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A note on classical quotient rings

Abstract. A characterization of reduced fully left idempotent left Goldie rings is given. 
Classical left quotient rings for which projectivity coincides with p-injectivity are considered.

Throughout, A represents an associative ring with identity and Л-modules 
are unital. Z denotes the left singular ideal of A and A is called left non-singular 
if Z = 0. If N  is a submodule of a left Л-module M, and E a submodule such 
that N <= E, then AE is an essential extension of AN  in AM  if, for any non-zero 
left submodule V of E, V n  N Ф 0. A submodule C of AM  is called a complement 
submodule if there exists a submodule К of AM  such that C is maximal with 
respect to С n  К = 0. This is equivalent to C having no proper essential 
extension in AM. The concepts of complement submodule and essential 
extension are significant tools in ring theory (cf. for example [3], [5], [7]).

An ideal of A will always mean a two-sided ideal and A is called right 
(resp. left) duo if every right (resp. left) ideal of A is an ideal. A left (right) ideal is 
called reduced if it contains no non-zero nilpotent element. A is called fully left 
(resp. right) idempotent if every left (resp. right) ideal of A is idempotent. As 
usual, A is called a left Goldie ring if it satisfies the maximum condition on left 
annihilators and complement left ideals. A well-known theorem [5, Theorem 
3.35] states that A is semiprime left Goldie iff A has a semisimple Artinian 
classical left quotient ring. (Recall that Q is a classical left quotient ring of A if 
(a) A £  Q; (b) every non-zero-divisor of A is invertible in Q; (c) for any qeQ, 
q = b~1a, a , b e A , b  being a non-zero-divisor.) A result of R. E. Johnson 
states that A is left non-singular iff A has a von Neumann regular maximal left 
quotient ring Q. In that case, Q is a left self-injective ring and AQ is the injective 
hull of aA. If A has a semisimple Artinian classical left quotient ring Q, then 
Q coincides with the maximal left quotient ring of A. For results concerning 
classical quotient and maximal quotient rings, consult, for example, [5]. J. H. 
Cozzens’ domains [3, p. 105] are simple principal left ideal F-domains but not 
division rings. Also, simple left Ore domains need not be right Ore.

Consequently, there is no inclusion relation between the classes of simple 
left Ore domains and reduced Artinian rings. But simple left Ore domains and 
reduced Artinian rings are reduced fully left idempotent left Goldie rings. In
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ring theory, various generalizations of commutative rings (for example, duo 
rings) have been studied.

A generalization of right duo rings, namely rings whose non-zero right 
ideals contain non-zero ideals, called strongly right bounded rings, play an 
important role in the study of FPF (GFC) rings (cf. [1], [4]). (A is called right 
FPF (resp. GFC) if every finitely generated (resp. cyclic) faithful right Л-module 
generates the category Mod-Л.) Strongly right bounded rings are right GFC 
[1]. In [4, Theorem 3.38], reduced fully right idempotent right FPF right 
Goldie rings are considered. In the first section of this note, I study reduced 
fully left idempotent left Goldie rings. In particular, such rings are charac­
terized in terms of complement left ideals and ideals.

§ 1. Fully left idempotent left Goldie rings. It is well known that fully left 
idempotent left Goldie rings need not be Artinian (even in the case of integral 
domains). In this section, I shall characterize reduced fully left idempotent left 
Goldie rings in terms of the following class of rings (cf. Theorem 1.6).

D e f in it io n . Л is called a left WCT ring if every complement left ideal of 
A is an ideal and every ideal of Л is a complement left ideal.

Right WCT rings are similarly defined.

Our first result will lead to a first information on the maximal left quotient 
ring of a left WCT ring.

P r o p o sit io n  1.1. The following conditions are equivalent:

(1) A is a left WCT ring;
(2) Every non-zero complement left ideal of A contains a non-zero ideal of 

A and every ideal of A is a complement left ideal;
(3) I f  I is either a complement left ideal of A or an ideal of A, then I is 

generated by a central idempotent;
(4) A is a fully left idempotent ring whose complement left ideals and ideals 

are finitely generated right ideals.

