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Some remarks on Toeplitz methods and continuity*

1. Definition. Let / be a real function, f :  B ^ B ,  and let A be 
a Toeplitz method of snmmability. We shall say that / is A-continuous 
if, for every A-summable sequence (tn), the sequence (f{tn)) is also 
A-summable.

The following facts are simple consequences of the above definition:
1.1. Given a Toeplitz method A, the set of all A -continuous functions 

contains all linear functions and is closed with respect to superposition 
of functions.

1.2. A function / is continuous iff it is continuous in the sense of 
identity method (/-continuous).

Moreover, for a wide class of Toeplitz methods A-continuity implies 
continuity :

T h e o r e m  1. Let A be a permanent Toeplitz method. I f  f  is A-contin­
uous, then f  is continuous in ordinary sense.

Proof. Suppose the contrary. Let x0 be a point of discontinuity of/. 
Suppose, first, that there exist two sequences (xn) and (yn), each converg­
ing to x0, and such that f(x n) -> a  and f(y n) -> b, а Ф b. In view of 1.1 
we can assume without loss of generality that a =  0 and b =  1. As it 
is well known, [1], for every permanent Toeplitz method there exists 
a sequence (en) which is not M-summable and such that

10 for n — nk,
1 for n — nk

the sequences (nk), (n'k) exhausting all non-negative integers. Let (tn) be 
defined as follows:

L =
for n n7c ?

yk for n =  n'k,
/ =  0 ,1 ,  ..

* This paper was performed under scientific guidance of prof, dr S. Mazur as 
a master thesis.
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Since the sequence (tn) is convergent (with x0 as its limit), it is also 
A-summable. The sequence (f(tn)) can be written in the form

where cn -> 0. Therefore (/(<„)) is not J.-summable, what contradicts the 
hypothesis. To complete the proof, we suppose now that there exists 
a sequence (xn) such that xn -> x0 and f(x n) -> oo. The method A being 
permanent, it is easy to find a sequence (tn) of the form

X0, . . . ,  XQ , Xt , • "., X-L, • • •, Xk , • • •, xk , . ..

(obviously convergent), such that (f(tn)) is not JL-summable (it is i-summa- 
ble to infinity). Therefore f  must be continuous at x0.

Theorem 2. I f  a function f  is А -continuous for every permanent 
Toeplitz method A, then f  is a linear function.

Proof. The theorem is implied by the following 
E x a m p l e  1. There exists a permanent Toeplitz method A such that 

the only A -continuous functions are linear functions. Let A be defined 
as follows:

-“4-3к {{tni) — rhk “Ь rt3k+1 +  t3k+21

\-3k+l[(tn)) ~  =  hk+li
h =  0 , 1 , . . .  j 0 Ф г Ф X.

I t  is easy to verify that a sequence (tn) is A-summable iff it can be 
written in the form

W  2 =  (1 - r ) b k+ r s k+ d k,

where (sk) is arbitrary sequence, (bk) — convergent sequence, and (dk) is 
a sequence convergent to 0. Since f  is A-continuous, we can find (for 
every (sk), (bk), (dk)) a sequence (d'k), d'k 0, such that

f ( ( l~ r ) b k+ rsk+ d k) =  (1 - r ) f ( b k) +  rf{sk) +  d'k .
In particular, let bk — b, dk =  0 (7c =  0 , 1 , . . . )  and let (sk) be dense 

in R. Eor any real s we can find a sequence of indices (nk) such that snk -> s. 
Taking into account that / is continuous (Theorem 1) and that d'nk -> 0, 
we obtain

f ( { l  — r)b +  ra) =  (1 — r)f{b) +  rf{s).
Without loss of generality we can assume that /(0) =  0. Simple 

reasoning leads now to the conclusion, that the identity
f {x + y )  = f{3c)A f[y)

holds for arbitrary reals x, y. Since the function / is continuous, it must 
be linear.
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The question arises if there exist a permanent Toeplitz method A Ф 1  
and a non-linear function /, such that / is A-continuous. An answer to 
this is given by the following

E x a m p l e  2. Let A =  A^n) be so called single-sequence method, i.e. 
a permanent Toeplitz method such that the only A-summable sequences 
(dn) are

dn =  a2n+ c n,

where a denotes arbitrary constant, (en) — arbitrary convergent sequence 
(cf. [2], p. 48). Let g0 be an arbitrary continuous function defined on 
the interval < — 1 ,1 ) ,  vanishing at each end of the interval. Let

J 3o(( —2fc) for te (2k- l , 2 k+ i y ,  к =  1 ,2 ,
g {t) —

0 elsewhere.

It  is easy to verify that the sequence Уп — У {р2 п+ с п), is con­
vergent for any a and (cn). Therefore g is A-continuous.

