − j(−k)⟩ = 2k.

It is easily seen that ⟨x∗k , j(t)⟩ = t for all t ∈ [−k, k]. It follows by weak* compactness that

there exists x∗ ∈ F∗ with norm 1 such that ⟨x∗, j(t)⟩ = t for all t ∈ R, and this linear form

x∗ does the job.

Take now ϕ∶ E → F as above. Pick any x ∈ E where the norm ∥ ⋅ ∥ is di×erentiable. By
the one-dimensional case, there exists f ∗x ∈ F∗ with norm 1 such that ⟨ f ∗x , ϕ(tx)⟩ = t for

all t ∈ R. Lemma 2.3 shows that f ∗x ○ ϕ = {∇∥.∥}(x).
We recall now that any norm on a finite-dimensional space is di×erentiable at every

point of a dense subset. It follows that for any z ∈ E/{0}, there is a point x′ of di×eren-
tiability of the norm such that {∇∥ ⋅ ∥}(x′)(z) /= 0. It follows that we can find points of

di×erentiability x1 , x2 , . . . , xn such that the set of linear forms ({∇∥⋅∥}(x i))1⩽i⩽n is a basis
of E∗.

We denote by (z j)1⩽ j⩽n the dual basis in E such that

{∇∥ ⋅ ∥}(x i)(z j) = δ i , j .

For all 1 ⩽ i ⩽ n, there exists f ∗x i ∈ F
∗
with norm 1 such that

{∇∥ ⋅ ∥}(x i) = f ∗x i ○ ϕ.

We define T ∶ F → E by

T(y) =
n
∑
i=1
f ∗x i(y)z i .

Fe map T is linear and continuous and T ○ ϕ = IdE .

Uniqueness of such a map T follows immediately from vect[ϕ(E)] = F.
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Moreover, for all x′ ∈ Ω∥⋅∥, one has

f ∗x′ = {∇∥.∥}(x′) ○ T , (1)

since these continuous linear forms coincide on the dense set vect[ϕ(E)]. We pick now

any y ∈ F and let z = T(y). Since ∥z∥ = sup{⟨{∇∥ ⋅ ∥}(x′), z⟩}, where the supremum is

taken over the points x′ of di×erentiability of the norm, it follows from (1) that ∥z∥ ⩽ ∥y∥
and thus ∥T∥ = 1.

It is now easy to deduce Figiel’s theorem [20] from this lemma.Note that this theorem

immediately implies Mazur–Ulam’s theorem: every onto isometry Φ∶X → Y between

Banach spaces such that Φ(0) = 0 is linear.

2.5. Feorem. Let X be a separable infinite-dimensional Banach space. Let F be a normed

space and let ϕ∶X → F be an isometry such that ϕ(0) = 0. We assume that vect[ϕ(X)] = F.
Fen there exists a unique continuous linear map T ∶ F → X such that T ○ ϕ = IdX and,

moreover, ∥T∥ = 1.

Proof. We complete the proof in the case when X is separable. Easymodifications provide

the general case. We write

X = ⋃
k⩾1
Ek

where (Ek)k⩾1 is an increasing sequence of finite-dimensional subspaces. We let Fk =
vect[Φ(Ek)]. By Lemma 2.4, there exists a unique continuous linear map Tk ∶ Fk → Ek
such that Tk(Φ(x)) = x for all x ∈ Ek and, moreover, ∥Tk∥ = 1.

Uniqueness implies that we can consistently define T ∶ ⋃k⩾1 Fk → X by T(y) = Tk(y)
if y ∈ Fk , with ∥T∥ = 1 since ∥Tk∥ = 1 for all k. Finally, our assumption implies that

F = ⋃k⩾1 Fk and T can be extended to F since it takes values in the complete space X.

Some applications of the liýing property. Figiel’s theorem and the liýing property of

separable Banach spaces provide the following result from [28]. It should be underlined

that the conclusion fails to hold in general if X is not assumed to be separable.

2.6.Feorem. Let X be a separable Banach space. If there exists an isometry Φ from X into

a Banach space Y, then Y contains a closed linear subspace which is linearly isometric to X.

Proof. We may and do assume that Φ(0) = 0 and that vect[Φ(X)] = Y . By Feorem 2.5,

there is a quotient map Q∶Y → X of norm 1 such that Q ○ Φ = IdX . We can, therefore,

applyFeorem 2.2 withL = Φ, and this shows the existence of S∶X → Y with ∥S∥ = 1 and

Q ○ S = IdX . It is now clear that S is a linear isometry from X into Y .
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Another application of the liýing property concerns quasi-linear projections. We re-

call that if Y is a closed linear subspace of a Banach space X, a map p∶X → Y is called

a quasi-linear projection if p(0) = 0 and p(x + y) = p(x) + y for every x ∈ X and y ∈ Y .
In other words, p commutes with the translations which are parallel to Y . It is easy to

check that there exists a quasi-linear Lispchitz projection from X onto Y if and only if

the quotient map Q∶X → X/Y admits a Lipschitz liýing. Ferefore, the liýing property

translates into the following

2.7. Feorem. Let X be a Banach space and Y a closed linear subspace of X such that X/Y
is separable. If there exists a Lipschitz quasi-linear projection p∶X → Y, then Y is comple-

mented in X.

For instance, if a separable space X is reflexive and strictly convex and Y is a closed

subspace of X, then every x ∈ X has a unique nearest point pY(x) in Y and the map pY

is a quasi-linear projection. It follows from Feorem 2.7 that such maps pY will not be

Lipschitz unless Y is linearly complemented in X.

3. Free spaces and the approximation property

ABanach space X has the approximation property (in short, A.P.) if for any compact subset

K of X and any є > 0, there exists a bounded finite rank operator R such that ∥x−R(x)∥ < є

for every x ∈ K. If this property holds with the extra condition ∥R∥ ⩽ λ, we say that X has

the bounded approximation property (in short, B.A.P) or, more precisely, the λ-B.A.P.Fe

1-B.A.P. is called themetric approximation property (in short, M.A.P.).Fe uniform boun-

dedness principle shows that a separable Banach space X has the bounded approximation

property if there exists a sequence of finite rank operators Tn such that lim ∥Tn(x)−x∥ = 0

for every x ∈ X.
It is natural to investigate for which metric spaces M the free space F(M) has the

approximation property or one of its quantitative versions. We will see below that this qu-

estion is tightly related to the extension properties of Lipschitz functions. We can observe

first that if X is a separable Banach space which fails to have the A.P. then F(X) fails to

have the A.P. as well since X is isomorphic to a complemented subspace ofF(X). On the

other hand,F(R) = L1 has theM.A.P., and it is shown in [28] that, more generally,F(Rn)
has the M.A.P. for every n ∈ N and every norm on Rn

.

Free spaces over compact spaces. Free spaces over Banach spaces can have or fail to have

the approximation property. A problem that goes back to [38] asks whether the free space
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F(K) has the A.P. or even the M.A.P. for every metric compact space K. Fis question

has been answered in [32] as follows.