Proof.  Obviously, (1) implies (2).
Assume (2). Suppose T is an ideal of Л such that T2 = 0.
If V is a complement left ideal of Л such that r(T)® V is an essential left 

ideal of Л, then T V ^ V n r ( T )  = 0 implies V Ç r(T), whence r(T) is an 
essential left ideal of Л. By hypothesis, r(T) is a complement left ideal, which 
implies that r(T) = A, yielding T  = 0.

This shows that Л is semiprime. Then, for any ideal /  of Л, I n  1(1) = 0. Let 
К be a complement left ideal of Л such that (I®  1(1))® К is an essential left 
ideal of Л. Then IK  я  I n  К = 0 implies К £  r(I) = 1(1), whence I®  1(1) is an 
essential left ideal. Now since I®  1(1) is an ideal of Л, it follows that I®  1(1) is 
a complement left ideal, which yields /©/(/)  = Л. This proves that every ideal
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of A is generated by a central idempotent (inasmuch as A is semiprime). If 
О ф b e  A such that b2 = 0, since Z = 0, there exists a non-zero complement left 
ideal U of A with 1(b) n U  = 0. Now U contains a non-zero central idempotent 
u, which implies that ubel(b)nU  = 0, whence uel(b )nU  = 0, a contradic­
tion! This proves that A must be reduced. Let C be a non-zero complement left 
ideal such that С Ф l(r(C)). Then there exists a non-zero complement left 
subideal U of l(r(C)) such that C n U  = 0. Since l(r(C)) is a complement left 
ideal of A, it follows that U is a complement left ideal of A and therefore 
contains a non-zero central idempotent v. Therefore Cv ^  С n  V = 0 implies 
ver(C), whence v2 = 0 (because vel(r(C))), contradicting A being reduced. This 
proves that C is a left annihilator ideal, and therefore an ideal of A (inasmuch 
as A is reduced). But then, C is generated by a central idempotent. Thus (2) 
implies (3).

Assume (3). Then A is biregular, and therefore fully left (and right) 
idempotent. Also, any complement left ideal or ideal of A is a principal right 
ideal. Therefore (3) implies (4).

Assume (4). Let T be either a complement left ideal or an ideal of A. Then 
T  is a finitely generated right ideal and for any teT , te A tA t^ T t ,  which 
implies that A/Ta is flat. Therefore A/T  is a finitely related flat right A-module, 
which implies that A/Ta is projective. It follows that TA is a direct summand of 
Aa. Then we immediately have Z = 0 and since every complement left ideal of 
A is an ideal, we know that A must be reduced. Thus T is generated by 
a central idempotent and (4) implies (1).

Corollary 1.1.1. A left WCT ring is a reduced Baer ring.

Corollary 1.1.2. I f  A is left WCT, then A has a maximal left quotient ring 
Q which is left and right self-injective strongly regular.

Proof. We have seen A is reduced. Since A is left non-singular, it has 
a regular maximal left quotient ring Q, where AQ is the injective hull of aA. For 
any principal left ideal P of Q, if C = P n  A, then AP is the injective hull of AC 
and since AP is an injective submodule of AQ, it follows that C is a complement 
left ideal of A.

From (3) of Proposition 1.1, C = Ae, where e is a central idempotent in A, 
which yields P = QC = Qe. For any qeQ, since aA is essential in AQ, there 
exists an essential left ideal L of A such that Lq Ç A. Now for every beL, 
b(qe — eq) = (bq)e — (be)q = ebq — ebq = 0 (e being central in A), which yields 
qe = eq (inasmuch as AQ is non-singular). This proves that e is central in Q. 
Therefore Q is left and right self-injective strongly regular.

Corollary 1.1.3. I f  A is left and right WCT, then the maximal left quotient 
ring Q coincides with the maximal right quotient ring of A. (Apply [5, Theorem 
2.38].)

Corollary 1.1.4. The following conditions are equivalent: (1) A is a simple

18 — Comment. Math. 30.2
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left Ore domain; (2) A is a prime left WCT ring; (3) A is an indecomposable left 
WCT ring.