The function constructed in the above example is A-continuous 
because of its very special behaviour at infinity. Eow we shall state some 
necessary conditions a function must satisfy in order to be continuous 
in the sense of some non-trivial Toeplitz method.

2. A Toeplitz method A is said to have a strict rate of growth if there 
exists a sequence (ên) such that the following conditions are fulfilled:

— (êntn) is bounded for every A-summable sequence (tn) ;
— if for some sequence (on) the sequence (<rntn) is bounded for every 

A-summable (tn), then an — 0(&n).
L em m a  1. The following conditions can not be satisfied simultaneously :
(a) A Toeplitz method A has a strict rate of growth;
(b) a function f  is A-continuous ;
(c) there exists an A-summable sequence (tn) such that for some sequence 

of indices (nk) , tnk -» +  oo, and the quotient f( tnk) /tnk tends to infinity.
Proof. Let (ên) be a strict rate of growth for A. Since the function/ 

is A-continuous, there exist such constants Mx and M2 that for every n 
we have \ïïntn\ <  Мг, \f{tn)dn\ <  M2. Let Qk =/(/^)/Ц,, and

an
ê n for n Ф nk

&пк Ш  for n = n k
(fc =  0 ,1 ,  2, ...) .

Since \tnanI <  m a x , M2) and (ên) is a strict rate of growth, there 
must exist a constant К  such that This, however, contradicts
condition (c).

We shall say that two Toeplitz methods are equivalent if their fields 
are equal. A method A is said to be equivalent to a method extracted
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from I , if there exists an increasing sequence of indices (nk) such that 
a sequence (tn) is A-summable iff its subsequence (tn ) is convergent.

The following are simple consequences of Lemma 1:
Corollary 2.1. Let A be a Toeplitz method such that the method A 

obtained from A by omitting all zero-columns is convergence preserving 
Toeplitz method with a strict rate of growth. Let f  be А -continuous real function 
such that \f(t)/t\-+ oo when + ° °  (<-> —со). Then A is equivalent to 
a method extracted from I .

Proof. I t  is sufficient to observe that A is equivalent to I .  Suppose 
the contrary. Then there exists an unbounded from above A-summable 
sequence (tn) and a sequence of indices (nk) such that tnjc -> +oo. Now we 
can apply Lemma 1.

Corollary 2.2. Let A have a strict rate o f growth. I f  there exists an 
A-summable sequence (tn) dense in a half-line, then every A-continuous 
function f  must satisfy the condition lim \f(t) jt\ <  + ° °  when t +oo.

Proof. The hypotheses of Lemma 1 are satisfied.
The following weaker results are valid for permanent methods which 

not necesarilly have a strict rate of growth.
Lemma 2. I f  A =  (akn) is permanent for null-sequences (i.e. sequences 

convergent to zero) and i f  f  is А -continuous function, then for every A-summable 
sequence (tn) and every convergent to zero sequence rn the following equality 
holds :

Proof. Let {en) be an arbitrary sequence with terms equal to 0 or 1, 
let (tn) and irn) satisfy the hypotheses of the lemma. Since f( tnA £nrn) — 
- Д У  =  £n(fttn + rn)-f( fn ))  and the sequence {f(tn+ e nrn- f { t n)) is 
.A-summable, the limit

does exist. Applying Sehur lemma (cf. [1], p. 133) to the matrix (bkn), 
bjen Q'kn (fit n~\~̂ n)—fiPn)) conclude that \̂bkn\ 0* The proof is
completed. n

Now we can prove what follows:
Corollary 2.3. Let A =  (akn) be a permanent Toeplitz method such 

that there eovists an A-summable sequence (tn), +  oo. I f  a function f
satisfies the condition: /'(<)-> + ° °  when t -> +oo, and i f  f  is increasing 
for t >  T, then f  is not А -continuous function.

Proof. Let (tn), tn-+ +oo, be an A-summable sequence. Assuming 
rn =  (/'(U)_1 and taking into account that f{ tn+ r n)— f{tn) — f { t n-\-

lim Y a kn(f(tn+ r n) - f ( t n)) =  0.
hK n

П
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+  ®nrn) rn >  f  (tn) rn =  1? we conclude in view of Lemma 2 that Л\акп\ -> 0. 
This contradicts the permanency of the method A. n

In all we have proved above some additionary assumptions about 
the structure of the field of the method under consideration were made. 
Now we shall prove

Theorem 3. Let a differentiable function f  satisfy the following condi­
tion: there exist e >  0 and T >  0 such that \f'(t)lt\ ^  e for t ^  T. I f  f  is 
А-continuous for a convergence preserving Toeplitz method A =  (akn), then A 
is equivalent to a method extracted from I .

