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Stability of forward-backward finite difference
schemes for certain problems in biology

Abstract. We present a discretization method for a generalized von Foerster-type
equation in many spatial variables. Stability of finite difference schemes on regular
meshes is studied. If characteristic curves are decreasing, there are forward difference
quotients applied. Otherwise, the derivatives are replaced by backward difference
quotients.
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1. Introduction. To describe an evolution of a population there were used
various mathematical models, eg. Malthus [20], logistic [25], SIR [21], the Lotka-
Volterra equations [19]. Although the above mentioned models enabled to investigate
successfully a lot of phenomena, they do not yield any information concerning the
age distribution of the population. Lotka [19] and von Foerster [9] proposed a model
which takes into consideration an influence of the age structure on birth and death
processes. These models were generalized in such a way that independent variables
can describe not only the age structure, but also other parameters of the population
like its size, psychological properties of households, nutrition state and others. In
[2], [7, 8], [11], [23, 24] these models were applied for describing some phenomena in
biology, ecology, epidemiology and medicine.

Many topics of the mathematical biology are presented in [3], [14], [19] and [22].
The existence, uniqueness, qualitative theory of the von Foerster-type equations

were considered in [5, 6], [10], [15], [17], [23]. Results of [6] and [17] are based on
transformations of given problems into systems of ordinary functional differential
equations along bicharacteristics. Next, there are defined integral operators for
which the existence of fixed-point equations is proved. Additional assumptions on
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given functions lead to uniqueness of solutions. In [10] existence and uniqueness
of solutions is established by transformations of the main problem into a pair of
coupled integral equations and studying its properties.

The papers [1, 2] are concerned with finite difference schemes for non-linear hy-
perbolic initial-boundary value problems in bounded domains with non-local bound-
ary condition. In [18] there are studied stability and consistency for Euler schemes
for the von Foerster-type equations in unbounded domains. The monograph [13]
presents a systematic treatment of nonlinear functional differential problems, in-
cluding difference methods for initial and mixed problems. Convergence results for
unbounded solutions of first order differential-functional equations are studied in
[16].

In our paper the following von Foerster model is studied. Suppose that ck : E ×
R+ → R, k = 1, . . . , n, λ : E × R2

+ → R, where E = [0, a] × Rn
+, R+ = [0,+∞),

a > 0. Consider the initial value problem

(1) ∂tu(t, x) +
n∑

k=1

ck (t, x, z(t)) ∂xk
u(t, x) = λ

(
t, x, u(t, x), z(t)

)
,

where

(2) z(t) = z[u(t, ·)] =
∫ ∞

0

· · ·
∫ ∞

0

u(t, x) dx1 . . . dxn, t ∈ [0, a]

with the initial condition

(3) u(0, x) = v(x), x ∈ Rn
+,

where v : Rn
+ → R+ is a given continuous and integrable function. The well-

posedness of problem (1)–(3) demands the condition c (t, 0, q) ≤ 0, q ∈ R+, that
is: the characteristics either go out of the set through the lateral boundary or meet
the boundary and remain there.

According to [17] the above model can be generalized in the following ways: (i)
including many species, (ii) taking into consideration past densities and past total
sizes of species.

We are interested in a discretization of problem (1)–(3) using finite difference
schemes on rectangular meshes. The main frame of our investigations is related
to the Lax-Richtmyer equivalence theorem, which splits this task to stability and
consistency. In this paper we focus on stability. Being inspired by [4] and [12, 13]
we study a discretization method for problem (1)–(3) applying either forward or
backward spatial difference quotients, depending on the flow of characteristics. The
introduced finite difference scheme is explicit. We stress that even for two or three
dimensional spaces the discretization involves very large number of arithmetic oper-
ations. We prove a stability theorem for this scheme with respect to: perturbations
of the right hand side, initial conditions and cuts of the quadrature. The general
theory is illustrated by some numerical experiments in R3.

2. Discretization of the differential problem. Let N = {0, 1, . . .}. For
x, y ∈ Rn define x ∗ y = (x1y1, . . . , xnyn). We introduce in E a rectangular mesh as
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follows. For any given number N0 ∈ N we define h0 =
a

N0
, and for given numbers

h1, . . . , hn ∈ (0,∞), we denote by h′ = (h1, . . . , hn) , h = (h0, h
′). The knots are

denoted by
(
t(i), x(j)

)
, where t(i) = ih0, x

(j) = j ∗ h′. Let Eh =
{(
t(i), x(j)

)
:

i = 0, . . . , N0, j ∈ Nn} . The values of any discrete function u : Eh → R+ at the
knot

(
t(i), x(j)

)
will be denoted by u(i,j) = u

(
t(i), x(j)

)
.