Applying [3, Lemma 18.34B] to Corollary 1.1.3, we get

C o r o l l a r y  1.1.5. The following conditions are equivalent: (1) A is either 
a simple left Noetherian domain or a reduced Artinian ring; (2) A is a left WCT 
left Noetherian ring whose proper prime factor rings are Artinian.

Recall that a left A-module M is divisible if M = cM for each 
non-zero-divisor c of A. A left A-module M  is called p-injective if, for any 
principal left ideal P of A, every left A-homomorphism of P into M extends to 
one of A into M. A is von Neumann regular iff every left (right) A-module is flat 
iff every left (right) A-module is p-injective. Flatness and p-injectivity are 
distinct concepts. However, (a) if I is a p-injective left ideal of A, then A/I is 
a flat left A-module; (b) if M  is a maximal left ideal of A which is an ideal, then 
aA/M  is flat iff A/M a is injective iff A/M a is p-injective (cf. also [7, p. 271, ex. 
14]). The class of p-injective modules is strictly between the classes of injective 
and divisible modules (cf. Remark 6 at the end). A is called left p-injective if aA 
is p-injective. Continuous rings considered here are in the sense of Y. Utumi 
[11]. Recall that A is ELT  (resp. ERT) iff every essential left (resp. right) ideal 
of A is an ideal [15]. ERT rings are right bounded [3, p. 49]. The next theorem 
will follow from [7, Corollary 11.3.2], [11, Lemma 4.1], Proposition 1.1 and the 
following results: (a) Reduced left p-injective rings are strongly regular; (b) Left 
continuous reduced rings are strongly regular; (c) If A is left WCT, then any 
prime factor ring of A is simple.

T h eo rem  1.2. The following conditions are equivalent for a left WCT 
ring A:

(1) A is reduced Artinian;
(2) A is von Neumann regular;
(3) A is left continuous;
(4) A is left p-injective;
(5) Every simple left A-module is flat;
(6) Every primitive factor ring of A is either ELT or ERT;
(7) A is semiperfect.

If A is a left Ore domain, then A has a classical left quotient ring Q which 
is a division ring. In that case, Q is the maximal left quotient ring of A. It is 
known that simple left Ore domains need not be right Ore [3, p. 105]. 
Consequently, Proposition 1.1 yields our first remark.

Remark  1. Left WCT rings need not be right WCT.

T h eo rem  1.3. I f  A is left WCT, then the maximal left quotient ring of A is 
a finite direct sum of division rings.
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Proof. If Q is the maximal left quotient ring of A, then Q is strongly 
regular by Corollary 1.1.2. If Г is a left ideal of Q, then T  is an ideal, which 
implies that U — T n  A is an ideal of A. Therefore U = Ae, where e is a central 
idempotent in A (Proposition 1.1), which implies that e is central in Q. Since aA 
is essential in AQ, it follows that AU is essential in AT, which implies that QU is 
an essential submodule of QT. But QU = Qe, which yields T = Qe. Therefore 
every left ideal of Q is a direct summand of qQ and by Corollary 1.1.2, Q is 
reduced Artinian, which proves the theorem.

Corollary 1.3.1. I f  A is left WCT, then the maximal left quotient ring is 
left and right WCT.

Corollary 1.3.2. A left WCT ring is left Goldie. (Apply [10, Theorem
1.6].)

Corollary 1.3.3. I f  A is left WCT, then A is right WCT iff A satisfies the 
maximum condition on complement right ideals.

Combining [2, Theorem 2.3], [5, Theorem 2.38], Proposition 1.1 and 
Corollary 1.3.2, we get

Proposition 1.4. Let A be a left WCT ring with maximal left quotient ring 
Q. Then A is right WCT iff AQ is fiat.

(Note that if AQ is projective, then A is a finite direct sum of division rings).
As before, Z denotes the left singular ideal of A.

Proposition 1.5. I f  A is a fully left idempotent ring satisfying the maximum 
condition on left annihilators and every complement left ideal of A is an ideal, 
then A is left WCT.