3.1.Feorem. Let X be a separable Banach space and let C be a closed convex set containing

0 such that span[C] = X. Fen X is isomorphic to a complement subspace of F(C).

Note that for any separable space X there are compact sets C which satisfy the as-

sumptions of this theorem and if X fails to have the A.P. then F(C) fails to have the A.P.

as well.

Proof. We use the second proof of Feorem 2.2. In the notation of this proof, we may

assume that the vectors (x i)i⩾1 are contained in C/2. Fen the proof shows that R(X) ⊂
F(C) ⊂ F(X). Ferefore R(X) is a 1-complemented subspace of F(C) and is isometric
to X.

Fus some free spacesF(K) over compact spaces fail to have the approximation pro-

perty. Otherwise, it is frequent: for instance, if C is a closed convex subset of an Euclidean

spaceH, then, sinceF(H) has theM.A.P. ([28]) and C is a 1-Lipschitz retract ofH,F(C)
is 1-complemented inF(H) and so it has the M.A.P. We will now relate the validity of the

B.A.P for F(K) with the extension properties of Lipschitz functions defined on subsets

of K.

In what follows, a metric compact set M is understood as the limit of a nested sequ-

ence of finite sets (Mn). A subset S of a metric space M is said to be є-dense if for all

m ∈ M, one has inf{d(m, s) ∶ s ∈ S} ⩽ є. We denote by δn ∶Mn → F(Mn) the Dirac map

relative toMn . If X is a Banach space, Lip(M , X) denotes the space of Lipschitz functions

F∶M → X. If K is a compact metric space and T ∶Lip(K) → Lip(K) is a continuous

linear operator, we denote by ∥T∥L its operator norm when Lip(K) is equipped with the

Lipschitz norm, and by ∥T∥L ,∞ its norm when the domain space is equipped with the

Lipschitz norm and the range space with the uniform norm, alternatively: ∥T∥L ,∞ is the

norm of T from Lip(K) to C(K) when these spaces are equipped with their canonical

norms. We use the same notation for X-valued Lipschitz functions. It should be noted

that if M is a metric compact space, then the uniform norm induces on the unit ball of

Lip(M) the weak* topology associated with the free space F(M).
With this notation, the following holds ([27]).

3.2.Feorem. Let M be a compact metric space. Let (Mn)n be a sequence of finite єn-dense

subsets of M with lim(єn) = 0. We denote by Rn( f ) the restriction to Mn of a function f

defined on M. Let λ ⩾ 1. Fe following assertions are equivalent:

(i) Fe free space F(M) over M has the λ-B.A.P.
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(ii) Fere exist αn ⩾ 0with lim αn = 0 such that for every Banach space X there exist linear

operators En ∶ Lip(Mn , X) → Lip(M , X) with ∥En∥L ⩽ λ and

∥RnEn − I∥L ,∞ ⩽ αn .

(iii) Fere exist linear operators Gn ∶ Lip(Mn) → Lip(M)with ∥Gn∥L ⩽ λ and lim ∥RnGn−
I∥L ,∞ = 0.

(iv) For every Banach space X there exist βn ⩾ 0 with lim βn = 0 such that for every

1-Lipschitz function F∶Mn → X there exists a λ- Lipschitz function H∶M → X such

that ∥Rn(H) − F∥l∞(Mn ,X) ⩽ βn .

Proof. (i)⇒(ii): Let Z = c((F(Mn)) be the Banach space of sequences (µn), with µn ∈
F(Mn) for all n, such that (µn) is norm convergent in the Banach spaceF(M). We equip
Z with the supremumnorm and denote byQ∶ Z → F(M) the canonical quotient operator

which maps every sequence in Z to its limit.

Fe kernel Z0 = c0((F(Mn)) of Q is an M-ideal in Z and the quotient space Z/Z0
is isometric to F(M). It follows from (1) and the Ando–Choi–E×ros theorem (see [36,

Feorem II.2.1]) that there exists a linear map L∶ F(M) → Z such that QL = IdF(M) and

∥L∥ ⩽ λ.

We let πn be the canonical projection from Z onto F(Mn) and we define

gn = πnLδ∶M → F(Mn).

Fe maps gn are λ-Lipschitz and for every m ∈ M we have

lim ∥gn(m) − δ(m)∥F(M) = 0.

SinceM is compact, this implies by an equicontinuity argument that if we let

αn = sup

m∈M
∥gn(m) − δ(m)∥F(M),

then lim αn = 0. Let now X be a Banach space and F∶Mn → X a Lipschitz map. Fere

exists a unique continuous linear map F∶ F(Mn) → X such that F ○ δn = F and its norm
is equal to the Lipschitz constant of F. In the notation of [28], one has F = βX ○ F̂ and, in
particular, F depends linearly upon F. We now let

En(F) = F ○ gn

and it is easy to check that the sequence (En) satisfies the requirements of (ii).

(ii)⇒(iii): it suÚces to take X = R in (ii).

(ii)⇒(iv): it suÚces to take H = En(F) and (iv) follows with βn = αn (independent of X).
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(iii)⇒(i): We let ∥RnGn − I∥L ,∞ = γn , with lim γn = 0. If H ∈ Lip(M), then

∥RnGnRn(H) − Rn(H)∥l∞(Mn) ⩽ γn∥H∥L .

In other words,

∥Rn[GnRn(H) −H]∥l∞(Mn) ⩽ γn∥H∥L .
If we now let Tn = GnRn ∶Lip(M) → Lip(M), we have ∥Tn∥L ⩽ λ and, sinceMn is єn-dense

in M with lim єn = 0, it follows from the above that for every H ∈ Lip(M) one has

lim ∥Tn(H) −H∥l∞(M) = 0.

Fe operator Rn is a finite rank operator which is weak-star to norm continuous and so

is Tn , since Tn = GnRn . In particular, there exists An ∶ F(M) → F(M) such that A∗n = Tn .

It is clear that ∥An∥F(M) ⩽ λ and that the sequence (An) converges to the identity for the

weak operator topology, and this shows (i).

(iv)⇒(i): It will be suÚcient to apply condition (iv) to a very natural sequence of 1-Lipschitz

maps. We let X = l∞(F(Mn)) and jn ○ δn = ˜δn ∶Mn → X, where jn = F(Mn) → X is

the obvious injection such that ( jn(µ))k = 0 if k /= n and ( jn(µ))n = µ. Fe map
˜δn is an

isometric injection from Mn into X.

By (iv), there exist λ-Lipschitz maps Hn ∶M → X such that

∥Rn(Hn) − ˜δn∥l∞(Mn ,X) ⩽ βn .

We let Vn = PnHn , where Pn ∶X → F(Mn) is the canonical projection. Fe maps Vn are

λ-Lipschitz and for every m ∈ Mn one has, since Pn ˜δn = δn , that

∥Vn(m) − δn(m)∥F(Mn) ⩽ βn .

Fe Lipschitz map Vn ∶M → F(Mn) extends to a linear map Vn ∶ F(M) → F(Mn)
with ∥Vn∥ ⩽ λ. By the above, the sequence Cn = JnVn , where Jn ∶ F(Mn) → F(M) is the

canonical injection, converges to the identity of F(M) in the strong operator topology.