Define the discrete operators δ0, δ+k , δ
−
k , Qh :

δ0u
(i,j) =

u(i+1,j) − u(i,j)

h0
, δ+k u

(i,j) =
u(i,j+ek) − u(i,j)

hk
,

δ−k u
(i,j) =

u(i,j) − u(i,j−ek)

hk
, (Qhu)i = h1 . . . hn

∑
j∈Nn

u(i,j),

where ek = (0, . . . , 1, . . . , 0) and Qh is an infinite multidimensional quadrature. The
number δ0u(i,j) approximates the derivative ∂tu

(
t(i), x(j)

)
, whereas the derivatives

∂xk
u
(
t(i), x(j)

)
can be approximated in two ways: either by progressive difference

quotients δ+k u
(i,j) or regressive difference quotients δ−k u

(i,j). The quadrature (Qhu)i

is a first-order approximation of the integral (2) at t = t(i). While performing prac-
tical computations we replace (Qhu)i by the following finite sum

(QNh

h u)i = h1 . . . hn

Nh∑
j1,...,jn=0

u(i,j1,...,jn),

where Nh is a sufficiently large natural number, usually proportional to
max

k=1,...,n
[(1/hk) log(1/hk)] . Notice that ‖h′‖Nh → +∞ as ‖h′‖ → 0, where ‖h′‖ =

max{h1, . . . , hn}.
In order to make the descriptions concise, denote

c
(i,j)
k [z] = ck

(
t(i), x(j), z(i)

)
, λ(i,j)[u, z] = λ

(
t(i), x(j), u(i,j), z(i)

)
.

For
(
t(i), x(j)

)
∈ Eh, q ∈ R define the characteristic function

χ
(i,j)
k [q] =


1, c

(i,j)
k [q] < 0,

0, c
(i,j)
k [q] ≥ 0.

Consider a finite difference problem for (1)–(3)

(4) δ0u
(i,j) +

n∑
k=1

c
(i,j)
k [z]

{
χ

(i,j)
k [z]δ+k u

(i,j) +
(
1− χ(i,j)

k [z]
)
δ−k u

(i,j)
}

= λ(i,j)[u, z]

on Eh, where z(i) = (Qhu)i with the initial condition

(5) u(0,j) = v(j) for j ∈ Nn.
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Denote by L∞
(
Rn

+

)
and L1

(
Rn

+

)
the classes of all essentially bounded measur-

able functions and Lebesgue integrable functions defined on Rn
+. Denote by C(X,R)

the class of all continuous functions u : X → R. Define the following class of sub-
monotone integrable functions: f ∈ L1

M iff there exists a nonnegative and decreasing
function g ∈ L1(Rn

+) such that |f(x)| ≤ g(x) for x ∈ Rn
+.

Introduce the following normed spaces. In the space l∞n , of all sequences ψ =
(ψj)j∈Nn , we have the natural supremum norm

‖ψ‖∞ = sup
j∈Nn

|ψj | for (ψj) ∈ l∞n .

The space l1n, of all summable sequences ψ = (ψj)j∈Nn , is equipped with the norm

‖ψ‖1 = h1 · · ·hn

∑
j∈Nn

|ψj | for (ψj) ∈ l1n.

Remark 2.1 Let f : Rn
+ → R, f ∈ L1

M and h′ = (h1, . . . , hn) ∈ Rn
+. By fh denote

the restriction of the function f to the set Rh =
{
x(j) : j ∈ Nn

}
. Then ‖fh‖1 <∞.

In the paper we assume that:

Assumption [V ]. The initial function v : Rn
+ → R+ is bounded, continuous and

v ∈ L1
M.

Assumption [C]. The functions ck : E × R+ → R, k = 1, . . . , n, are continuous,
bounded and there are: a constant Lc > 0 and a bounded, nonnegative function
L∗c ∈ L1

M such that

|ck (t, x, q)− ck (t, x̄, q̄)| ≤ Lc ‖x− x̄‖+ L∗c (x+ x̄) |q − q̄|

for (t, x, q), (t, x̄, q̄) ∈ E × R+.