Proof. Since A is semiprime with maximum condition on left an­
nihilators, we have Z = 0. If b e A such that b2 = 0, there exists a complement 
left ideal C of A such that L = /(b)©C is an essential left ideal. Since 
Cb я  C n  1(b) = 0, we have C s  1(b), which implies L = 1(b), whence b e Z  = 0. 
This proves that A is reduced. Let T  be an ideal of A. Since A is reduced, 
Tnl(T) = 0 and it is easily seen that E = T© l(T) is an essential left ideal of A. 
By [6, Theorem], E contains a non-zero-divisor c. Since A is fully left 
idempotent, c = dc for some d e Ac A, which implies that 1 = de E, and hence 
E = A. This proves that any ideal of A is generated by a central idempotent. 
Thus A is left WCT.

Recall that a left Л-module M  is torsionfree if, for any non-zero-divisor c of 
A and any non-zero element v of M, cv Ф 0.

We are now in a position to characterize reduced fully left idempotent left 
Goldie rings.



496 R. Y u e  C h i  M i n g

T h eo rem  1.6. The following conditions are equivalent:
(1) A is a reduced fully left idempotent left Goldie ring;
(2) A is a fully left idempotent ring having a reduced Artinian classical left 

quotient ring;
(3) A is left WCT.

Proof.  If A is a reduced ring having a classical left quotient ring Q, then 
Q must be reduced [16, Proposition 1.5]. Therefore (1) implies (2) by [5, 
Theorem 3.35].

Assume (2). If A has a reduced Artinian classical left quotient ring Q, then 
A satisfies, in particular, the maximum condition on left annihilators. Also, Q is 
the maximal left quotient ring of A. Let C-be a non-trivial complement left 
ideal of A. If H is the injective hull of AC in AQ, then AC is an essential 
submodule of AH n  A, which implies that C = H n  A. Now AH is non-singular 
and since A has a classical left quotient ring, AH is torsionfree, and since AH is 
divisible (because it is injective), therefore H must be a left Q-module (cf. [8, 
Theorem 3.3]). Consequently, H is an injective left ideal of Q and H is therefore 
an ideal of Q. Finally, for any ceC  and ae A, we have caeH n  A = C, which 
proves that C is an ideal of A. Then (2) implies (3) by Proposition 1.5.

Assume (3). By Proposition 1.1, A is biregular, and therefore fully left (and 
right) idempotent. A is left Goldie by Corollary 1.3.2, and by Corollary 1.1.1, (3) 
implies (1).

C o r o l l a r y  1.6.1. I f  every simple left A-module is either p-injective or 
projective, then A has a reduced Artinian classical left quotient ring iff A is left 
WCT. (Apply [13, Proposition 6].)

C o r o l l a r y  1.6.2. I f  A admits a reduced Artinian classical left quotient ring, 
then the following are equivalent: (a) Any complement left ideal or ideal of A is 
generated by an idempotent; (b) A is fully left idempotent. (Apply Proposition 
1.1.)

It may be noted that in (1) and (2) of Theorem -1.6, the “fully left 
idempotent” property cannot be dropped (otherwise, any reduced ELT left 
Goldie ring would be necessarily Artinian!).

F-rings have been extensively studied by many authors (cf. [3]).

Remark 2. The following conditions are equivalent for a left F-ring A: 
(a) A is reduced left Goldie; (b) A is left WCT ; (c) All complement left ideals and 
ideals of A are finitely generated right ideals.

We add some more properties of WCT rings.

Remark  3. Let A be left WCT.
(1) The maximal left quotient of A is a flat right A-module and every 

p-injective non-singular left A-module is injective;
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(2) If A is left hereditary, then A is left Noetherian;
(3) If A is right WCT, then A is left hereditary iff every divisible left 

Л-module is injective;
(4) If every finitely generated non-singular left Л-module is projective, 

then Л is right WCT;
(5) If every p-injective right Л-module is injective, then Л is right 

hereditary, right Noetherian, right WCT.
Following [14], A is called a left WP-ring if every left ideal of Л not 

isomorphic to aA is p-injective. Applying [14, Proposition 1.9], Proposition 1.1 
and Theorem 1.2, we get

Remark  4. The following conditions are equivalent: (а) Л is either 
reduced Artinian or a simple principal left ideal domain; (b) Л is a left WP and 
left WCT ring.

