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Local structure of generalized Orlicz–Lorentz function spaces

Paweł Kolwicz

Summary. We study the local structure of a separated point x in the

generalized Orlicz–Lorentz space Λ
φ
which is a symmetrization of the

respective Musielak–Orlicz space Lφ
. We present criteria for an LM point

and a UM point, and suÚcient conditions for a point of order continuity

and an LLUM point, in the space Λ
φ
. We prove also a characterization of

strict monotonicity of the space Λ
φ
.
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1. Introduction

Geometry of Banach spaces has been deeply investigated over the recent decades. Rotun-

dity and uniform rotundity are fundamental properties in “global” geometry of Banach

spaces. Strict and uniform monotonicity play an analogous role in the “global” geometry

of Banach lattices. Note that the study of global properties is not always suÚcient. If a Ba-

nach space (Banach lattice) does not have a global property, then it is natural to ask about

the structure of separated points. Fis leads, among others, to the notion of an extreme
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point, a point of lower (upper) monotonicity, etc. Such a local structure is currently being

intensely investigated (see [3, 4, 9, 11, 12, 15, 18, 20–23]). It is known that the global (local)

monotonicity structure can be applied to (local) dominated approximation problems in

Banach lattices (see [3, 4, 10, 25]). Clearly, the role of rotundity (uniform rotundity) is si-

milar in dominated approximation problems for Banach spaces.

Recall that the symmetrization E(∗)
of a Banach function space E has been intensely

studied recently ([16–18] and [19]). Marcinkiewicz and Lorentz spaces are basic particular

cases of this construction. Generalized Orlicz–Lorentz spaces are another important case

of E(∗)
(see [5, 6] and [7]). Criteria for an LM point, a UM point, a point of order conti-

nuity, and a point of lower local uniform monotonicity in the symmetrizations E(∗)
have

been given in [18]. We apply them to characterize the local structure of the generalized

Orlicz–Lorentz space Λ
φ
. Note that the space Λ

φ
is a symmetrization of the Musielak–

–Orlicz space Lφ
. Moreover, criteria for the local structure of E(∗)

involve the structure

of E (see [18]). Consequently, we need to study some properties of the Musielak–Orlicz

space Lφ
.

We also present a description of strictmonotonicity of the generalizedOrlicz–Lorentz

spaces.

2. Preliminaries

LetR andN be the sets of real numbers and positive integers, respectively. Denote by S(X)
(resp. B(X)) the unit sphere (resp. the closed unit ball) of a quasi-Banach space (X , ∥⋅∥X).

Fe symbol L0
stands for the set of all (equivalence classes of) extended real valued

Lebesguemeasurable functions on I = [0, α), where α = 1 or α = ∞. Letm be the Lebesgue

measure on [0, α).
A quasi-Banach lattice (E , ∥ ⋅ ∥E) is called a quasi-Banach function space (or a quasi-

-Köthe space) if it is a linear subspace of L0
satisfying the following conditions:

– If x ∈ L0
, y ∈ E, and ∣x∣ ⩽ ∣y∣ m-a.e., then x ∈ E and ∥x∥E ⩽ ∥y∥E .

– Fere exists a strictly positive x ∈ E.
Let E+ be the positive cone of E, that is, E+ = {x ∈ E ∶ x ⩾ 0}. For x ∈ L0

set

Sx = {t ∈ I ∶ x (t) ≠ 0} .

Recall that the weighted quasi-Banach function space E (w) is defined by

E(w) = {x ∈ L0 ∶ xw ∈ E} with the norm ∥x∥E(w) = ∥xw∥E ,

where w ⩾ 0.

A point x ∈ E is said to have an order continuous norm (x is an OC point) if for

any sequence (xn) in E such that 0 ⩽ xn ⩽ ∣x∣ and xn → 0 m-a.e. we have ∥xn∥E → 0.
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A quasi-Banach function space E is called order continuous (E ∈ (OC)) if every element
of E has an order continuous norm (see [13, 26]). As usual, Ea stands for the subspace of

order continuous elements of E .

A point x ∈ E+ ∖{0} is said to be a point of upper monotonicity if for any y ∈ E+ such

that x ⩽ y and y ≠ x, we have ∥x∥E < ∥y∥E . A point x ∈ E+ ∖ {0} is said to be a point

of lower monotonicity if for any y ∈ E+ such that y ⩽ x and y ≠ x, we have ∥y∥E < ∥x∥E .
A point x ∈ E+ ∖{0} is called a point of lower local uniform monotonicity if ∥xn − x∥E → 0

for any sequence (xn) in E such that x ⩾ xn ⩾ 0 and ∥xn∥E → ∥x∥E . We will write briefly
that x is a UM point, an LM point and an LLUM point, respectively. Fe space E is called

strictly monotone (E ∈ (SM)) provided each point of E+ ∖ {0} is a UM point (see [2, 8]).

Moreover, E ∈ (SM) if and only if each point of E+∖{0} is an LM point (see [8]). Similarly,

if each point of E+ ∖ {0} is an LLUM point, then we say that E is lower locally uniformly

monotone (E ∈ (LLUM)).
Given x ∈ L0

, its decreasing rearrangement x∗ is defined by

x∗ (t) = inf {λ > 0 ∶ dx (λ) ⩽ t} , t ⩾ 0,

where dx is the distribution function, that is,

dx(λ) = m {s ∈ [0, α) ∶ ∣x (s)∣ > λ} , λ ⩾ 0 (see [1, 24]).