Fis concludes the proof.

In what follows, we will restrict our attention to actual extension operators, in other

words, to the case αn = βn = γn = 0. Note that Mac Shane’s formula

f (a) = inf{ f (b) + Ld(a, b) ∶ b ∈ B},

used for extending real-valued Lipschitz functions from a subset B to a metric space A,

preserves the Lipschitz constant, but does not work for Banach-space valued Lipschitz

functions (since it uses the order structure on R) and is not linear in f for real-valued

functions, hence does not provide a bounded linear extension operator for Lipschitz func-

tions. Fe above result states that such improved extensions are possible uniformly on
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a tower of finite subsets of a compact set K exactly whenF(K) has the B.A.P. Conversely,

compact sets K such that F(K) fails to have the B.A.P. provide natural examples where

such extensions do not exist (see [53], [9] for previous examples). Fis is explained in the

following remarks.

3.3. Remark.

1) LetM be a compactmetric spacewith distinguished point 0M such thatF(M) fails to

have the B.A.P.We denote byM∞
the Cartesian product of countably many copies of

M equipped with d∞(xn , yn) = sup d(xn , yn) and by Pn ∶M∞ → M the correspon-

ding sequence of projections. We use the notation of the proof of (iv)⇒(i) and, in

particular, we let X = l∞(F(Mn)). We define a map ∆ from the subset L = Πn⩾1Mn

ofM∞
to X by the formula

∆((mn)) = ( ˜δn(mn))n .

Femap ∆ is 1-Lipschitz.We denote by in ∶M → M∞
the natural injection defined by

(in(m))k = m if k = n and 0M otherwise. Assume that ∆ admits a λ-Lipschitz exten-

sion H∶M∞ → X. Fen for every n the map Hn = PnHin is a λ-Lipschitz extension

of
˜δn . But then the proof of (iv)⇒(i) shows thatF(M) has the λ-B.A.P., contrarily to

our assumption. Hence ∆ cannot be extended to a Lipschitz map from M∞
to X.

2) In the notation of Remark 1), assume that there exists a linear extension operator

E∶Lip(L) → Lip(M∞) with ∥E∥L = λ < ∞. If πn denotes the canonical projection

from L onto in(Mn), then πn is 1-Lipschitz and thus the map En ∶Lip(in(Mn)) →
Lip(M∞) defined by En(F) = E(F ○πn) satisfies ∥En∥L ⩽ λ. Composing En with the

restriction to in(M) shows the existence of a linear extension operator fromLip(Mn)
to Lip(M)with norm atmost λ for all n, and by (iii)⇒(i) this cannot be ifF(M) fails
to have the B.A.P.

Fe liýing property and the B.A.P. We conclude this section with another application

([7]) of the liýing property which shows that the B.A.P. is identical to its natural Lipschitz

counterpart. Note that the condition (i) is obviously independent of the choice of the ap-

proximating sequence (En) and hence so are conditions (ii) and (iii).

3.4.Feorem. Let X be a separable Banach space. Let (En)n⩾1 be an increasing sequence of

finite dimensional subspaces of X whose union is dense in X. Fe following assertions are

equivalent:

(i) Fe space X has the λ-B.A.P.

(ii) Fere is a sequence of linear operators Rn ∶X → En such that sup ∥Rn∥ ⩽ λ and for

every x ∈ X
lim ∥Rn(x) − x∥ = 0.
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(iii) Fere is a sequence of Lipschitz maps Fn ∶X → En such that sup ∥Fn∥L ⩽ λ and for

every x ∈ X
lim ∥Fn(x) − x∥ = 0.

Proof. We first show that (iii) implies (ii). Fe argument is similar to the proof of (i)⇒
(ii) in Feorem 3.2 above. Let Z = c((En)) be the Banach space of sequences (xn), with
xn ∈ En for all n, such that (xn) is norm convergent in the Banach space X. We equip Z

with the supremumnorm and denote byQ∶ Z → X the canonical quotient operator which

maps every sequence in Z to its limit. Fe map Σ∶X → Z defined by Σ(x) = (Fn(x))n⩾1
is a λ-Lipschitz right inverse to the quotient map Q. By the isometric liýing property

(Feorem 2.2) of separable spaces, there exists a linear map L∶X → Z with ∥L∥ ⩽ λ such

that QL = IdX . It suÚces to let Rn = PnL, where Pn is the canonical projection from Z to

its nth coordinate En .

It is obvious that (ii) implies (i) and (iii). Finally, assume that (i) holds. Fen, with

the above notation, the space Z0 = Ker(Q) of sequences in Z which converge to 0 is an

M-ideal in Z and the quotient Z/Z0 is isometric to X. Since X has the λ-B.A.P., the Ando–

–Choi–E×ros theorem provides a linear map L∶X → Z with ∥L∥ ⩽ λ such that QL = IdX ,

and we deduce (ii) as above.

A Banach space X has the λ-Lipschitz B.A.P if for every compact subset K of X and

every є > 0 there is a Lipschitz map F∶X → V , whereV is some finite-dimensional subspa-

ce of X, such that ∥F(x) − x∥ < є for every x ∈ K. It is shown in [28] that the λ-Lipschitz

B.A.P. is actually equivalent to the λ-B.A.P. and this can be deduced quite easily from the

above theorem. Using the result that the free spaces over abitrary finite-dimensional Ba-

nach spaces have theM.A.P., it is shown in [28] that X has λ-B.A.P. if and only ifF(X) has
the λ-B.A.P. It follows, in particular, that the bounded approximation property is stable

under Lipschitz-isomorphisms.

Some recent progress. Nigel Kalton studied in [45] and [46] the approximation properties

of free spaces in relation to non-linear approximation procedures that would be available

for every separable Banach space. Some of the most important results (and problems) in

the area stem from these works (see Problem 6.2 below).

Following [32], work was done to decide if free spaces over “small” compact spaces

could fail to have the A.P. It has been shown in [12] that if K is a countable compact, then

F(K) has the M.A.P., and in [13] that, more generally, if M is a countable proper metric

space (where “proper” means that the closed balls are compact), then F(M) is isometric
to a dual spacewith theM.A.P.Using results ofA.Godard [24] characterizing the spacesM

whose free spaces embed isometrically into L1, it was shown in [13] that ifM is proper and

ultrametric, thenF(M) is isometric to the dual of an isomorphic copy of c0. On the other

hand, it was shown in [10] that ifM is ultrametric and separable, thenF(M) is isomorphic
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to l1 and has a monotone Schauder basis. We refer to [14] for the characterization of free

spaces which are isometric to l1.

Fus, when K is too small then F(K) enjoys the M.A.P. On the other hand, it was

shown in [34] that there exists a totally discontinuous compact metric space K such that

F(K) fails to have the A.P. In this same paper [34], it was shown that if K is countable,

then F(K) has the Schur property. Fis should be compared with the recent result [11]

that the free space over Rn
is weakly sequentially complete (although, if n > 1, this space

is not isomorphic to a subspace of L1 [55]). Note that it was shown in [21] that the free

space over the Urysohn space has the M.A.P.