The next question is motivated by Proposition 1.1.

Question: If every non-zero complement left ideal of Л contains 
a non-zero ideal and every non-zero ideal of Л -contains a non-zero com­
plement left ideal, is Л left WCT?

§ 2. Projective modules and p-injective modules. I now turn to rings whose 
projective modules coincide with p-injective modules by looking at a particular 
situation when a classical left quotient ring is quasi-Frobeniusean.

Proposition 2.1. Let A have a classical left quotient ring Q. I f  every 
p-injective torsionfree left A-module is a flat injective left Q-module, then Q is 
quasi-Frobeniusean.

Proof. Since any p-injective left Л-module is divisible [12], any p-injective 
torsionfree left Л-module must be a left Q-module [8, p. 140]. Let M  be 
a p-injective left Q-module. If P = Ay, ye  A, f :  P-+M  a left Л-homomor- 
phism, setting и = f(y), we may define h: Qy-*M  by h(qy) = qu for all qeQ. 
Suppose that qxy = q2y, q1,q2eQ- If <h = &Г1 alt q2 = b j 1 a2, at,b teA  
(i = 1, 2), then there exists a non-zero-divisor b3 in Л such that with 
c — b3b2bl , we get cqxeA, cq2eA, which yields ch(qt y) = cqt u = c q ^ (y) 
= f{cqry) = f{cq2y) = cq2f{y) = cq2u = ch{q2y), whence hfay) = h(q2y) (in­
asmuch as c is a non-zero-divisor). This proves that h i  s a  well defined left 
Q-homomorphism. Since QM  is p-injective, there exists w eM  such that 
h(qy) = qyw for all qeQ, which implies f(ay) = ayw for all aeA. This proves 
that AM  is p-injective. Since AM  is torsionfree, by hypothesis, M is an injective 
flat left Q-module. We know that any direct sum of p-injective left Q-modules is 
p-injective. Then any direct sum of injective left Q-modules is a p-injective left 
Q-module and therefore is injective. It is well known that Q is left Noetherian in 
this case. It follows that Q is a left Noetherian ring whose injective left modules 
are flat, which yields Q being quasi-Frobeniusean (for IF-rings, consult [9]).
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Classical left quotient rings in which projectivity coincides with 
p-injectivity may now be characterized.

T h eo rem  2.2. I f  A admits a classical left quotient ring Q, then the following 
conditions are equivalent:

(1) Projective left Q-modules coincide with p-injective left Q-modules\
(2) Every p-injective torsionfree left A-module is a flat injective left 

Q-module.

Proof.  Assume (1). Let N be a p-injective torsionfree left Л-module. Then 
aN  is divisible torsionfree, which implies that N  is a left <2-module [8]. jf 
P = Qt, teQ , t = b~1d, b, de A, then P = Qd. Let g: P-*N  be a left 
Q-homomorphism. If f: Ad-+N is defined by f(ad) = g (ad) for all aeA, then 
/  is a left Л-homomorphism, which implies that /  (d) = du for some и e N. Now 
for any qeQ, g(qd) = qg(d) = qf(d) = qdu, which proves that QN  is p-injective. 
By hypothesis, QN  is projective, which implies that QN is flat. Since any 
injective left Q-module is projective, Q is quasi-Frobeniusean and N  is therefore 
an injective left Q-module [3, Theorem 24.20]. Thus (1) implies (2).

Assume (2). Then Q is quasi-Frobeniusean by Proposition 2.1. Now every 
projective left Q-module is injective [3, Theorem 24.20] and hence p-injective. 
Since any left Q-module is a torsionfree left Л-module, it follows that every 
p-injective left Q-module, which is a p-injective torsionfree left Л-module, is an 
injective left Q-module. Therefore every p-injective left Q-module is projective 
and hence (2) implies (1).

C o r o l l a r y  2.2.1. The following conditions are equivalent:
(1) A is a left continuous ring such that every p-injective torsionfree left 

A-module is an injective flat left A-module;
(2) Projective left A-modules coincide with p-injective left A-modules.