Set x∗ (∞) = limt→∞ x∗ (t) if I = [0,∞) and x∗ (∞) = 0 if I = [0, 1). Note also that the

function x∗ is right-continuous.

Two functions x , y ∈ L0
are called equimeasurable (x ∼ y for short) if dx = dy . We say

that a quasi-normed function space (E , ∥ ⋅ ∥E) is rearrangement invariant (r.i. for short)

or symmetric if, whenever x ∈ L0
and y ∈ E with x ∼ y, then x ∈ E and ∥x∥E = ∥y∥E . For

more details, the reader is referred to [1, 24].

3. Symmetrizations of Banach function spaces

For a Banach function space E on I, define a symmetrization of E, denoted by E(∗)
, by

the formula

E(∗) = {x ∈ L0(I) ∶ x∗ ∈ E},

with the functional

∥x∥E(∗) = ∥x∗∥E .

Of course, the non-trivial case of the space E(∗)
arises for non-symmetric E .

3.1. Example. Lorentz andMarcinkiewicz spaces are examples of symmetrizations. Recall

that for any quasi-concave function ϕ on I (that is ϕ(0) = 0, ϕ(t) is positive, nondecre-
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asing, and ϕ(t)/t is non-increasing for t ∈ (0,m(I))), theMarcinkiewicz function space

Mϕ is defined by the norm

∥x∥Mϕ
= sup

t∈I
ϕ(t) x∗∗(t), x∗∗(t) = 1

t
∫

t

0

x∗(s)ds.

Fe Lorentz function space Λϕ is defined by the norm

∥x∥Λϕ
= ∫

I
x∗(t)dϕ(t) = ϕ(0+)∥x∥L∞(I) + ∫

I
x∗(t)ϕ′(t)dt,

where ϕ is a concave function on I. Recall also that the fundamental function fE of a sym-

metric function space E on I is defined by the formula fE(t) = ∥χ[0, t]∥E , t ∈ I (see [1]). For
a symmetric Banach function space E with the concave fundamental function fE , there

is a largest and a smallest symmetric Banach space with the same fundamental function.

Namely,

Λ fE
1↪ E

1↪ M fE .

Fere is also a Marcinkiewicz spaceM
(∗)

ϕ di×erent than Mϕ , defined by

M
(∗)

ϕ = M
(∗)

ϕ (I) = {x ∈ L0(I) ∶ ∥x∥M∗

ϕ
= sup

t∈I
ϕ(t)x∗(t) < ∞}.

Fe Marcinkiewicz space M
(∗)

ϕ is a quasi-Banach space and we always have Mϕ
1↪ M

(∗)

ϕ .

Moreover,M
(∗)

ϕ
C↪ Mϕ if and only if (see [19])

∫
t

0

1

ϕ(s) ds ⩽ C
t

ϕ(t) for all t ∈ I.

Notice that M
(∗)

ϕ = (L∞ (ϕ))(∗) . Moreover, Λϕ = (L1 (ϕ′))(∗) provided ϕ (0+) = 0. Fe

local structure of spaces M
(∗)

ϕ and Λϕ has been discussed in [18].

Fe dilation operator Ds , s > 0, defined by Dsx(t) = x(t/s)χI(t/s), t ∈ I, is bounded
in any symmetric space E on I and ∥Ds∥E→E ⩽ max(1, s) (see [27, Lemma 1] for I =
(0, 1), [24, pp. 96–98] for I = (0,∞) and [26, p. 130] for both cases). A. Kamińska and

Y. Raynaud proved

3.2. Feorem. Fe functional ∥ ⋅ ∥E(∗) is a quasi-norm if and only if there is a constant

1 ⩽ C < ∞ such that (see [17, Lemma 1.4])

∥D2x
∗∥E ⩽ C ∥x∗∥E for all x∗ ∈ E . (1)

3.3. Remark.

(i) E(∗) ≠ {0} if and only if χ(0,t) ∈ E for some t > 0.
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(ii) If E(∗) ≠ {0} and condition (1) is satisfied, then χ(0,t) ∈ E for each t > 0. Consequen-

tly, E(∗)
has a weak unit x0 = ∑∞i=1 xn with xn =

χ[n−1,n)
bn∥χ[n−1,n)∥E

, where bn is chosen such

that the sequence {bn∥χ[n−1,n)∥E} is increasing and∑∞n=1 1/bn < ∞.

3.4. Remark. Let CE be the smallest constant satisfying (1). Recall that the Hardy operator

H is defined by

Hx(t) = 1

t
∫

t

0

x(s) ds, with t ∈ I/ {0} .

If E is a Banach function space on I and the operator H is bounded in E, then (1) holds

with CE ⩽ 2 ∥H∥E→E . Indeed, we have

∥Hx∗∥E = ∥∫
1

0

x∗(st) ds∥E ⩾ ∥∫
1/2

0

x∗(st) ds∥E ⩾
1

2

∥x∗(t/2)∥E .

Fe spaces E(∗)
have been studied, among others, in the papers [16–18] and [19]. Ka-

mińska and Raynaud studied the connections between the structure of E(∗)
and the struc-

ture of E (see [17]). Fe local structure of a separated point in E(∗)
with respect to the

properties of its nonincreasing rearrangement x∗ in the space E has been studied in [18].