Several results have been shown on stronger forms of the B.A.P. It has been shown

in [7] that free spaces over Rn
have F.D.D., and in [51] that these F.D.D. can be taken

monotone in the case of l n1 (and even l1). A subsequent article [35] shows the existence of

a Schauder basis in the free space over Rn
and over l1. In [56], it is shown in particular

that if Rn
is equipped with any norm and C is a compact convex subset, then the free

space over C has the M.A.P. Finally, the article [51] contains the remarkable result that if

M is a doubling metric space, then F(M) has the B.A.P. Hence, when M is somewhat

“finite-dimensional”, thenF(M) has the B.A.P. It is not clear at this moment what kind of

uniform control on the approximation constants is available (see Problem 4). Note that it

is shown in [49], among other results, that if F is a subset of Rn
which contains a subset

which is Lipschitz-isomorphic to the unit ball of Rn
, then F(F) is isomorphic to F(Rn).

4. Fe quotient norm of the linear extension of a Lipschitz isomorphism

Let f ∶X → Y be a Lipschitz-isomorphism from a Banach space X onto a Banach space

Y , where there word “isomorphism” means of course that both f and its inverse f −1 are

Lipschitz. As seen above, there is a linear continuousmap f ∶ F(X) → Y such that f ○δX =
f . Since f is onto, f is, in particular, a quotient map.

It turns out that the corresponding quotient norm on Y enjoys natural smoothness

properties when they hold for the original norm on X. Fese properties are asymptotic in

the sense that they do not change toomuchwhenwe decide to ignore at each point finitely

many dimensions.We now recall the definition of themodulus of asymptotic smoothness.

4.1. Definition. Let X be a Banach space equipped with the norm ∥.∥. If ∥x∥ = 1, τ > 0 and

Y is a closed finite-codimensional subspace of X, we let

ρ(τ, x ,Y) = sup

y∈SY

∥x + τy∥ − 1,

where SY denotes the unit sphere of Y . Fen we let

ρ(τ, x) = inf
Y

ρ(τ, x ,Y),
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where the infimum is taken over all closed finite-codimensional subspaces. Finally, we let

ρ(τ) = sup

x∈SX

ρ(τ, x).

Fis function ρ (or ρX if the space X needs to be specified) is called the modulus of

asymptotic uniform smoothness of X. It is sometimes denoted ρ to distinguish it from the

modulus of uniform smoothness, but this latter notion is not used in this note. A Banach

space X is said to be asymptotically uniformly smooth (in short, a.u.s) if

lim
τ→0

ρX(τ)/τ = 0.

Fe space X = c0 is a.u.s., and ρc0(τ) = 0 for all τ ∈ (0, 1]. More generally, a Banach space

E is called asymptotically uniformly flat if there exists τ0 > 0 such that ρE(τ0) = 0. It is

shown in [29] that a separable space has an equivalent asymptotically uniformly flat norm

if and only if it is isomorphic to a subspace of c0.

Here is a practical way of computing the modulus ρ.

4.2. Lemma. Let X be a Banach space with a separable dual, τ ∈ (0, 1] and x ∈ SX . We let

η(τ, x) = sup[limn→∞∥x + xn∥ − 1],

where the supremum is taken over all sequences (xn) which converge weakly to 0 and such

that ∥xn∥ ⩽ τ for all n. Let η(τ) = supx∈SX
η(τ, x).Fen η(τ, x) = ρ(τ, x) and η(τ) = ρ(τ)

for every τ ∈ (0, 1].

Proof. Let (xn) be a sequence which converges weakly to 0 and such that ∥xn∥ ⩽ τ for all

n. Let Y ⊂ X be a closed subspace of finite codimension. Fe distance d(xn ,Y) from xn
to Y tends to 0, so, given є > 0, for n large enough there exists yn ∈ Y with ∥xn − yn∥ < є.

Fen ∥yn∥ < τ + є and

∥x + xn∥ − 1 ⩽ ∥x + yn∥ − 1 + ∥xn − yn∥ ⩽ ρ(τ + є, x ,Y) + є.

Since Y of finite codimension is arbitrary, for n large enough we have

∥xn + x∥ − 1 ⩽ ρ(τ + є, x) + є

and, since є > 0 is arbitrary, it follows that η(τ, x) ⩽ ρ(τ, x).
Conversely, we have η(τ, x) ⩾ ρ(τ, x). Indeed, let (x∗j ) be a dense sequence in X∗,

and let

Yn =
n
⋂
j=0

Ker(x∗j ).

Given є > 0, there is xn ∈ Yn with ∥xn∥ ⩽ τ such that

∥x + xn∥ − 1 + є ⩾ ρ(τ, x ,Yn) ⩾ ρ(τ, x).
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It is easy to check that the sequence (xn) weakly converges to 0. Since є > 0 is arbitrary, it

follows that η(τ, x) ⩾ ρ(τ, x). Hence these two quantities are equal and the last assertion

follows immediately by taking the supremum over x ∈ SX .

Non-linear transfer of asymptotic smoothness. Up to the notation, the following result

is Feorem 5.4 in [30] with an actual estimate of the constants. Fe computations were

leý to the reader in [30] since the result is the Lipschitz case of the previous Feorem 5.3

from [30] which concerns uniform homeomorphisms. But it turns out that these com-

putations are non-trivial even in this special case. For the convenience of the reader, we

provide a complete proof below.

4.3. Feorem. Let X and Y be two separable Banach spaces. We assume that X is asymp-

totically uniformly smooth and that there exists a Lipschitz-isomorphism f from X onto Y.

Let ρX denote the modulus of asymptotic uniform smoothness of X and let M = Lip( f −1).
Fen f ∶ F(X) → Y is a quotient map whose quotient norm ∣ ⋅ ∣ on Y is asymptotically

uniformly smooth with modulus ρY satisfying for every τ ∈ (0, 1]

ρY(τ/4M) ⩽ 2ρX(τ).

Proof. Since X is asymptotically uniformly smooth, X∗ is separable and then it follows

from [4] thatY∗ is separable aswell.Wemay anddo assume that Lip( f ) = 1 andLip( f −1) =
M. Since F(X)∗ = Lip0(X), the unit ball of F(X) is the norm-closed convex hull of the

set consisting of all (δX(x)−δX(y))/∥x−y∥, when (x , y) runs through all pairs of distinct

points of X.

Ferefore, the unit ball of the norm ∣ ⋅ ∣ is the norm-closed convex hull of the vectors

( f ((x) − f (y))/∥x − y∥, where (x , y) runs over all pairs of distinct elements of X. Fis

means, incidentally, that this norm ∣ ⋅ ∣ is the largest norm on Y for which the map f is

1-Lipschitz.

