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Line method approximations to the initial-boundary
value problem of Neumann type for parabolic
differential-functional equations

Abstract. The non-linear differential-functional equation

(1) sz(x, Y) = f(x’ Y, Z(X, y)’ z, Dyz(x, ), Dyyz(x, J’))

with initial boundary conditions of Neumann type is treated with the longitudinal method of lines.
The corresponding line method has the form

(ii) D w™(x) = @,(x, Y™, AW™(x), w, AW™(x), 4D W™ (x))

where 4 and A® are difference operators with respect to the spatial variable. We prove that if the
method (ii) satisfies a consistency condition with respect to (i) and is stable then it is convergent.
The proof of the convergence of the line method is based on differential inequalities.

I. Introduction. Let # (X, Y) denote the ‘set of all functions defined on
X with values in Y, where X, Y are arbitrary sets. Assume that X, and Y, are
metric spaces. We denote by C(X,, Y,) the class of continuous mappings from
X, into Y,. : :

Let b=(by,....,b)eR", b;>0 for i=1,...,n and aq,1,€eR,
a>0,1,>0. We define E = (0, a] x(—b, b), E® = [—1,, 0] x[—b, b] and
E is the closure of E. If z: E9UE—-R is a function of the variables
(x, y) = (x, ¥y, ..., y,) and the derivatives D,,z, D,,, z exist for i,j=1, ..., n
then we write D,z = (Dy,z, ..., D, z) and D,z = [D,,, 2]} ;.. Let @ = ExR
XC(EQUE, R)xR"xR" and f* 2R, w: E”—R. Let us denote by 4E{™
and JE{Y,j=1,..., n, the sets

OES = {(x, y)€(0, a] x[—b, b]: y; = —b}},
b

Suppose that ¢;: dE;)—»R, y;: OESV R for j=1,...,n
We consider the differential-functional problem

OE™M = {(x, y)€(0, a] x[—b, b]: y,

7 — Comment, Math. 30.2
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D,z(x, y) = f(x, y, z(x, ), z, D,z(x, y), Dy,z(x, y)), (x, y)€E,
D,z(x, y) = @;(x,y), (x,»)€0E{), j=1,...,n,

DYjZ(x’ y)=l/lj(x9 y): (X, y)eaES‘“, J= 1’--'9 n,

z(x, y) = o(x, y), (x, )€ E©.

)

If xe[—1,, a] then we set
H.={&n=Ens-.,n)eEQUE: £ x}.

For ze C(E® UE, R) we define |z||, = max{|z(&, n)|: (¢, n)e H,}.

Assume that the differential-functional problem (1) is of Volterra type, i.e.
if xe(0,ad],z,zeC(EQUE,R) and z(&, n)=2(&, n) for (&, n)eH, then
f(x’ Y, D> 2,4, r)=f(x9é)/s ps2,4,71) for yE[”b, b], peR,qg=1(q;, ..., qn)
eR", r=[r;]};=1, reR".

The so-called longitudinal method of lines for parabolic equations consists
in replacing spatial derivatives by difference operators. Then the initial
boundary value problem for a parabolic equation is replaced by a sequence of
initial-value problems for ordinary differential equations. Line methods for
nonlinear parabolic differential or differential-functional equations with initial
boundary conditions of Dirichlet type were considered in [3], [11], [15]. An
error estimate implying the convergence of line methods is obtained in these
papers by using differential inequalities. In [1], [10], [13], [15] the authors
study the error due to the discretization in spatial variables of the Cauchy
problem for parabolic equations. In [13], [15] the approximated solutions
satisfy the growth-restricting condition |u(x, y)| < conste®’!, yeR. Similar
results for the Cauchy problem under the assumption Ju(x, y)| < const
x eBV?=° yeR, § > 0, were proved in [1]. In [10] the solutions of the Cauchy
problem are allowed to belong to a natural class of fast increasing functions. In
[14], [15] the author has used the line method as a tool for proving existence
theorems for the first boundary value problem and the Cauchy problem for
a non-linear parabolic equation in two independent variables. [6] deals with
the Cauchy problem for non-linear hyperbolic systems in two independent
variables; the author studies convergence conditions and an existence theorem
based on the line method.