In a natural way the following new notions appear (see [18]). Let P be a local property

of a point x ∈ E (an LM point, a UM point, a point of order continuity, etc.). We say

that x = x∗ is a P∗ point provided that it is a P point but restricted in the definition to

nonnegative and nonincreasing elements. Namely,

3.5. Definition. A point x = x∗ is said to be an LM∗
point of E whenever, for any y ∈ E+

such that y = y∗ ⩽ x and y ≠ x, we have ∥y∥E < ∥x∥E .

Fe notion of a UM∗
point of E and the notion of an OC∗ point of E are to be

understood analogously. Fe following characterizations have been proved in [18, Fe-

orems 3.6, 3.8, 3.9]. In general, the notion of a P∗ point is essentially weaker than the

notion of a respective P point.

3.6. Feorem.

(i) A point 0 ⩽ x ∈ E(∗) is an LM point of E(∗) if and only if m{t ∈ I ∶ 0 < x (t) ⩽
x∗(∞)} = 0 and x∗ is an LM∗ point of E.

(ii) Apoint 0 ⩽ x ∈ E(∗) is aUM point of E(∗) if and only if m{t ∈ I ∶ x (t) < x∗(∞)} = 0

and x∗ is a UM∗ point of E.

(iii) A point x ∈ E(∗) is an OC point of E(∗) if and only if x∗ (∞) = 0 and x∗ is an OC∗

point of E .

We will apply these results in the context of the generalized Orlicz–Lorentz spaces.
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4. Fe generalized Orlicz–Lorentz spaces

A function Φ is called anOrlicz functionwhenever Φ∶ [0,∞) → [0,∞], Φ is convex, vani-

shing and continuous at zero, not identically equal to zero (or infinity), and leý-continuous

on (0, bΦ) if Φ (bΦ) = ∞ or on (0, bΦ] if Φ (bΦ) < ∞, where

aΦ = sup{u ⩾ 0 ∶ Φ (u) = 0} and bΦ = sup{u ⩾ 0 ∶ Φ (u) < ∞}.

We write Φ > 0 when aΦ = 0 and Φ < ∞ when bΦ = ∞.

A function φ∶ I×[0,∞) Ð→ [0,∞) is said to be aMusielak–Orlicz function if φ(⋅, u)
is measurable for each u ∈ R+ and φ(t, ⋅) is an Orlicz function for m-a.e. t ∈ I. We define
on L0

a convex modular Iφ by

Iφ(x) = ∫
I

φ (t, ∣x(t)∣) dt

for every x ∈ L0
. By theMusielak–Orlicz space Lφ

we mean

Lφ = {x ∈ L0 ∶ Iφ(cx) < ∞ for some c > 0}

equipped with the so-called Luxemburg–Nakano norm defined as follows

∥x∥φ = inf {є > 0 ∶ Iφ (x
є
) ⩽ 1} .

Set

θφ (x) = inf{λ > 0 ∶ Iφ (x/λ) < ∞},
aφ (t) = sup{u ⩾ 0 ∶ φ (t, u) = 0},
bφ (t) = sup{u ⩾ 0 ∶ φ (t, u) < ∞}.

Fe generalized Orlicz–Lorentz space Λ
φ
is a symmetrization of the respective Musielak–

–Orlicz space Lφ
, that is, Λ

φ = (Lφ)(∗). Fus

Λ
φ = {x ∈ L0 ∶ x∗ ∈ Lφ} and ∥x∥

Λ
φ = ∥x∗∥φ .

4.1. Remark.

(i) In the paper we assume that χ(0,t) ∈ Lφ
for some t > 0 and condition (1) is satisfied for

E = Lφ
, so that (Λφ

, ∥⋅∥
Λ

φ) is a nontrivial quasi-Banach function space with a weak

unit (see Remark 3.3). Clearly, (Λφ
, ∥⋅∥

Λ
φ) is symmetric.

(ii) From (i) we conclude that χ(0,t) ∈ Lφ
for each t > 0 (see Remark 3.3), which is

equivalent to the following condition:

for each t ∈ (0,m (I)) there is u > 0 such that ∫
t

0

φ (s, u) ds < ∞.
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For t ∈ (0,m (I)) denote

ut = sup{u > 0 ∶ ∫
t

0

φ (s, u) ds < ∞} . (2)

Fe structure of generalized Orlicz–Lorentz spaces has been extensively investiga-

ted recently under some stronger assumptions which make the space Λ
φ
a Banach space

(see [5–7]). Fe spaces Λ
φ
are generalizations of the two-weighted Orlicz–Lorentz spaces

ΛΦ,w ,v (I) studied, as quasi-Banach spaces, by A. Kamińska and Y. Raynaud in [17], which

in turn include the classicalOrlicz–Lorentz spaces ΛΦ,w (I) and theOrlicz–Marcinkiewicz

spaces MΦ,w (I).
A natural problem is to establish suÚcient conditions for boundedness of the dilation

operator D2 in the cone of nonnegative and nonincreasing elements of (Lφ
, ∥ ⋅ ∥φ).

4.2. Proposition. Assume there is a constant C > 0 such that

∫
2w

0

φ (t, u) dt ⩽ ∫
w

0

φ (t,Cu) dt (3)

for all u > 0 and each w > 0 with 2w ∈ I. Fen ∥⋅∥
Λ

φ is a quasi-norm on Λ
φ .

Proof. By Feorem 3.2, it is enough to show that (3) implies the dilation operator D2 is

bounded in the cone of nonnegative and nonincreasing elements of the space (Lφ
, ∥ ⋅ ∥φ).