Fe dual norm ∣ ⋅ ∣∗ on Y∗ is defined by the formula

∣y∗∣∗ = sup{∣⟨y∗, f (x) − f (x′)⟩∣
∥x − x′∥

∶ x /= x′},

where the above supremum is taken over all pairs (x , x′) of distinct points in X.
We claim that this norm satisfies the requested conditions. By Lemma 4.2, we need to

show that ηY(τ/4M) ⩽ 2ρX(τ) = 2ρ(τ), where ηY = η is obtained from ∣ ⋅ ∣ along the lines

of this Lemma. Let y ∈ Y with ∣y∣ = 1 and let (yn) be a sequence in Y which converges

weakly to 0 and such that ∣yn ∣ ⩽ τ/4M for all n. We have to show that

limn→∞∣y + yn ∣ − 1 ⩽ 2ρ(τ).
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For all n, we pick y∗n ∈ Y∗ with ∣y∗n ∣∗ = 1 such that ⟨y∗n , y + yn⟩ = ∣y + yn ∣. We may
and do assume that the sequence (y∗n) is weak* convergent to y∗ with ∣y∗∣∗ ⩽ 1 and that

lim ∣y∗ − y∗n ∣∗ = l exists. Pick є > 0 and x /= x′ in X such that

⟨y∗, f (x) − f (x′)⟩ ⩾ (1 − є)∣y∗∣∗∥x − x′∥.

We may and do assume that x′ = −x (hence x /= 0) and f (x′) = − f (x), and thus

⟨y∗, f (x)⟩ ⩾ (1 − є)∣y∗∣∗∥x∥.

Pick any β > ρ(τ). By definition of ρ(τ), there exists a subspace X0 of finite codimension

in X such that if z ∈ X0 and ∥z∥ ⩽ τ∥x∥, then

∥x + z∥ ⩽ (1 + β)∥x∥.

Pick b < τ∥x∥/2M and let d = τ∥x∥/2. Since f −1 is M-Lipschitz (for the original norm,

and thus for the larger norm ∣ ⋅ ∣), we can apply Gorelik’s principle ([29, Prop. 2.7]) for these
values of b and d and the finite-codimensional subspace X0 to conclude that there exists

a compact set K such that bB∣⋅∣ ⊂ K + f (2dBX0
).

We nowobserve that the sequence (y∗n−y∗) converges to 0 uniformly on the compact

set K. It follows that there exists a sequence (zn) in X0 such that ∥zn∥ ⩽ 2d = τ∥x∥ and
lim⟨y∗n − y∗, f (zn)⟩ = −bl .

We set An = ⟨y∗n , f (x)− f (zn)⟩. We have An ⩽ ∣y∗n ∣∗∥x − zn∥ ⩽ (1+β)∥x∥. Moreover,

An = ⟨y∗, f (x) − f (zn)⟩ + ⟨y∗n − y∗, f (x)⟩ − ⟨y∗n − y∗, f (zn)⟩

and, since (y∗n − y∗) weak* converges to 0 and f (−x) = − f (x), one has

An = 2⟨y∗, f (x)⟩ − ⟨y∗, f (zn) − f (−x)⟩ + bl + є(n)

with lim є(n) = 0. Since we have

⟨y∗, f (zn) − f (−x)⟩ ⩽ ∣y∗∣∗∥zn + x∥ ⩽ ∣y∗∣∗(1 + β)∥x∥

il follows that

An ⩾ 2(1 − є)∣y∗∣∗∥x∥ − ∣y∗∣∗(1 + β)∥x∥ + bl + є(n).

We can now combine the two inequalities for An and let n increase to infinity to obtain

(1 + β)∥x∥ ⩾ (1 − β − 2є)∣y∗∣∗∥x∥ + bl .

Playing on β and b leads to

(1 + ρ(τ))∥x∥ ⩾ (1 − ρ(τ) − 2є)∣y∗∣∗∥x∥ + l τ∥x∥/2M
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and since we can divide by ∥x∥ /= 0 and є > 0 is arbitrary, it follows that

∣y∗∣∗ ⩽ 1 + 2ρ(τ)
1 − ρ(τ) −

l τ

2M(1 − ρ(τ)) .

We have

∣y + yn ∣ = ⟨y∗n , y + yn⟩ = ⟨y∗n − y∗, y⟩ + ⟨y∗n − y∗, yn⟩ + ⟨y∗, y + yn⟩

and thus

lim∣y + yn ∣ ⩽ (τ/4M) lim ∣y∗n − y∗∣∗ + ∣y∗∣∗ = l τ

4M
+ ∣y∗∣∗.

If
l τ
4M ⩽ 2ρ(τ), then, since ∣y∗∣∗ ⩽ 1, it follows that lim∣y + yn ∣ − 1 ⩽ 2ρ(τ). If l τ

4M > 2ρ(τ),
then

∣y∗∣∗ ⩽ 1 − l τ

4M(1 − ρ(τ)) ⩽ 1 − l τ

4M

and thus lim∣y + yn ∣ ⩽ 1. Hence, in both cases we have

limn→∞∣y + yn ∣ − 1 ⩽ 2ρ(τ)

and this concludes the proof.

It is natural towonderwhich special properties of norms, beyond asymptotic uniform

smoothness, could be preserved by the transfer method used in Feorem 4.3. Fe first

applications of this result are the following corollaries ([29]):

4.4. Corollary.Fe class of linear subspaces of c0(N) is stable under Lipschitz isomorphisms.

Proof. Indeed, a separable Banach space X is isomorphic to a subspace of c0 if and only

if it admits an equivalent asymptotically uniformly flat norm (that is, a norm such that

ρX(τ0) = 0 for some τ0 > 0) ([29, Feorem 2.4]). Feorem 4.3 shows immediately that

the existence of such a norm is a Lipschitz invariant.

4.5. Corollary.A Banach space X which is Lipschitz-isomorphic to c0(N) is linearly isomor-

phic to c0(N).

Proof. Indeed, we know by the above that X is isomorphic to a subspace of c0(N). On
the other hand, X is a L∞ space since the class of L∞ spaces is stable under Lipschitz

isomorphisms [37]. Finally, it is shown in [41] that a L∞ subspace of c0(N) is isomorphic

to c0(N).

Feorem 4.3 provides an example of an asymptotic property which happens to be

Lipschitz-invariant. Fis result and its proof, which relies, in particular, on the Gorelik

principle, suggest that asymptotic properties are good candidates for Lipschitz or uniform
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invariants. Fis intuition is essentially correct, as shown in the fundamental articles due

to Nigel Kalton ([47, 48]), where such ideas are explored in considerable depth.

Some recent progress. Fe property (M) is defined in [43] as follows: a Banach space X

has (M) if for every (u, v) ∈ X2
with ∥u∥ = ∥v∥ and every weakly-null sequence (xn), one

has

lim ∥u + xn∥ = lim ∥v + xn∥,

provided these limits exist. It is shown in particular in [43] that Orlicz sequence spaces hF

can be renormed to have property (M). Fis asymptotic homogeneity property implies,

in particular, that norms with (M) are asymptotically uniformly smooth and optimally

so among all equivalent norms [19]. Fis is an operative tool for computing estimates on

the Szlenk index of Orlicz sequence spaces [8] and using these estimates to show that two

uniformly homeomorphic Orlicz sequence spaces contain the same lp spaces or, in other

words, have the same Matuszewska–Orlicz indices. Coarse and uniform embeddings be-

tween Orlicz sequence spaces have been further investigated in [50]. In the spirit of Corol-

lary 4.4, it is shown in [17] that the class of separable quotients of c0 (which is a subclass

of the collection of all subspaces of c0) is stable under Lipschitz isomorphisms, provided

that we restrict ourselves to the quotient spaces whose dual spaces have the A.P. It is not

known whether one can dispense with this technical restriction.