The main problem in these investigations is to find a difference ap-
proximation which satisfies some consistency conditions with respect to the
differential problem and which is stable. The stability problems for line
methods were investigated by means of differential inequalities.

Finite difference approximation of the initial boundary problem of
Neumann type is found in [2], [7]-[9].

For further bibliography, see [5], [12], [15], [16].

The paper is organized as follows. We introduce a general class of line
methods for the problem (1). Using theorems on differential-functional ine-
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qualities, we establish sufficient conditions for the stability of the line method.
In the next part of the paper we prove that if the line method is stable and
satisfies a consistency condition with respect to (1) then it is convergent. We
give examples of line methods which are convergent.

The following comparison result is needed in our discussion.

LEMMA 1. Suppose that

1° the function F = (F,, ..., F,): [0, a] xR™ x C([—1,, a], R"™)>R™ of
the variables (x, &, 1), &€ = (&, ..., &.,), S non-decreasing with respect to the
Sunctional argument and satisfies the Volterra condition,

2° for each i, 1 <i < ny, F;is non-decreasing in &; forj=1,...,n,,j# 1,

. 3° there exists a function o =(0y,...,0,)eC([0,a]xR?, RY), R,

= [0, + ), of the variables (x, &) such that

(i) for each i, 1 < i < n,, 6, is non-decreasing in i forj=1,...,ny,j#1i,

(ii) the maximum solution of the problem n'(x) = o(x, n(x)), n(0)=0, is
nx)=0 for xe[0, a,

4° if xe[0,al, n,1eC([—14, al, R™) and n(t) <7(t) for te[—14, x]
then

F(X, ’1(3‘), n)_F(x’ fi(X), ﬁ) = —0(x3 I[ﬁ_n:ﬂ[—ro,x])a
where :

I[ﬁ—n]][—m,x] = (max{[ﬁ1(t)"l1(t)]3 te[~1,, x]}, cees
max{[ﬁno(t)_nno(t)]: te [_t()a x]}),

5° the functions a, fe C([—14, al, R™) satisfy the initial inequality
a(x) < B(x) for xe[—1,, 0] and the differential-functional inequality

D_a(x)—F(x, a(x), «) < D_B(x)—F(x, B(x), f), x€(0, a]

(here D_n(x) = (D_ny(X), ..., D_nu,(x)) is the left-hand lower Dini derivative of
n at x).

Under these assumptions we have a(x) < f(x) for xe[—1,, al.
Lemma 1 can be proved by the method used in [4], [9], [15].

IL. Discretization. For y = (y,, ..., ¥,), 3 = (1, ---» V> ¥, VER", we de-
fine y*j = (y,94,..., Vo7, We shall be using vector inequalities, with the
understanding that the same inequalities are satisfied between their correspon-
ding components. Letd =(d,, ..., d,)eR"and d, > Ofori=1, ..., n. Suppose
that for an h = (h,, ..., h,)€(0, d] there exists N =(N,, ..., N,) such that
N;,i=1, ..., n, are natural numbers and N = h = b. Denote by I, < (0, d] the
set of all 4 having the above property. In the next part of the paper we adopt
additional assumptions on [,. For h=(h,,...,h)el, we define
1hll = max; <;<nh;-
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Let m = (m,, ..., m,) where m;, i—l , n, are integers and J = {m:
—N<m<N}, J= {m —N+1<m 1} where —N+1=(—-N,+1,
,—N,+1), N—1=(N,-1, 1) For hel, we write y‘”"—

(", ..., y") = mxh where mef. For 1<j<n we deﬁne
j(m)=(m1""’mj—1’ mj+11mj+1,"-s mn)’
—jmy=(my, ...,mj_y,mi—1,mj,q,..., m).

Let jo(m) = —j°(m) = m and j***(m) = j(j'(m)), —j"**(m) = —j(—j(m)) for i =
0,1,2,... Set

B = {05, y™): xe[—10, 01, meT}, By = {(x, y™): x€[0, al, me ).

For a function w: EQUE, >R we write w™(x)=w(x,y™). Let
S={s—(sl,. 58 s;€{—1,0,1} for j=1,...,n} and §' = S\{0} where

=(0,...,0eR". We define the following operators A, 4=(4,,...,4),
A(Z) = [ASZ)]iJ 1-

If w: EUE,—»R, meJ and xe€[0, a] then

2 - AWM (x) = Y aw™*9(x),
seS
AW = L T bW, i=1,.m,
i seS
() )
Ag)w(m)(x) =713 Z Cgi’j)w(m-l_S)(x)a i,j= 1 s o0y My
hihj seS

where a,, b, c¢?eR.