Fe proof runs similarly as the proof of Proposition 4.5 in [17]. In our case, ∥⋅∥φ is a norm
on Lφ

and φ (t, ⋅) is convex form-a.e. t ∈ I. Consequently, we have φ (t, u) ⩽ uφ′ (t, u) ⩽
φ (t, 2u) for m-a.e. t ∈ I, where φ′ is the right derivative of φ with respect to the second

variable.

Finally, notice that inequality (3) gives condition (4.3) in Proposition 4.5 from [17],

for φ0 (t, u) = φ (uv (t))w (t), where φ is an Orlicz function.

Criteria for an LM and a UM point in Musielak–Orlicz spaces (Lφ
, ∥ ⋅ ∥φ) have been

proved in [11, Feorem 1 and 2]. We will need the respective criteria for LM∗
and UM∗

points in (Lφ
, ∥⋅∥φ), which require quite di×erent proofs.

4.3. Feorem. Let x = x∗ ∈ S (Lφ). Fen x is an LM∗ point of Lφ if and only if:

(i) θφ (x χ(0,α)) < 1 for each α ∈ (0,m (Sx)).
(ii) If Iφ (x) = 1, then m {t ∈ (a,m (Sx)) ∶ x (t) > aφ (t)} > 0 for each a ∈ (0,m (Sx)).
(iii) Let 0 < a < b < m (Sx) . If x is not constant in (a, b) or x is not continuous at t = b,

then m {t ∈ (a, b) ∶ x (t) > aφ (t)} > 0 and θφ (x χ(b ,m(Sx))
) < 1.

Proof. Necessity. (i) Suppose θφ (x χ(0,α)) = 1 for some α ∈ (0,m (Sx)). Setting y =
x χ(0,α), we have y = y∗, 0 ⩽ y ⩽ x, and y ≠ x . Moreover, ∥y∥φ = 1, hence x is not an

LM∗
point.
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(ii) Suppose that Iφ (x) = 1 and m {t ∈ (a,m (Sx)) ∶ x (t) > aφ (t)} = 0 for some a ∈
(0,m(Sx)). Taking y = x χ(0,a), we obtain y = y∗, y ⩽ x, and y ≠ x . Moreover, Iφ (y) =
Iφ (x) = 1, hence ∥y∥φ = 1.

(iii) Assume that there are numbers 0 < a < b < m (Sx), such that x (a) > x (b−) and
x (t) ⩽ aφ (t) for m−a.e. t ∈ (a, b) . Let

y = x χI/(a ,b) + x (b−) χ(a ,b).

Fen y = y∗, y ⩽ x, and y ≠ x . We have Iφ (y) = Iφ (x) . It is enough to show that

∥y∥φ = ∥x∥φ . If Iφ (x) = 1, then ∥y∥φ = 1 = ∥x∥φ .
Suppose that Iφ (x) < 1. We claim that θφ (x χ(b ,m(I))) = 1. Otherwise, by (i), we

get θφ (x) < 1. Consequently, there is λ0 < 1 with Iφ( x
λ0
) < ∞ and, by continuity of

the function f (λ) = Iφ (λx) on the interval (0, 1/λ0), we conclude that Iφ( x
λ1
) < 1 for

some λ1 < 1. Hence, ∥x∥φ ⩽ λ1 < 1, a contradiction. Fis proves the claim. Ferefore

θφ (yχ(b ,m(I))) = 1 and ∥y∥φ = 1.

Assume that x is constant in (a, b), x (b−) > x (b) and m{t ∈ (a, b) ∶ x (t) >
aφ (t)} = 0. Let y = x χI/(a ,b) + x (b) χ(a ,b). Fen y = y∗, y ⩽ x and y ≠ x . We have

Iφ (y) = Iφ (x), and we proceed as above.
Suppose x is not constant in (a, b) and θφ (x χ(b ,m(Sx))

) = 1. It is enough to ta-

ke y = x χI/(a ,b) + x (b−) χ(a ,b). Finally, if x is constant in (a, b), x (b−) > x (b), and
θφ (x χ(b ,m(Sx))

) = 1, then we set y = x (b) χ(0,b) + x χ(b ,m(Sx))
.

SuÚciency. Let y = y∗, y ⩽ x, and y ≠ x . Setting A = {t ∶ y (t) < x (t)} ⊂ Sx , we can find

an interval (a, b) ⊂ A, because the nonincreasing rearrangement is right-continuous. We

split the proof in two parts.

1. Assume x is not constant in (a, b) or x is not continuous at t = b. By (iii), we have
m {t ∈ (a, b) ∶ x (t) > aφ (t)} > 0, hence Iφ (y) < Iφ (x) . By (i) and (iii), we have

θφ (y) ⩽ θφ (x) < 1, so there is λ < 1 with Iφ ( y
λ ) < ∞, and consequently Iφ ( y

λ0 ) < 1

for some λ0 < 1. Fus ∥y∥φ < 1.

2. Assume that x is constant in (a, b) and x is continuous at t = b. If x is not constant

in (b,m (Sx)), then we may go back to case 1 because y = y∗. Fus it is enough to

consider the case x (t) = c > 0 for t ∈ (a,m (Sx)). Fen y (t) ⩽ y (a) < x (a) for
t ∈ (a,m (Sx)). We consider two subcases.