5. Norm attainment

When a Lipschitz map f defined on a Banach space X attains its norm on a couple of

points (x , y), this can provide useful information on the behavior of f at the point x or in

the direction (y − x). We refer to [57], where this technique is used for obtaining smooth

points of real-alued Lipschitz maps on Asplund spaces. However, it turns out that it is not

easy to approximate Lipschitzmaps by norm-attaining ones (in this strong sense).We now

show some results on this largely unexplored topic.

Our first result is an application [26] of Feorem 4.3. We use the notation from the

above Section 12. Let us say that a Lipschitz map from ametric spaceM to a Banach space

Y attains its norm in the strong sense (or strongly attains its norm) if there exists a pair of

distinct points (m, s) ∈ M2
such that ∥ f (m)− f (s)∥ = ∥ f ∥Ld(m, s). We say that f attains

its norm onF(M) if the corresponding linear operator f ∶ F(M) → Y attains its operator
norm. We say that f attains its norm in the direction y ∈ Y if ∥y∥ = ∥ f ∥L and there exist

couples of distinct points (mn , sn) ofM such that

lim
n

( f (mn) − f (sn))/d(mn , sn) = y.
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It is clear that f attains its norm in the strong sense on the couple (m, s) if and only if it at-
tains its Lipschitz norm onF(M) on the correspondingmolecule (δ(m)−δ(s))/d(m, s),
and in that case, it also attains its Lipschitz norm in the direction ( f (m)− f (s))/d(m, s).
With this notation, the following holds.

5.1.Feorem. Let X and Y be separable Banach spaces. We assume that X is asymptotically

uniformly smooth and that there exists a Lipschitz isomorphism from X onto Y which attains

its norm in some direction y ∈ Y. Fen there is a constant C > 0 such that ρY(y, τ/C) ⩽
2ρX(τ) for all τ ∈ (0, 1].

Proof. We may and do assume that Lip( f ) = 1. We denote by ∥ ⋅ ∥ the original norm on

the space Y . Fen 1 = ∥y∥ ⩽ ∣y∣, where ∣ ⋅ ∣ denotes the equivalent norm on Y constructed

in Feorem 4.3. Moreover ∣y∣ ⩽ 1 since y = limn( f (un) − f (vn))/∥un − vn∥. Hence ∥y∥ =
∣y∣ = 1. Since ∥z∥ ⩽ ∣z∣ for all z ∈ Y , Feorem 4.3 implies that ρY(y, τ/4M) ⩽ 2ρX(τ) for
all τ ∈ (0, 1], whereM = Lip( f −1).

It follows easily from this result (see [26]) that if X is asymptotically uniformly flat

and Y has the Kadec–Klee property (that is, the weak and norm topologies agree on the

unit sphere of Y), then no Lipschitz isomorphism between X and Y can attain its norm in

a direction y ∈ Y . Ferefore, Feorem 5.1 provides couples of Banach spaces (X ,Y) such

that the set of norm-attaining Lipschitz maps (in some direction y ∈ Y) is not dense in
the space Lip(X ,Y) equipped with the Lipschitz norm.

If we replace the norm-attainment in a direction y ∈ Y by the strong norm-attain-

ment, then examples are easier to find: actually, it is shown in [42] that the set of strongly

norm-attaining Lipschitz maps from the real line to itself is not dense in the Lipschitz

norm in Lip0(R). Indeed, if we identify this space with L∞(R) and thus its predualF(R)
with L1(R), a function f ∈ L∞(R) attains its norm on a couple (m, s) if and only if

∣∫
s

m
f (u)du∣ = ∣s −m∣ ∥ f ∥∞

and thus if A is a measurable subset of R such that 0 < m(A ∩ I) < m(I) for every open
interval I and f = 1A − 1R/A then ∥ f ∥ = 1 ⩽ ∥ f − g∥ for every strongly norm-attaining

function g. Note that this function f attains its norm on the free spaceF(R) = L1 but not

on a “molecule” (δs − δm)/∣m − s∣.
Clearly, we may replace the real line by the compact set [0, 1] in the above argument

and reach the same conclusion, i.e. the non-denseness of the set of strongly norm-attaining

Lipschitz functions on [0, 1] and the existence of Lipschitz functions which attain their

norm onF([0, 1]) but not on a molecule (δs − δm)/∣m − s∣. However, we now investigate

compact spaces which behave quite di×erently in this respect.

We recall that there are compact metric spaces K such that the free space F(K) is
isometric to the dual space of the little Lipschitz space lip0(K) consisting of all Lipschitz
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functions f with f (0) = 0 such that for any є > 0 there exists δ > 0 such that if d(x , y) < δ
then ∣ f (x) − f (y)∣ ⩽ єd(x , y). Fis happens exactly when lip0(K) strongly separates K,

that is, when there exists a > 0 such that for all (s, t) ∈ K2
there exists f ∈ lip0(K) such

that f (s) − f (t) = d(s, t) and ∥ f ∥L ⩽ a (see Chapter 3 in [60]). Fis condition is satisfied

when K is the usual middle-thirds Cantor set, when K = Lα is a compact Holder metric

space obtained from a compact space L by snowflaking (see Proposition 3.2.2 in [60]), or

when K is countable or ultrametric ([13]).

We note that for any compact metric space K, the space lip0(K) is (1+є)-isomorphic

to a subspace of c0 for every є > 0 (Feorem 6.6 in [44]). It follows in particular that when

lip0(K) strongly separates F(K), then it is an M-ideal in its bidual Lip0(K) (see [36] for
this notion). In order to exploit the powerful theory of M-ideals, we need the following

lemma.

5.2. Lemma. Let X be a Banach space which is an M-ideal in its bidual. If x∗∗ ∈ X∗∗ attains

its norm on BX∗ , then it attains its norm on some x∗ ∈ BX∗ ∩ Ext(BX∗∗∗). Ferefore, the

set of all x∗∗ ∈ X∗∗ which attain their norm on some x∗ ∈ BX∗ ∩Ext(BX∗∗∗) is norm dense

in X∗∗.

Proof. We may and do assume that ∥x∗∗∥ = 1. Let F = BX∗∗∗ ∩ (x∗∗)−1(1). We clearly
have Ext(F) = F ∩ Ext(BX∗∗∗), and thus Ext(F) ⊂ X∗ ∪ X⊥, since X is an M-ideal in

its bidual. We cannot have Ext(F) ⊂ X⊥ since this would imply by the Krein–Milman

theorem that F ⊂ X⊥ and, by assumption, F ∩ X∗ /= ∅. Ferefore ∅ /= Ext(F) ∩ X∗ =
F ∩ X∗ ∩ Ext(BX∗∗∗).