Assumption [S]. The functions ck : E × R+ → R, k = 1, . . . , n and the steps hk,
k = 0, 1, . . . , n, satisfy the stability condition

1−
n∑

k=1

h0

hk
|ck(t, x, q)| ≥ 0 for (t, x, q) ∈ E × R+.

Assumption [Λ]. The function λ : E × R2
+ → R is bounded, continuous and there

are: a positive constant Lλ, a bounded, nonnegative function Lz such that Lz ∈ L1
M

and
|λ(t, x, p̄, q̄)− λ(t, x, p, q)| ≤ Lλ |p̄− p|+ Lz(x) |q̄ − q|

for (t, x) ∈ E, p, q, p̄, q̄ ∈ R+.

Assumption [L]. The discrete function u : Eh → R+ satisfies the discrete Lipschitz
condition:

∣∣u(i,j±ek) − u(i,j)
∣∣ ≤ Luhk with some Lu > 0 for k = 1, . . . , n.
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3. Stability of the scheme. To prove the stability of the finite difference
scheme for problem (1)–(3) with respect to the right-hand side and the initial con-
dition, we consider the perturbed scheme

δ0u
(i,j) +

n∑
k=1

c
(i,j)
k [z]

{
χ

(i,j)
k [z]δ+k u

(i,j) +
(
1− χ(i,j)

k [z]
)
δ−k u

(i,j)
}

(6)
= λ(i,j)[u, z] + ξ(i,j) on Eh,

with z(i) = (Qhu)i and the initial condition

(7) u(0,j) = v(j) + ξ̂(0,j) for j ∈ Nn.

The perturbations ξ(i,j) can be interpreted as local discretization errors for (1). The
numbers ξ̂(0,j) are perturbations of (3).

Lemma 3.1 Suppose that u, ū : Eh → R+ are bounded, the discrete functions u(i,·),
ū(i,·) ∈ l1n for i = 1, . . . , N0 and

(i) u is a solution of problem (4)–(5), satisfying Assumption [L],

(ii) ū is a solution of problem (6)–(7) with perturbations satisfying the conditions∥∥∥ξ(i)∥∥∥
∞
≤ Ch,

∥∥∥ξ̂(0)∥∥∥
∞
≤ C0,h,

∥∥∥ξ(i)∥∥∥
1
≤ C̄h,

∥∥∥ξ̂(0)∥∥∥
1
≤ C̄0,h,

i = 1, . . . , N0, where C0,h, Ch, C̄0,h, C̄h → 0 as ‖h‖ → 0,

(iii) the functions ck ∈ C(E × R+,R), k = 1, . . . , n, and the steps hk, k = 0, . . . , n,
satisfy Assumptions [C] and [S],

(iv) the function λ ∈ C(E × R+ × R+,R) satisfies Assumption [Λ].

Then ū(i,j) − u(i,j) converges uniformly to 0 as ‖h‖ → 0 in the supremum and l1

norm.

Remark 3.2 If the function c does not depend on the last variable, then Assumption
[L] for the function u can be omitted.

Lemma 3.3 Suppose that u, ū : Eh → R+ are bounded, the discrete functions u(i,·),
ū(i,·) ∈ l1n for i = 1, . . . , N0 and Assumptions (i)–(iii) of Lemma 3.1 are satisfied.
Then

n∑
k=1

∣∣∣∣δ+k u(i,j)

(
c
(i,j)
k [z]χ(i,j)

k [z]− c(i,j)k [z̄]χ(i,j)
k [z̄]

)

+ δ−k u
(i,j)

(
c
(i,j)
k [z]

(
1− χ(i,j)

k [z]
)
− c(i,j)k [z̄]

(
1− χ(i,j)

k [z̄]
))∣∣∣∣(8)

≤ nLu‖L∗c‖∞
∣∣∣z(i) − z̄(i)

∣∣∣ .
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Moreover, if we set ω(i,j) = ū(i,j) − u(i,j) (the error of the scheme), then we have

n∑
k=1

∑
j∈Nn

{∣∣∣c(i,j)k [z̄]
∣∣∣

hk

(
−
∣∣∣ω(i,j)

∣∣∣+ χ
(i,j)
k [z̄]

∣∣∣ω(i,j+ek)
∣∣∣

(9)

+
(
1− χ(i,j)

k [z̄]
) ∣∣∣ω(i,j−ek)

∣∣∣ ) ≤ 2nLc

∑
j∈Nn

∣∣∣ω(i,j)
∣∣∣ .