A. Suppose that Iφ (x) = 1. Fen, by (ii), m {t ∈ (a,m (Sx)) ∶ x (t) > aφ (t)} > 0.

Hence Iφ (y) < 1. Moreover, there is λ1 < 1 with Iφ ( y
λ1 χ(0,a)) < ∞, by (i). Next,

Iφ ( y
λ2

χ(a ,m(Sx))
) < ∞ for λ2 < 1, so that

1

λ2

y (a) < x (a) . For λ = max {λ1 , λ2}
wehave Iφ ( y

λ ) < ∞ and, as above, Iφ ( y
λ0 ) < 1 for some λ0 ∈ (λ, 1) .Fus ∥y∥φ < 1.

B. Suppose Iφ (x) < 1. Fen Iφ (y) < 1 and, as above, we conclude that ∥y∥φ < 1.
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4.4.Feorem. Let x = x∗ ∈ S (Lφ) . Fen x is a UM∗ point of Lφ if and only if the following

statements are satisfied:

(i) Let 0 < a < b with x (a) > x (b−). Fen

m{t ∈ (a, b) ∶ x (t) + 1/n ⩾ aφ (t)} > 0 for each n ∈ N.

Moreover, if Iφ (x) < 1, then

m{t ∈ (a, b) ∶ x (t) + 1/n ⩾ bφ (t)} > 0 for each n ∈ N.

(ii) Let 0 < a ⩽ m (Sx) with x (a−) > x (a) . Fen

m{t ∈ (a, b) ∶ x (t) + 1/n ⩾ aφ (t)} > 0 for all b > a and n ∈ N.

Moreover, if Iφ (x) < 1, then

m{t ∈ (a, b) ∶ x (t) + 1/n ⩾ bφ (t)} > 0 for all b > a and n ∈ N.

(iii) Let 0 < a ⩽ m (Sx) . If x is constant in (0, a), then

m{t ∈ (0, b) ∶ x (t) + 1/n ⩾ aφ (t)} > 0 for all b < a and n ∈ N.

Furthermore, if Iφ (x) < 1, then

m{t ∈ (0, b) ∶ x (t) + 1/n ⩾ bφ (t)} > 0 for all b < a and n ∈ N.

Proof. Necessity.We divide the proof into several parts.

(i.1) Assume that there are numbers 0 < a < b such that x (a) > x (b−) and x (t) + 1/n <
aφ (t) for some n ∈ N and for m-a.e. t ∈ (a, b) .
(a) If there is a point of discontinuity t0 ∈ (a, b) of x, we set

y = x χI/(t0 ,b) + (x + c) χ(t0 ,b),

where c = min{(x (t0 − 0) − x (t0)) /2, 1/n} . Fen y = y∗, y ⩾ x, and y ≠ x .

Applying Iφ (x) = Iφ (y), we get ∥y∥φ = 1.

(b) If x is continuous on the interval (a, b), we can find t0 ∈ (a, b) such that x (t0) >
x (b−) and x (t0) − x (b−) ⩽ 1/n. Fen it is enough to take

y = x χI/(t0 ,b) + x (t0) χ(t0 ,b).

(i.2) Suppose there are numbers 0 < a < b such that x (a) > x (b−), Iφ (x) < 1, and

x (t)+ 1/n0 < bφ (t) form-a.e. t ∈ (a, b) and some n0 . Without loss of generality we

may assume that x (b−) > 0.



220 Paweł Kolwicz

(a) If x is continuous on the interval (a, b), there are t0 , t1 ∈ (a, b) with t0 < t1,

0 < x (t0) − x (t1) < 1/n0, and

Iφ (x χI/(t0 ,t1) + x (t0) χ(t0 ,t1)) ⩽ 1.

Let

y = x χI/(t0 ,t1) + x (t0) χ(t0 ,t1).

Fen y = y∗, y ⩾ x, and y ≠ x . Moreover, Iφ (y) ⩽ 1. By ∥x∥φ = 1, we get ∥y∥φ = 1.

(b) Suppose there is a point of discontinuity t0 ∈ (a, b) of x. We find t1 ∈ (t0 , b) such

that

Iφ (x χI/(t0 ,t1) + (x + c) χ(t0 ,t1)) ⩽ 1

where c = min{(x (t0 − 0) − x (t0)) /2, 1/n0} .

Taking y = x χI/(t0 ,t1) + (x + c) χ(t0 ,t1), we finish as above.

(ii.1) Assume 0 < a ⩽ m (Sx), x (a−) > x (a), andm {t ∈ (a, b) ∶ x (t) + 1/n0 > aφ (t)} =
0 for some n0 ∈ N and b > a. Define

y = x χI/(a ,b) + (x +min{1/n0 , x (a−) − x (a)}) χ(a ,b).

Fen y = y∗, y ⩾ x, and y ≠ x . Moreover, Iφ (x) = Iφ (y), so we get ∥y∥φ = 1.

(ii.2) Suppose 0 < a ⩽ m (Sx), x (a−) > x (a), Iφ (x) < 1, and

m {t ∈ (a, b) ∶ x (t) + 1/n0 ⩾ bφ (t)} = 0

for some n0 ∈ N, b > a.Fere exist t0 ∈ (a, b) and δ ∈ (0,min{1/n0 , x (a−) − x (a)})
with Iφ (x χI/(a ,t0) + (x + δ) χ(a ,t0)) ⩽ 1. Taking

y = x χI/(a ,t0) + (x + δ) χ(a ,t0),

we finish as in case (i).

(iii.1) Assume that 0 < a ⩽ m (Sx), x is constant in (0, a), and

m {t ∈ (0, b) ∶ x (t) + 1/n0 > aφ (t)} = 0

for some n0 ∈ N and b < a. Let

y = (x + 1

2n0

) χ(0,b) + x χI/(0,b).