Fe second assertion follows from the first since the Bishop–Phelps theorem asserts

that the set of all x∗∗ ∈ X∗∗ which attain their norm on some x∗ ∈ BX∗ is norm dense in

X∗∗.

We are now ready to show the following fact.

5.3. Proposition. Let K be a metric compact space. We assume that lip0(K) strongly se-

parates K. Fen every Lipschitz function f ∈ Lip0(K) which attains its norm on F(K)
strongly attains it, that is, there exist distinct points (k, l) ∈ K2 such that ∣ f (k) − f (l)∣ =
∥ f ∥Ld(k, l). Ferefore, the set of functions which strongly attain their norm is norm dense

in Lip0(K).

Proof. We can apply Lemma 5.2, which shows that any norm-attaining function f attains

its norm at some point x∗ ∈ F(K) ∩ Ext(BLip
0
(K)∗). But then Corollary 2.5.4 in [60]

shows that x∗ = u[(δk − δ l)/d(k, l)], for some scalar u with ∣u∣ = 1. Fe result follows.

Fe last assertion follows again from the Bishop–Phelps theorem.
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Wenow turn to vector-valued Lipschitz functions. Let us note first that the canonical

identification Lip0(K ,Y) = L(F(K),Y) could be seen as a version of the classical Radon–

–Nikodym representation of operators. Indeed, if K = [0, 1], this equation boils down to

Lip0([0, 1],Y) = L(L1([0, 1]),Y)

hence any operator T ∶ L1 → Y is represented by a Lipschitz function FT ∶ [0, 1] → Y and,
when the Banach space Y has the Radon–Nikodym property, this Lipschitz function is dif-

ferentiable almost everywhere and its derivative provides a vector-valued measure which

represents T .

We now come back to compact spaces K which are strongly separated by the little

Lipschitz functions. Our goal is to extend Proposition 5.3 to vector-valued Lipschitz func-

tions.We recall that ifY is an arbitrary Banach space, the canonical equation Lip0(K ,Y) =
L(F(K),Y) identifies a Lipschitz map f with an operator f . We can now extend the first

part of Proposition 5.3.

5.4. Proposition. Let K be a metric compact space such that lip0(K) strongly separates K.

Let Y be a Banach space. Let f ∶K → Y be a Lipschitz function.Fen the following assertions

are equivalent:

(i) Fe function f strongly attains its norm.

(ii) Fe operator f ∶ F(K) → Y attains its norm.

Proof. Fe implication (i) ⇒ (ii) is clear and does not request the strong separation as-

sumption. Conversely, assume that there is µ ∈ F(K) with ∥µ∥ = 1 and ∥ f (µ)∥ = ∥ f ∥ =
∥ f ∥L . We pick y∗ ∈ SY∗ such that

⟨y∗, f (µ)⟩ = ∥ f ∥L

Fen the function (y∗ ○ f ) is a real-valued Lipschitz function which attains its norm on

F(K) (at µ). Proposition 5.3 concludes the proof.

It would be tempting to use Proposition 5.4 to conclude that the set of vector-valued

Lipschitz functions which strongly attain their norm is dense, but the problem is that

Bishop–Phelps theorem fails in general for operators. In otherwords, operators, in general,

cannot be approximated by norm-attaining ones (see [52] for the first investigation of this

phenomenon).

However, this obstruction can be liýed when the range space is finite-dimensional.

In this case we can extend the second assertion of Proposition 5.3 as follows.

5.5. Proposition. Let K be a compact metric space such that lip0 strongly separates K. Let

E be a finite-dimensional normed space. Fen the set of operators T ∶ F(K) → E which

attain their norm on F(K) is norm dense in L(F(K), E). Equivalently, the set of Lipschitz

functions f ∶K → E which strongly attain their norm is ∥.∥L-dense in Lip0(K , E).
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Proof. Since the space E is finite-dimensional, the following isometric identifications hold:

Lip0(K , E) = L(F(K), E) = K(F(K), E) = Lip0(K) ⊗є E .

Moreover, by our assumption on K, we have

Lip0(K) ⊗є E = (l ip0(K))∗∗ ⊗є E = (l ip0(K) ⊗є E)∗∗.

We now claim that an operator T ∈ L(F(K), E) = Lip0(K , E) attains its norm onF(K) if
and only if it attains its norm as a linear form on the predual l ip0(K , E)∗ = F(K) ⊗π E

∗
.

Once this is shown, the conclusion follows by the usual Bishop–Phelps theorem and, for

the last sentence, fromProposition 5.4.Fe equivalence follows from the following lemma.

5.6. Lemma. Let X = Y∗ be a separable dual and let E be a finite-dimensional normed

space. Fen T ∈ L(X , E) = (X ⊗π E
∗)∗ attains its norm as an operator on X if and only if

it attains its norm as a linear form on X ⊗π E
∗.

Indeed, if ∥T∥ = ∥T(x)∥E = ⟨e∗, T(x)⟩ with x ∈ SX and e
∗ ∈ SE∗ , then T attains its

norm on x ⊗ e∗. Conversely, if T attains its supremum ∥T∥ on the unit ball of X ⊗π E
∗
,

then, since X⊗πE
∗
has the Radon–Nikodymproperty, T attains its norm at some extreme

point of this unit ball. But by [58] (see also [59]), we have

Ext(BX⊗πE∗) = Ext(B(Y⊗єE)∗) = Ext(BX) ⊗ Ext(BE∗)

and if ∥T∥ = ⟨T , x ⊗ e∗⟩, then ∥T∥ = ∥T(x)∥E .

5.7. Remark.

1) A slightly alternative proof of Proposition 5.5 runs as follows. By Proposition VI.3.1

in [36], the space lip0(K , E) = lip0(K)⊗є E is anM-ideal in its bidual lip0(K , E). Its
dual is Lip0(K , E)∗ = F(K) ⊗π E

∗
. By Lemma 5.2, if the norm of T is attained on

F(K) ⊗π E
∗
, then it is attained on some point

z ∈ (F(K) ⊗π E
∗) ∩ Ext(BLip

0
(K ,E)∗)

By [58] or [59], we have

Ext(BLip
0
(K ,E)∗) = Ext((B(Lip

0
(K)⊗єE)∗) = Ext(BLip0(K)∗) ⊗ Ext(BE∗)

and this equation with Corollary 2.5.4 in [60] shows that there exist two distinct po-

ints (x , y) ∈ K2
and e∗ ∈ Ext(BE∗) such that

z = (δK(x) − δK(y))/d(x , y) ⊗ e∗

and then T attains its norm as an operator on SF(K), more precisely, at the molecule

(δK(x) − δK(y))/d(x , y), and the corresponding Lipschitz function on K strongly

attains its norm.
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2) If X is an arbitrary Banach space and E is finite-dimensional, then an operatorT ∶X →
E which attains its norm on SX attains its norm as a linear form on (X⊗π E

∗). But the

converse fails in general, even when X is a free space. For instance, take X = F(T).
We can identify X with L1(T), where the unit circle T is equipped with the Haar

measurem. Let E = l 22 be the Euclidean plane. Any operator T ∶ L1 → E is represented

by a function F ∈ L∞(E) through the formula

T(g) = ∫
T
F(t)g(t)dm(t)

and T attains its norm as a linear form if and only if there exists h ∈ L1(E) with

∥h∥1 = 1 such that

∥T∥ = ∫
T
⟨F(t), h(t)⟩dm(t).