It may be noted that Л is quasi-Frobeniusean iff every flat left Л-module is 
injective (cf. [3, Theorem 24.20]). But if every injective left (right) Л-module is 
flat, then A not be quasi-Frobeniusean (cf. [9, p. 397]).

Remark  5. Let Л be a left F-ring having a classical left quotient ring Q. 
Then A is left WCT iff Л is a reduced ring such that every p-injective torsionfree 
left Л-module is a flat injective left Q-module.

The next result generalizes the well-known fact that if Л is an integral 
domain having a classical left quotient ring Q, then Q is a division ring.

P r o p o sit io n  2.3. I f  A is a reduced ring having a classical left quotient ring 
Q, then the following conditions are equivalent:

(1) Q is left and right continuous strongly regular;
(2) Q is a Baer ring.
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Proof. Obviously, (1) implies (2).
Assume (2). For any qeQ, lQ(q) = Qe, e2 — eeQ. Since Q is reduced [16, 

Proposition 1.5], c = q + e is a non-zero-divisor in Q, and therefore is invertible 
in Q. Thus q = qcc-1 = q2c~1, which proves that Q is strongly regular. Then 
every complement left ideal of Q, being an ideal of Q, is a left annihilator, and 
therefore a direct summand of qQ. Since Q is regular, it is left continuous, and 
since Q is reduced, therefore (2) implies (1).

If A is semiprime left Goldie, then it is well known that every essential left 
ideal contains a non-zero-divisor. This motivates our last result.

Proposition 2.4. Let A be a ring with a classical left quotient ring Q and 
satisfying the following condition (*): if К is an essential left ideal of A and 
/ :  K ^ A  a left A-homomorphism, there exist a non-zero-divisor c of A and a left 
A-homomorphism h: K + Ac->A which extends f. Then AQ is injective and hence 
Q is the maximal left quotient ring of A.

Proof. Let E be an essential left ideal of A, and g: E-+Q a left 
Л-homomorphism. If К  = {yeE\g(y)eA}, then К is a left ideal of A. For any 
ueE, g(u) = b~1d, b, de A, and g{bu) = bg(u) = d implies that bueK. If /  is 
the restriction of g to K, then / :  К -+ A is a left Л-homomorphism and for any 
veE, v$K, we have g(v) ^ 0  and there exists a non-zero-divisor s of Л such 
that sg(v)eA. Thus O ^ sv e K , which proves that AK is essential in AE. 
Inasmuch as К is an essential left ideal of Л, by hypothesis, there exists 
a non-zero-divisor c of A such that with L = К + Ac, a left Л-homomorphism 
h: L-* Л extending /  can be found. Now QL = Q and if fi: QL-+Q is defined 
by fi(qw) = qh(w) for all qeQ, weL, then the left Q-endomorphism fiextends h. 
If fi(l) = teQ, for any veE, there exists a non-zero-divisor z of A such 
that zveK  and zg(v) = g{zv) — f{zv) = h(zv) — fl(zv) = zvh(l) = zvt, whence 
g(v) = vt. This proves that AQ is injective and Q is therefore the maximal left 
quotient ring of Л.

Corollary 2.4.1. The following conditions are equivalent:
(1) A is semisimple Artinian;
(2) Л satisfies condition (*) with a classical left quotient ring Q such that 

every essential left ideal of Q is a projective left A-module.

Remark  6. Let Л be a reduced fully left idempotent left Goldie ring. Then 
any divisible left (or right) Л-module is p-injective. Consequently, if Л is 
a reduced fully left idempotent principal left ideal ring, then the three concepts 
of divisibility, p-injectivity and injectivity coincide for left Л-modules. (But 
Л need not be von Neumann regular.)

Let me conclude by noting that in homological terms, the following 
connections between von Neumann regularity, flatness and p-injectivity hold.
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Remark  7. The following conditions are equivalent: (1) A is von 
Neumann regular; (2) For any cyclic singular left T-module C, 
Tor ̂ (A/I, C) = 0 for every right ideal /  of A; (3) For any cyclic singular left 
A-module C and any principal left ideal P of A, Ext^(A/P, C) = 0 and 
Ext\(A/P, A) = 0.
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