Clearly, y = y∗, y ⩾ x, and y ≠ x . By Iφ (x) = Iφ (y), we get ∥y∥φ = 1.
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(iii.2) Assume that 0 < a ⩽ m (Sx), Iφ (x) < 1, and m {t ∈ (0, b) ∶ x (t) + 1/n0 ⩾ bφ (t)} =
0 for some n0 ∈ N and b < a. Fere are t0 ∈ (0, b) and 0 < δ < 1/n0 with

Iφ (x χI/(0,t0) + (x + δ) χ(0,t0)) ⩽ 1.

Taking

y = x χI/(0,t0) + (x + δ) χ(0,t0),

we finish as in case (i)

SuÚciency. Let y = y∗, y ⩾ x, and y ≠ x . Setting A = {t ∶ y (t) > x (t)}, we can find an
interval (a, b) ⊂ A and n0 ∈ N such that a ⩽ m (Sx) and y (t) > x (t)+ 1/n0 for t ∈ (a, b).
We split the proof in two parts.

a. Assume that x (a) > x (b−) . By (i), m {t ∈ (a, b) ∶ x (t) + 1/n0 > aφ (t)} > 0 and,

consequently, Iφ (y) > Iφ (x) . If Iφ (x) = 1, then ∥y∥φ > 1. Otherwise, by (i) we

have m {t ∈ (a, b) ∶ x (t) + 1/n0 ⩾ bφ (t)} > 0 and, consequently, Iφ (y) = ∞. Fus

∥y∥φ > 1.

b. Suppose x is constant in (a, b) . If x (a−) > x (a), then by (ii) we get Iφ (y) > Iφ (x)
and we finish as above.

Now assume that x (a−) = x (a) . If there is t0 ∈ (0, a) with x (t0) > x (a), we
proceed as in case 1 or 2 because y = y∗. Otherwise, x is constant in (0, b) . Since y = y∗,

y (t) > x (t) + 1/n0 for t ∈ (0, b) . By (iii), it follows that Iφ (y) > Iφ (x) . Fus, applying

again (iii), we conclude that ∥y∥φ > 1 as in case 1.

4.5. Example. A UM∗
point in Lφ

need not be a UM point. Let I = (0,∞). Consider the

following Musielak–Orlicz function

φ (t, u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max {0, u − (t + 2)} if 0 ⩽ t ⩽ 1/2 and u ⩾ 0,

u if 1/2 < t < 1,

max {0, u − (t − 1)} if t ⩾ 1 and u ⩾ 0.

Note that

aφ (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

t + 2 if 0 ⩽ t ⩽ 1/2,
0 if 1/2 < t < 1,

t − 1 if t ⩾ 1.

Let x = 2χ(0,1). Fen x = x∗ and Iφ (x) = ∫
1

1/2
φ (t, 2) dt = 1, hence ∥x∥φ = 1. By Feorem

4.4, x is an UM∗
point of Lφ

. On the other hand, x is not an UM point of Lφ
by Feorem

1 in [11]. Note also that x is an LM∗
point of Lφ

and x is not an LM point of Lφ
(see



222 Paweł Kolwicz

Feorem 4.3 above and Feorem 2 in [11]). Moreover, this example shows that condition

(ii) in Feorem 4.4 cannot replaced by the following simpler one:

Let 0 < a ⩽ m (Sx) with x (a−) > x (a).
Fen m {t ∈ (a, b) ∶ x (t) ⩾ aφ (t)} > 0 for all b > a.

Indeed, we have m {t ∈ (1, b) ∶ x (t) ⩾ aφ (t)} = 0 for all b > 1. Similarly, considering

condition (iii) in Feorem 4.4, we have m {t ∈ (0, b) ∶ x (t) + 1/n ⩾ aφ (t)} > 0 for all

b < 1 and n ∈ N, but m {t ∈ (0, b) ∶ x (t) ⩾ aφ (t)} = 0 for all b < 1/2.

ApplyingFeorems 3.6, 4.3 and 4.4, we get

4.6. Corollary. Let 0 ⩽ x ∈ S (Λφ) . Fen x is an LM point of Λφ if and only if:

(i) m {t ∈ I ∶ 0 < x (t) ⩽ x∗(∞)} = 0.

(ii) θφ (x∗χ(0,α)) < 1 for each α ∈ (0,m (Sx)).
(iii) If Iφ (x∗) = 1 thenm {t ∈ (a,m (Sx)) ∶ x∗ (t) > aφ (t)} > 0 for each a ∈ (0,m (Sx)).
(iv) Let 0 < a < b < m (Sx). If x∗ is not constant in (a, b) or x∗ is not continuous at t = b,

then m {t ∈ (a, b) ∶ x∗ (t) > aφ (t)} > 0 and θφ (x∗χ(b ,m(Sx))
) < 1.

4.7. Corollary. Let 0 ⩽ x ∈ S (Λφ). Fen x is a UM point of Λφ if and only if:

(i) m {t ∈ I ∶ x (t) < x∗(∞)} = 0.

(ii) Let 0 < a < b with x∗ (a) > x∗ (b−) . Fen

m {t ∈ (a, b) ∶ x∗ (t) + 1/n ⩾ aφ (t)} > 0 for each n ∈ N.