Remark 3.4 If the function c does not depend on the last variable, then the left
hand side of inequality (8) is equal to zero.

Proof (of Lemma 3.3) We analyze the left hand side of inequality (8) accord-
ing to: if c(i,j)k [z̄] < 0 and c

(i,j)
k [z] < 0, or if c(i,j)k [z̄] ≥ 0 and c

(i,j)
k [z] ≥ 0,

then
∣∣∣δ+k u(i,j)

(
c
(i,j)
k [z]− c(i,j)k [z̄]

)∣∣∣ and
∣∣∣δ−k u(i,j)

(
c
(i,j)
k [z] − c(i,j)k [z̄]

)∣∣∣ are estimated

by Lu ‖L∗c‖∞
∣∣z(i) − z̄(i)

∣∣ . If c(i,j)k [z̄] ≥ 0 and c(i,j)k [z] < 0, then we have∣∣∣δ+k u(i,j)c
(i,j)
k [z]− δ−k u(i,j)c

(i,j)
k [z̄]

∣∣∣ ≤ ∣∣∣∣∣δ−k u(i,j)
∣∣ c(i,j)k [z̄]−

∣∣δ+k u(i,j)
∣∣ c(i,j)k [z]

∣∣∣ ≤
Lu ‖L∗c‖∞

∣∣z̄(i) − z(i)
∣∣ . The same estimate is obtained when c(i,j)k [z̄] < 0 and c(i,j)k [z] ≥

0. Taking into consideration the above inequalities, we get (8).
Denote Jk = (j1, . . . , jk−1, 0, jk+1 . . . , jn) ∈ Nn. To shorten notation, assume

that c(i,Jk−ek)
l [z̄] = 0, k, l = 1, . . . , n. Changing the order of summation in (9) and

applying the condition c
(i,Jk)
l [z̄] ≤ 0, k, l = 1, . . . , n, we write the left hand side of

(9) in the form
n∑

k=1

∑
j∈Nn

∣∣ω(i,j)
∣∣

hk

{
−

∣∣∣c(i,j)k [z̄]
∣∣∣+ ∣∣∣c(i,j−ek)

k [z̄]
∣∣∣χ(i,j−ek)

k [z̄]

(10)

+
∣∣∣c(i,j+ek)

k [z̄]
∣∣∣ (1− χ(i,j+ek)

k [z̄]
)}

.

From Assumption [C] it follows that∣∣∣∣∣ ∣∣∣c(i,j)k [z̄]
∣∣∣− ∣∣∣c(i,j±ek)

k [z̄]
∣∣∣ ∣∣∣∣∣ ≤ ∣∣∣c(i,j)k [z̄]− c(i,j±ek)

k [z̄]
∣∣∣ ≤ hkLc.(11)

By X(i,j)
k denote∣∣∣∣ ∣∣∣c(i,j−ek)

k [z̄]
∣∣∣χ(i,j−ek)

k [z̄] +
∣∣∣c(i,j+ek)

k [z̄]
∣∣∣ (1− χ(i,j+ek)

k [z̄]
)
−
∣∣∣c(i,j)k [z̄]

∣∣∣ ∣∣∣∣.
If c(i,j−ek)

k [z̄] < 0 and c
(i,j+ek)
k [z] < 0, or c(i,j−ek)

k [z̄] ≥ 0 and c
(i,j+ek)
k [z̄] ≥ 0, then

using (11), we have X(i,j)
k ≤ Lchk. If c(i,j−ek)

k [z̄] < 0 and c(i,j+ek)
k [z̄] ≥ 0, then

X
(i,j)
k ≤

∣∣∣c(i,j+ek)
k [z̄]− c(i,j−ek)

k [z̄]
∣∣∣ ≤ 2Lchk.
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If c(i,j−ek)
k [z̄] ≥ 0 and c