It follows, for instance, that if F(t) = t for all t ∈ T, the corresponding operator

attains its norm as a linear form but not as operator on L1(T).
3) Let us summarize what has been shown in this section on various types of norm

attainment: if K is a compact space, E is a finite-dimensional normed space, and

f ∈ Lip0(K , E) attains its norm in the strong sense, then the operator f ∶ F(K) → E
attains its norm, and thus this operator attains its norm as a linear form onF(K)⊗π

E∗. Fe converse implications both fail, but if K is strongly separated by the little

Lipschitz space lip0(K), then the three conditions are equivalent.

6. Open Problems

Fe canonical map M → F(M) is a useful connection from the world of metric spaces

to the world of Banach spaces and, since going to the free space allows linearization of

Lipschitz maps between metric spaces, it is natural to believe that complexity does not

evaporate and is carried from the arrows to the spaces. Hence, analyzing the free spaces

should be a challenge.

What we provide now certainly is not an exhaustive list of the open problems in this

field, but rather a gathering of those which appear naturally along the lines of the present

work. Fe first two problems are classical and probably hard. I am more optimistic about

the feasibility of the other ones.

6.1. Problem. Let X andY be two separable Lipschitz-isomorphic Banach spaces. Are they

linearly isomorphic?

Fis problem is open even if X = l1 or X = C([0, 1]). Fe answer is negative if the

assumptions are relaxed in various ways: couples of counterexamples exist in separable



114 Gilles Godefroy

quasi-Banach spaces, or in non-separable Banach spaces, or for bi-uniform homeomor-

phisms between separable Banach spaces.

6.2. Problem. Let M be a uniformly discrete metric space, that is, there exists θ > 0 such

that d(x , y) > θ for all pairs (x , y) of distinct points. Does the free space F(M) have the

Bounded Approximation Property?

Fis question was asked by Nigel Kalton in [45] (see the Remark aýer Prop. 4.4) and

is related to an approximation property in [46] (see Problem 1). If the answer to Problem

6.2 is negative, it follows that there is an equivalent norm on l1 which fails to have the

metric approximation property (which would solve a 50-year-old problem). If the answer

to Problem 6.2 is positive, it follows that every separable Banach space is approximable

in the sense where the identity is the pointwise limit of a sequence of equi-uniformly

continuous functions with relatively compact range.

6.3. Problem. Let X be a separable Banach space. Assume that there exists λ ∈ R such that

for every compact subset K ⊂ X and every є > 0, there is a λ-Lipschitz map F∶X → X
with relatively compact range such that ∥F(x) − x∥ < є for all x ∈ K. Does it follow that X

has the Bounded Approximation Property?

If we assume, moreover, that (in the above notation) F(X) is contained in a finite

dimensional space, then the positive answer follows from Feorem 5.3 in [28]. Note that

if there exists a compact convex set K containing 0 which is a Lipschitz retract of X and

such that ⋃n(nK) is dense in X, then the assumptions of Problem 6.3 are satisfied. I do

not know if such a set K exists for every separable Banach space. If yes, then the answer

to Problem 6.3 is negative: take X failing to have the A.P.

I should mention that at the beginning of section 4 in [46] Nigel Kalton states that

a Banach space is Lipschitz approximable if and only if it has the B.A.P. and this equivalen-

ce is the positive answer to Problem 6.3. For justification, Nigel simply refers to [28]. I do

not know if he overlooked the finite-dimensional restriction in Definition 5.2 from [28]

or he had in mind a complete argument. Sadly, [46] is a posthumous paper and there is

no way to ask him...

6.4. Problem. Let M be a subset of Rn
. Does F(M) have the M.A.P.?

Note that sinceM is a doubling metric space, the space F(M) has the B.A.P. by [51].

Actually, if M ⊂ l n2 is equipped with the restriction of the Euclidean norm, then F(M)
has the λ-B.A.P., where λ ⩽ C

√
n with C a numerical constant (Proposition 2.3 in [51]).
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It is not known if the B.A.P. constant can be bounded independently of the dimension,

and λ = 1 would be a natural candidate for this bound.

6.5. Problem. Let K be a compact metric space and l ip0(K) the space of little Lipschitz

functions on K. Does the space lip0(K) have the M.A.P.?

It frequently happens that the space lip0(K) is trivial (e.g. when K is metrically co-

nvex) and, when it is so, the answer is obviously positive. Note that lip0(K) is arbitrarily
close to subspaces of c0 (Feorem 6.6 in [45]), hence if lip0(K) has the M.A.P. or merely

the λ-commuting B.A.P. with λ < 2, then by ([33, Proposition 4.3]) its dual has the M.A.P.

Fe case when lip0(K) strongly separates K is of special interest. In this case, if lip0(K)
has the M.A.P., then F(K) has the M.A.P.

6.6. Problem. Let K be the Cantor compact space {0, 1}N. If d is any metric on K which

induces the natural (product) topology, we consider the free spaceF((K , d)) = Xd . What

is the topological nature of the set of all metrics d such that Xd fails to have the A.P.?

Any metric on K is a continuous function on K2
and it is easy to check that when

the setM of metrics which induce the usual topology is equipped with the topology of

uniform convergence on K2
, then it is a countable intersection of open subsets of C(K2).

HenceM is a Polish space and, in particular, a Baire space. A more precise question is

to know if the set G = {d ∈ M ∶ Xd fails to have A.P.} is a residual subset ofM. By [34],

this set is non empty. In the above we can replace the Cantor set by the infinite-dimen-

sional compact convex subset of a Banach space, since by [32] the corresponding set G is

non-empty. It would, of course, be great to have a smooth proof of the non-emptiness of

G through a Baire category argument. Note that it is shown in [22] (resp. [23]) that the

family of separable Banach spaces with the B.A.P (resp. with the (π)-property) is Borel.

6.7. Problem. What are the couples (K , E), where K is a compact metric space and E is

a Banach space, such that the subset of Lip0(K , E) consisting of functions which strongly

attain their Lipschitz norm is dense in Lip0(K , E) equipped with the Lipschitz norm?

By Proposition 5.5 above, the answer is positive when lip0(K) strongly separates K

and E is finite-dimensional. I do not know if denseness when E = R is 1-dimensional

already implies that lip0(K) strongly separates K. We recall that it is not known if, when

X is an arbitrary Banach space and E is finite-dimensional (or even E = l 22 is the 2-di-

mensional Euclidean space), the set of norm-attaining operators is always norm dense in

the space L(X , E) of all linear operators (see [3]). Fe free spaces F(K) = X constitute

a class where this problem can be tested, since then L(X , E) = Lip0(K , E). By the above,

denseness holds, in particular, when lip0(K) strongly separates K.
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