Moreover, if Iφ (x∗) < 1, then

m {t ∈ (a, b) ∶ x∗ (t) + 1/n ⩾ bφ (t)} > 0 for each n ∈ N.

(iii) Let 0 < a ⩽ m (Sx) with x∗ (a−) > x∗ (a) . Fen

m {t ∈ (a, b) ∶ x∗ (t) + 1/n ⩾ aφ (t)} > 0 for all b > a and n ∈ N.

Moreover, if Iφ (x∗) < 1, then

m {t ∈ (a, b) ∶ x∗ (t) + 1/n ⩾ bφ (t)} > 0 for all b > a and n ∈ N.

(iv) Let 0 < a ⩽ m (Sx) . If x∗ is constant in (0, a), then

m {t ∈ (0, b) ∶ x∗ (t) + 1/n ⩾ aφ (t)} > 0 for all b < a and n ∈ N.

If additionally Iφ (x∗) < 1, then

m {t ∈ (0, b) ∶ x∗ (t) + 1/n ⩾ bφ (t)} > 0 for all b < a and n ∈ N.
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We say that Λ
φ

satisfies the norm-modular condition (briefly, Λ
φ ∈ (n −m)) provi-

ded ∥x∥φ = 1 implies Iφ (x∗) = 1 for all x ∈ Λφ
.

Recall that a Banach function space E is strictly monotone if and only if each point

of E+ ∖{0} is aUM point (equivalently, each point of E+ ∖{0} is an LM point). Applying

Corollaries 4.6 and 4.7, we can prove the following

4.8. Feorem. Fe generalized Orlicz–Lorentz space Λφ is strictly monotone if and only if:

(i) Fe space Λφ satisfies the norm-modular condition.

(ii) Set An = {t ∶ aφ (t) < 1/n} . Fen m ((a, b) ∩ An) > 0 for all n ∈ N and 0 < a < b.
(iii) x∗ (∞) = 0 holds for each x ∈ Λφ

.

Proof. Necessity. (i) Suppose, to the contrary, that Λ
φ
is strictly monotone and there is

x ∈ S (Λφ) with Iφ (x∗) < 1. Fen θφ (x∗) = 1. Choose 0 < a < m (Sx) . Applying
Corollary 4.6 (ii), we conclude that θφ (x∗χ(0,a)) < 1, that is, Iφ ((1 + δ) x∗χ(0,a)) < ∞
for some δ > 0. Consequently, θφ (x∗χ(a ,m(Sx))

) = 1. Fus, by Corollary 4.6 (iv), x∗ is

constant in (0,m (Sx)) . By Corollary 4.7 (iv), m {t ∈ (0, a) ∶ x∗ (t) + 1/n ⩾ bφ (t)} > 0

for all n ∈ N. Taking n0 ∈ N such that n0x
∗ (a) δ > 1, we get (1 + δ) x∗ (t) > x∗ (t) + 1/n0

for t ∈ (0, a), hence Iφ ((1 + δ) x∗χ(0,a)) = ∞, a contradiction.

(ii) Assume that m ((a, b) ∩ An0
) = 0 for some n0 ∈ N and 0 < a < b. Setting Bn0

=
(a, b)∩Acn0

, where Acn0
= (a, b) /An0

, we havem (Bn0
) = b−a. Denote by ua the number

from condition (2).

If ua = ∞ or ∫
a
0
φ (s, ua) ds > 1 with ua < ∞, then we claim that

∫
a

0

φ (s, α) ds = 1 for some number α < ua .

Define F (t) = ∫
a
0
φ (s, t) ds. Fe claim follows from the following facts:

(a) If ua = ∞, the function F is continuous in (0,∞) (since L1 ∈ (OC)), F (0) = 0, and

F (∞) = ∞.

(b) If ua < ∞ and ∫
a
0
φ (s, ua) ds > 1, the function F is continuous in (0, ua), F (0) = 0,

and F (ua) > 1.

Take n1 ⩾ n0 with 1/n1 ⩽ α. Setting

x = αχ(0,a) + (1/n1) χ(a ,b)

we conclude that x∗ = x and x is not an LM point, by Corollary 4.6 (iii).

If ∫
a
0
φ (s, ua) ds ⩽ 1, then we set x = ua χ(0,a) + (1/n1) χ(a ,b) with n1 ⩾ n0 satisfy-

ing 1/n1 ⩽ ua . Fen ∥x∥
Λ

φ = 1 and θφ (x∗χ(0,ua)) = 1, hence x is not an LM point, by

Corollary 4.6 (ii).

Fe condition (iii) follows from Corollary 4.6 (i) (see also Corollary 3.13 in [18]).
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SuÚciency.Take 0 ⩽ x ⩽ y ∈ S (Λφ) and x ≠ y. By (i), Iφ (y∗) = 1. Clearly, x∗ ⩽ y∗. By (iii),

we have x∗ ≠ y∗ (see Lemma 3.2 in [14] or Lemma 2.1 in [3] for a more general case). Mo-

reover, by the right-continuity of the decreasing rearrangement, there is an interval (a, b)
with x∗ (t) < y∗ (t) for t ∈ (a, b) . We can find a number n and an interval (c, d) ⊂ (a, b)
such that y∗ (t) > 1/n for t ∈ (c, d) . Fus Iφ (x∗) < 1 by (ii). Finally, ∥x∥

Λ
φ < 1 by (i).