(i,j+ek)
k [z̄] < 0, then we obtain X

(i,j)
k ≤ Lchk. Hence (10) is

estimated by 2nLc

∑
j∈Nn

∣∣∣ω(i,j)
∣∣∣ . �

Proof (of Lemma 3.1) Recall that the discrete function ū is the solution of (6) with
perturbations satisfying Assumption (ii) of Lemma 3.1. Subtracting (6) with the
function ū and (4) we obtain the explicit recurrence error equation

ω(i+1,j) = ω(i,j)

(
1−

n∑
k=1

h0

hk

∣∣∣c(i,j)k [z̄]
∣∣∣)

+ h0

n∑
k=1

{∣∣∣c(i,j)k [z̄]
∣∣∣

hk

(
χ

(i,j)
k [z̄]ω(i,j+ek) +

(
1− χ(i,j)

k [z̄]
)
ω(i,j−ek)

)

+ δ+k u
(i,j)

(
c
(i,j)
k [z]χ(i,j)

k [z]− c(i,j)k [z̄]χ(i,j)
k [z̄]

)
(12)

+ δ−k u
(i,j)

(
c
(i,j)
k [z]

(
1− χ(i,j)

k [z]
)
− c(i,j)k [z̄]

(
1− χ(i,j)

k [z̄]
))}

+ h0

(
λ(i,j)[ū, z̄]− λ(i,j)[u, z]

)
+ h0ξ

(i,j).

Applying Assumptions [S] and [Λ], we obtain the inequality∣∣∣ω(i+1,j)
∣∣∣ ≤ ∣∣∣ω(i,j)

∣∣∣(1−
n∑

k=1

h0

hk

∣∣∣c(i,j)k [z̄]
∣∣∣)

+ h0

n∑
k=1

{∣∣∣c(i,j)k [z̄]
∣∣∣

hk

(
χ

(i,j)
k [z̄]

∣∣∣ω(i,j+ek)
∣∣∣+ (1− χ(i,j)

k [z̄]
) ∣∣∣ω(i,j−ek)

∣∣∣)
+

∣∣∣∣δ+k u(i,j)

(
c
(i,j)
k [z]χ(i,j)

k [z]− c(i,j)k [z̄]χ(i,j)
k [z̄]

)
(13)

+ δ−k u
(i,j)

(
c
(i,j)
k [z]

(
1− χ(i,j)

k [z]
)
− c(i,j)k [z̄]

(
1− χ(i,j)

k [z̄]
))∣∣∣∣

}

+ h0Lλ

∣∣∣ω(i,j)
∣∣∣+ h0Lz

(
x(j)

) ∣∣∣z̄(i) − z(i)
∣∣∣+ h0

∣∣∣ξ(i,j)∣∣∣ .
Notice that

(14)
∣∣∣z̄(i) − z(i)

∣∣∣ = h1 · · ·hn

∣∣∣∣∣∣
∑
j∈Nn

(
ū(i,j) − u(i,j)

)∣∣∣∣∣∣ ≤
∥∥∥ω(i)

∥∥∥
1
.

Using Lemma 3.3, Assumption [Λ] and (14), we obtain the recurrence inequality

(15)
∥∥∥ω(i+1)

∥∥∥
∞
≤ (1 + h0Lλ)

∥∥∥ω(i)
∥∥∥
∞

+ h0L1

∥∥∥ω(i)
∥∥∥

1
+ h0

∥∥∥ξ(i)∥∥∥
∞
,
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where L1 = 2nLu ‖L∗c‖∞ + ‖Lz‖∞ . Summing all terms of (13) over j ∈ Nn, we have
the inequality

∑
j∈Nn

∣∣∣ω(i+1,j)
∣∣∣ ≤ ∑

j∈Nn

∣∣∣ω(i,j)
∣∣∣+ h0

n∑
k=1

∑
j∈Nn

∣∣∣c(i,j)k [z̄]
∣∣∣

hk

×
{
−
∣∣∣ω(i,j)

∣∣∣+ χ
(i,j)
k [z̄]

∣∣∣ω(i,j+ek)
∣∣∣+ (1− χ(i,j)

k [z̄]
) ∣∣∣ω(i,j−ek)

∣∣∣ }

+h0

n∑
k=1

∑
j∈Nn

∣∣∣∣δ+k u(i,j)

(
c
(i,j)
k [z]χ(i,j)

k [z]− c(i,j)k [z̄]χ(i,j)
k [z̄]