Proof. We can assume that the matrix (akn) contains no zero-columns, 
and under this assumption we shall prove that A is equivalent to I.

(1) We shall prove first, that for every J.-summable sequence (tn) 
there exists a constant M =  M{ftn)) such that J£\akntn\ <  AI for к =

П
= 0 ,1 ,2 , . . .  Let/satisfy the assumptions of the theorem, let q be arbitrary 
real number such that | q\ <  1 IN, where N =  (T-f  1 )/eT, and let \t\ >  T + 1. 
Since the function/is increasing (or decreasing) on the interval <t — l,t-\- 
+ 1 )  (/'( t) exists and does not vanish), we conclude that one of the numbers

t ’ t

is positive, and the other is negative. I t  is easy to verify that absolute 
value of each of them is not smaller than \q\. I t  means that the equation

f ( t + T ) - f ( t )
— Ï—  =  e

(with unknown r, and fixed q and t) has at least one solution in the interval 
|t| <  N\q\.

Let (tn) be an arbitrary ^1-summable sequence, let (tn.) be a sub­
sequence consisting of all tn such that tn ^  T + 1. If (g*) is an arbitrary 
sequence convergent to zero and such that |&| <  N^1 for every i, then 
for every equation

Д Ц + *)—/(<„.)
--------- 1----------- =  Qi4

we can find a solution rn., \rn.\ ф N q{ . Obviously rn. 0. Take now 
rn =  0 for n ф ^  (i — 0 , 1 ,2 , . . . ) .  Since / is ^.-continuous, the sequence
(̂ n)j

«» /(<») > 
is .A-summable and the limit

lim ^ a kn (f{tn +  rn) - f { t n)) =  lim ^  акпЛп.д{
* n к i
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does exist. But the sequence (g<) was arbitrarily chosen, and the existence 
of the right-hand limit means that every null-sequence (p*) (with 
<  A -1) is summable by the method (bki), bki =  akn.tn.. Therefore every 
null-sequence is (bfci)-summable and there exists a positive number 
К  =  К ((tn.)j such that ]£\акпЛп.\ А К  for every Tc. Since there exists

i
a constant L  such that £ \akn\ <  L  for every Tc, we obtain

П
J ^ K A K Æ + J H îM - i )  =  M,
n

what was to be proved.
(2) Now we shall prove that A is equivalent to I  (this part of the 

proof is a modification of the proof of Theorem 3 of [1]). Let an =  sup \akn\,
к

у =  inf an. I t  is sufficient to prove that у is bigger than 0. Indeed, if
П

у >  0, then by the first part of.the proof we have \tn\ <  M jan <  y~lM. That 
means that every A-summable sequence is bounded, and A must be 
equivalent to I  (cf. Theorem 7 of [1]). It remains to prove that у >  0. 
Suppose, then, that у =  0. There exists an increasing sequence of indices 
(nm) such that <  +°o . From what we know of / it follows that

m
there exists such a number T' >  0 that for every t >  T' we have : f(t) 
^ i 2e/2 +  (7 for some constant 0. We can assume that a~2l3^ T ', m =  
=  0 ,1 ,  2, . . .  Let

tП
°4 f  for n =  nm, m =  0 ,1 ,  . . . ,  
0 elsewhere.

The sequence (tn) is JL-summable, for the series ]r\akn an 2/31 converges
m

uniformly with respect to Tc. The sequence (vn), vn —f{tn) — G is also 
J.-summable then. In view of (1) we have У 1 ( f  it A — (7j ^  №((vn)) =

n
The last inequality leads to anm ^  (e/2-M'1)3, what contradicts the hy­
pothesis that аПт 0, and that completes the proof.

Some minor generalisations of the theorem are possible, e.g. :
Let for a differentiable function / there exist a >  0, e >  0 and T >  0 

such that \f'{t)l\t\a\>  £ for |/[ ^  T. If / is A -continuous for a convergence 
preserving Toeplitz method A, then A is equivalent to a method extracted 
from I .

Proof. The function f m =  f o f o  . . . o f ,  for sufficiently large positive 
integer m, satisfies the assumptions of the preceding theorem.

4. A fairly good characterisations of some classes of A-continuous 
functions related to Toeplitz methods of some types can be given (cf. 
Example 1). However, in all such examples known to the author, the
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existence of non-linear A -continuous functions is connected with the 
fact that the method A does not sum any bounded divergent sequence.

It  is open question whether there exists a Toeplitz method A which 
sums some divergent bounded sequences and which yields a non-linear 
^.-continuous function. Author believes that the answer is negative. 
In any case, the notion of A-continuity does not seem to be interesting.
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