4.9. Remark. Feorem 4.8 is a generalization of Feorem 5.1 in [5]. First, note that if φ

satisfies condition ∆
Λ

2
(see Definition 2.3 in [5]), then Λ

φ ∈ (n −m) by Proposition 2.10

in [5]. Moreover, the author of [5] assumes in Feorem 5.1 the so-called conditions (L1)
and (L2) . Condition (L1) guarantees that ∥⋅∥

Λ
φ is a norm in Λ

φ
(see Feorem 1.2 in [5]),

however, for monotonicity properties it is natural to consider also quasi-normed spaces.

Moreover, condition (L2) implies (iii) in Feorem 4.8 automatically (see Proposition 1.6

in [5]). Finally, condition (i) from Feorem 5.1 in [5] is

– essentially stronger than condition (ii) in the above theorem and

– not necessary in general; it is necessary when we assume conditions (L1) and (L2) .

Now we discuss suÚcient conditions for a point x to be a point of order continuity

or of lower local uniformmonotonicity in Λ
φ
. Applying Definition 1 from [20] for E = L1

,

we get

4.10. Definition. Let x ∈ Lφ
. We say φ satisfies a local ∆

L1

2
(x) condition with respect to x

(φ ∈ ∆L1

2
(x), for short) if for each l > 1 we have

Iφ (l x χAl
k
) → 0 as k →∞,

where

Al
k = {t ∈ Sx ∶ l ∣x(t)∣ < bφ(t) and φ(t, l x(t)) > kφ(t, x(t))} .

Clearly, if bφ ≡ ∞, x ∈ B (Lφ) and φ ∈ ∆L1

2
(x), then θφ (x) = 0. Applying Feorem

11 from [20] for E = L1
, we obtain

4.11. Corollary. Let x ∈ B (Lφ) . Fen x ∈ (Lφ)a if and only if:
(i) φ ∈ ∆L1

2
(x χC), where C = {t ∈ Sx ∶ aφ(t) < ∣x (t)∣}.

(ii) φ○(maφ)χCm
∈ L1 for everym ∈ N ,where Cm = {t ∈ Sx ∶ 1

m aφ(t) ⩽ ∣x (t)∣ ⩽ aφ(t)} .
(iii) m(Sx ∩ D) = 0, where D = {t ∈ I ∶ bφ(t) < ∞}.

Now taking into account Feorem 3.6, we have

4.12. Corollary. Let x ∈ B (Λφ) . Assume the following conditions are satisfied.

(i) φ ∈ ∆L1

2
(x∗χC), where C = {t ∈ Sx∗ ∶ aφ(t) < x∗ (t)}.

(ii) φ○(maφ)χCm
∈ L1 for everym ∈ N ,where Cm = {t ∈ Sx∗ ∶ 1

m aφ(t) ⩽ x∗ (t) ⩽ aφ(t)} .
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(iii) m(Sx∗ ∩ D) = 0, where D = {t ∈ I ∶ bφ(t) < ∞}.
(iv) x∗ (∞) = 0.

Fen x ∈ (Λφ)a .

Recall that if E is a symmetric Banach function space then x ∈ E+ is an LLUM point

if and only if x is an LM point and an x ∈ Ea (see [3, Feorem 2.1]). Note that under

additional assumption that E ↪ L1 + L∞ almost the same proof works for a symmetric

quasi-Banach function space. Notice also that if E ↪ L1 + L∞ then E(∗) ↪ L1 + L∞.

Consequently, applying Corollaries 4.12 and 4.6, we get

4.13. Corollary. Let Lφ ↪ L1 + L∞ and x ∈ S (Λφ) . Assume the following conditions are

satisfied:

(i) φ ∈ ∆L1

2
(x∗χC), where C = {t ∈ Sx∗ ∶ aφ(t) < x∗ (t)}.

(ii) φ ○ (maφ)χCm
∈ L1 for every m ∈ N , where Cm = {t ∈ Sx∗ ∶ 1

m aφ(t) ⩽ x∗ (t) ⩽
aφ(t)}.

(iii) m(Sx∗ ∩ D) = 0, where D = {t ∈ I ∶ bφ(t) < ∞}.
(iv) x∗ (∞) = 0.

(v) θφ (x∗χ(0,α)) < 1 for each α ∈ (0,m (Sx)) .
(vi) If Iφ (x∗) = 1, thenm{t ∈ (a,m(Sx)) ∶ x∗(t) > aφ(t)} > 0 for each a ∈ (0,m (Sx)) .
(vii) Let 0 < a < b < m (Sx) . If x∗ is not constant in (a, b) or x∗ is not continuous at t = b,

then m {t ∈ (a, b) ∶ x∗ (t) > aφ (t)} > 0 and θφ (x∗χ(b ,m(Sx))
) < 1.

Fen x is an LLUM point of Λφ
.

4.14. Problem. Find necessary and suÚcient conditions for boundedness of the dilation

operatorD2 in the cone of nonnegative andnonincreasing elements of the space (Lφ
, ∥⋅∥φ)

and compare them with conditions (L1) and (L2) from [5]. Note that in the case of

two-weighted Orlicz–Lorentz spaces ΛΦ,w ,v (I) the respective condition (3) is necessary

and suÚcient for boundedness of the operator D2 under some additional assumptions

(see Corollary 4.8 in [17]).

4.15. Problem. Find the full criteria for the point of order continuity in Λ
φ
. By Feorem

3.6, it is enough to prove a characterization for x = x∗ ∈ Lφ
to be an OC∗ point in Lφ

.

It seems that the respective conditions can be essentially weaker than in Corollary 4.11.
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