)
(16)

+δ−k u
(i,j)

(
c
(i,j)
k [z]

(
1− χ(i,j)

k [z]
)
− c(i,j)k [z̄]

(
1− χ(i,j)

k [z̄]
))∣∣∣∣

+h0Lλ

∑
j∈Nn

∣∣∣ω(i,j)
∣∣∣+ h0

∣∣∣z̄(i) − z(i)
∣∣∣ ∑

j∈Nn

Lz

(
x(j)

)
+ h0

∑
j∈Nn

∣∣∣ξ(i,j)∣∣∣
Multiplying the both sides of (16) by h1 · . . . · hn and applying Lemma 3.3 to the
second line of (16), Assumptions [C] and [L] to the third and fourth lines of (16), and
Assumption [Λ] to the last line of (16), we obtain the following recurrence inequality

(17)
∥∥∥ω(i+1)

∥∥∥
1
≤ (1 + h0L2)

∥∥∥ω(i)
∥∥∥

1
+ h0

∥∥∥ξ(i)∥∥∥
1
,

where L2 = Lλ + 2nLc + 2Lu ‖L∗c‖1 + ‖Lz‖1 . Let us consider the comparison recur-
rence equations with respect to (15) and (17):

η(i+1) = η(i)(1 + h0Lλ) + h0L1η̃
(i) + h0

∥∥∥ξ(i)∥∥∥
∞
,

(18)

η̃(i+1) = η̃(i) (1 + h0L2) + h0

∥∥∥ξ(i)∥∥∥
1
.

Taking into consideration the initial conditions∥∥∥ω(0)
∥∥∥

1
≤ η̃(0) = C̄0,h → 0,

∥∥∥ω(0)
∥∥∥
∞
≤ η(0) = C0,h → 0,

we obtain the estimates
∥∥ω(i)

∥∥
∞ ≤ η(i) and

∥∥ω(i)
∥∥

1
≤ η̃(i), hence the solutions of

(15), (17) satisfy ∥∥ω(i)
∥∥

1
≤ η̃(i) ≤ eL2a

(
C̄0,h +

C̄h

L2

)
=: Ĉh,

∥∥ω(i)
∥∥
∞ ≤ η(i) ≤ eLλa

(
C0,h +

L1Ĉh + Ch

Lλ

)
.

The right-hand sides of these estimates are derived from the system of comparison
recurrence equations (18), because η(i) ≤ η(N0), η̃(i) ≤ η̃(N0) and (1 + h0L)i ≤
eh0iL ≤ eaL, i = 0, . . . , N0. �
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3.1. Stability - the case of finite quadrature. Since only a finite number
of terms can be involved in practical computations, we shall prove a lemma on
stability with respect to cut-offs of the quadrature for the forward-backward scheme.
Denoting by uh the solution of this scheme with the finite quadrature QNh

h instead
of Qh, we write it as follows:
(19)

δ0u
(i,j)
h +

n∑
k=1

c
(i,j)
k [zh]

{
χ

(i,j)
k [zh]δ+k u

(i,j)
h +

(
1− χ(i,j)

k [zh]
)
δ−k u

(i,j)
h

}
= λ(i,j)[uh, zh]

with

(20) z
(i)
h =

(
QNh

h uh

)
i
,

and the initial condition

(21) u
(0,j)
h = v(j) for j ∈ Nn.

Lemma 3.5 Suppose that

(i) the numbers Nh satisfy the condition: ‖h‖Nh → +∞ as ‖h‖ → 0,

(ii) the functions ck ∈ C(E×R+,R), k = 1, . . . , n and the steps h = (h0, h1, . . . , hn)
satisfy Assumptions [C] and [S],

(iii) the function λ ∈ C (E × R+ × R+,R) satisfies Assumption [Λ].

Then the scheme (4)–(5) is stable with respect to cut-offs of the quadrature.

Proof Suppose that a discrete function u : Eh → R+ is a solution of problem (4)–
(5) such that u is bounded, u(i,·) ∈ l1n, i = 1, . . . , N0 and satisfy Assumption [L].
Denote by uh the only solution of (19)–(21), which clearly exists. Observe that
uh is also bounded and u

(i,·)
h ∈ l1n, i = 1, . . . , N0. Denote ε(i,j) = u(i,j) − u

(i,j)
h .

Similarly to the proof of Lemma 3.1, we subtract (4) and (19). We obtain the
explicit recurrence error equation with zero initial condition. Applying the stability
condition [S], Assumption [Λ], we have∣∣∣ε(i+1,j)

∣∣∣ ≤ ∣∣∣ε(i,j)∣∣∣(1−
n∑

k=1

h0

hk

∣∣∣c(i,j)k [zh]
∣∣∣)

+ h0

n∑
k=1

{∣∣∣c(i,j)k [zh]
∣∣∣

hk

(
χ

(i,j)
k [zh]

∣∣∣ε(i,j+ek)
∣∣∣+ (1− χ(i,j)

k [zh]
) ∣∣∣ε(i,j−ek)

∣∣∣ )

+
∣∣∣∣δ+k u(i,j)

(
c(i,j)[zh]χ(i,j)

k [zh]− c(i,j)[z]χ(i,j)
k [z]

)
(22)

+ δ−k u
(i,j)

(
c(i,j)[zh]

(
1− χ(i,j)

k [zh]
)
− c(i,j)[z]

(
1− χ(i,j)

k [z]
)) ∣∣∣∣

}

+ h0

(
Lλ

∣∣∣ε(i,j)∣∣∣+ Lz

(
x(j)

) ∣∣∣z(i) − z(i)
h

∣∣∣) .
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Notice that

(23)
∣∣∣z(i) − z(i)

h

∣∣∣ ≤ ∥∥∥ε(i)∥∥∥
1

+ U
(i)
h ,

where

U
(i)
h = h1 · · ·hn

∑
j∈Nn

u(i,j) −
Nh∑

j1,...,jn=0

u(i,j)

 ,

and the remainder U (i)
h tends to 0 as ‖h‖ → 0. Applying Lemma 3.3 and (23), we

have the recurrence inequality

(24)
∥∥∥ε(i+1)

∥∥∥
∞
≤ (1 + h0Lλ)

∥∥∥ε(i)∥∥∥
∞

+ h0L1

(∥∥∥ε(i)∥∥∥
1

+ Uh

)
,

where L1 = 2nLu ‖L∗c‖∞ + ‖Lz‖∞ , Uh = sup
i=0,...,N0

U
(i)
h .

Multiplying by h1 · . . . · hn the both sides of (22), summing terms over j ∈
Nn, applying Lemma 3.3, Assumptions [C], [L] and [Λ], we obtain the following
recurrence inequality∥∥∥ε(i+1)

∥∥∥
1
≤ (1 + h0L2)

∥∥∥ε(i)∥∥∥
1

+ h0L3Uh,(25)

where L2 = Lλ + 2nLc + 2nLu ‖L∗c‖1 + ‖Lz‖1 , L3 = 2nLu ‖L∗c‖1 + ‖Lz‖1 .
Writing, similarly as in the proof of Lemma 3.1, the comparision recurrence equa-

tions with respect to (24), (25) and taking into consideration the initial conditions:∥∥ε(0)∥∥∞ = 0,
∥∥ε(0)∥∥

1
= 0, we have the estimates

∥∥∥ε(i)∥∥∥
1
≤ eaL2

L3Uh

L2
=: Ĉh,

∥∥∥ε(i)∥∥∥
∞
≤ eaLλ

L1(Ĉh + Uh)
Lλ

.

Since ‖h‖Nh → ∞, hence Uh → 0 as ‖h‖ → 0 and we have the desired assertion∥∥ε(i)∥∥∞ → 0,
∥∥ε(i)∥∥

1
→ 0 as ‖h‖ → 0. �

Now we write the main result of our paper.

Theorem 3.6 If assumptions of the Lemmas 3.1 and 3.5 are satisfied, then the
forward-backward scheme for (1)–(3) are stable with respect to the perturbation of
the right-hand side, the initial condition and the cuts-off of the quadrature.

Proof The proof is a conclusion of the proofs of Lemmas 3.1 and 3.5. �

4. Numerical experiments. In order to find approximate solutions of prob-
lem (1)–(3), we cannot apply our theoretical result directly, because it is not possible
to perform practical computations in unbounded domains. Thus we cut the domain
to some sufficiently large bounded subsets, and observe that global errors behave
stable.
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Remark 4.1 Let Nh, N0 ∈ N, such that Nh > N0 and Nh‖h‖ → ∞ as ‖h‖ → 0,
where h0 =

a

N0
, h = (h1, . . . , hn) ∈ Rn

+. At each stage t(i), i = 1, . . . , N0, the number

of mesh points involved in computations may change, depending on the sign of the
functions ck, k = 1, . . . , n. Without loss of generality we assume that the number of
the mesh points is decreasing. In the set E introduce the regular mesh

Ẽh =
{(
t(i), x(j)

)
: i = 0, . . . , N0, j = (j1, . . . , jk), jk = 0, . . . , Nh − i

}
.

Consider finite difference problem (4) on Ẽh, with z(i) =
(
QNh−i

h u
)

i
and the initial

condition u(0,j) = v(j), j = (j1, . . . , jn) , jk = 0, . . . , Nh, k = 1, . . . , n. Note that
the above problem is well defined. Recall that Nh was chosen in such a way that
Nh → ∞ as ‖h‖ → 0. It follows from Theorem 3.6 that the discretization error for
(1)–(3) tends to zero as ‖h‖ → 0.

We present numerical tests which illustrate our theoretical results. We take
n = 1, a = 1. The initial set is cut to some interval [0, X], X > 0. Let h0 = 10−3.
With a prescribed functions u[l] : [0, 1] × R+ → R+, v

[l](x) = u[l](0, x), x ∈ [0, X],
c[l] : [0, 1]× R2

+ → R, l = 1, 2,

c[1](t, x, z) =
t sinx sin z

1 + x2
, u[1](t, x) =

cos t
(1 + t+ x)2

,

z[1](t) =
cos t

(1 + t)
,

and

c[2](t, x, z) = te−x sinx sin z, u[2](t, x) =
sin2(tx)
1 + x2

,

z[2](t) =
π(1− e−2t)

4
,

we determine the respective right-hand sides of the differential equation

λ[l](t, x, p, q) = ∂tu
[l](t, x) + ∂xu

[l](t, x)c[l](t, x, z[l](t))

−
t sin

(
u[l](t, x)

)
sin
(
z[l](t)

)
1 + x2

+
t sin (p) sin (q)

1 + x2
.

Note that the functions c[l] and λ[l], l = 1, 2, satisfy Assumptions [C] and [Λ],
respectively. Errors of the computations are given by the formulas

∆u[l] = max
i=1,...,N0
j=0,...,N

|ũ[l](i,j) − u[l](t(i), x(j))|, ∆z[l] = max
i=1...,N0

|z̃[l](i) − z[l](t(i))|,

where the discrete functions ũ[l], z̃[l] approximate the functions u[l] and z[l], l = 1, 2,
on the bounded area. The results of computations for various intervals [0, X] and
h0/h1 are given in the table.
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h0/h1 X ∆u[1] ∆z[1] ∆u[2] ∆z[2]

1 50 33.82E-4 12.97E-3 5.71E-4 10.78E-3
1 100 21.81E-4 6.65E-3 4.19E-4 5.52E-3
1 500 15.63E-4 3.17E-3 3.61E-4 3.32E-3

0.5 50 33.77E-4 13.09E-3 5.93E-4 11.16E-3
0.5 100 21.69E-4 6.59E-3 4.40E-4 5.55E-3
0.5 500 13.43E-4 2.20E-3 3.61E-4 2.41E-3
0.2 50 33.67E-4 13.53E-3 6.66E-4 11.91E-3
0.2 100 20.96E-4 6.47E-3 5.04E-4 5.75E-3
0.2 500 11.13E-4 1.01E-3 4.07E-4 1.82E-3
0.2 750 11.11E-4 0.87E-3 4.07E-4 1.82E-3
0.1 50 33.63E-4 14.49E-3 7.93E-4 13.13E-3
0.1 100 19.81E-4 6.25E-3 6.13E-4 6.04E-3
0.1 500 9.43E-4 0.55E-3 5.09E-4 1.46E-3
0.1 750 8.87E-4 25.48E-6 5.06E-4 1.43E-3
0.1 1000 8.87E-4 3.73E-6 5.06E-4 1.43E-3

Note that, for a fixed discretization parameter h = (h0, h1), the errors of com-
putations are decreasing as the length of the initial interval [0, X] is increasing.

The computation was performed by the IBM PC computer.
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