We denote by Z(E{” UE,, R) the class of all functions w defined
on E{¥ UE, taking values in R such that w(-, y™)eC([—1,, a], R) for
each meJ. We set E,={(x,y™): xe[0,a],meJ} and W= WIE!."’UE;.

where we Z(E® UE,, R). The class of all elements W with we Z(E{® L
E,, R) is denoted by # (E¥? UE,, R) and Q, = E,xRx Z(E” UE,, R) x
R”x R™,

Let @,: Q,->R, hel,. Put

J ={meJ: my=—N,, if 1 < z<]thenm;é —N; and m; # N},

}7

JP={meJ: m;=N;, if 1<i<jthen m;# —N, and m; # N},

Jj?

OEL} = {(x, y™): x€[0, a], meJ{7},

OELR = {(x, y™): xe[0, a]l, meJV}  where j=1,...,n.
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Let |ly| = max;<;<.ly;] denote the norm of y=(y,,...,y,)eR" If
A =[A;]}j=1 is an nxn matrix then we define

[A] = max i A4

1<€i<n j=1

Assume that for each hel, we have ¢,=(¢n1,..., On): E,—»R",
Un=Wh1>--o> Unn): E,—»R" and o, E{¥—>R. Suppose that 1<k<
<min; <;<, N; and o = [o;] &= [d;], B=[Bil, ﬂ:= [Bi;]1 where oy, Bi:
[0,a]-R, for i=1,...,n, j=1,...,k and &;j, p;;: [0,a] >R for i=
1,..,m, j=0,1,..., k.

For we Z,(E{® UE,, R), xe[0, a] we define

4 AwW"(x)= i Otij(x)w(ij('"))(X)+h,- i ;%) @na (%, Yoy

i=1 j=0

meJ{7, i=1,...,n, and

k k
(5) B,-w(m)(x) = Z Bij(x)w(—ii(m))(x)+hi Z ﬁij(x)‘//h,i(x, y(-,‘j(m))),
j=1 j=0
meJiD,i=1,...,n.
We consider the following line method for the problem (1):

6 D, w™(x) = ®,(x, Y™, AW™(x), W, Aw™(x), AP w™(x)), xe[0, a], meJ,

wm(x) = w,(x, y™) for xe[—1,, 0], meJ,

where

(7)

wm(x) = A,w™(x) for xe[0,a],meJ{V,i=1,...,n,
wm(x) = Bw™(x) for xe€[0, a], meJ{), i =1,...,n
.If xe[—1,, a] then we set H,, = {(¢, y™)e E{¥ U E,: & < x}. The function &,
1s said to satisfy the Volterra condition if
®y(x, ¥, P, W, ¢, 1) = By(X, y, p, W, ¢, 7)

where w, we Z(E{® U E,, R), Wiy, . = Wlg, ., (x, , D, ¢, )e E, x Rx R" xR™.
For we Z(E{ U E,, R) we define |wl|,, = max{|w(&, y™): (&, y™)e H,,}.

Suppose that there exists a solution v of (1). We give sufficient conditions
for the convergence of a sequence {w,}, where w, are solutions of (6), (7), to the
solution v when the step size tends to zero.

IIL Stability of the line method. The following assumptions will be needed
throughout the paper.

AssuMmPTION H,. Suppose that
1° the function ®,: Q,—R of the variables (x, y, p, w, g, r) is non-de-
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creasing with respect to the functional argument and satisfies the Volterra
condition,
2° for each hel,, melJ, the function

@,(-, ¥, -): [0, a] xRx Z(EQ U E,, R)xR"xR” >R

is continuous,

3° the derivatives D,®,, D, P, = (D, P, s D,,®,), D,®, = [D,, P, =1,
hel,, exist on Q, and for each (x,y, w)eE, x Z(E®¥ UE,, R) the functions
Dp¢h(x> ya W, o, ‘)> Dq(ph(xa y, W, ')9 Dr(ph(xa ya W, ) are continuous
on RxR"xR",

4° for each hel, the matrix D,®, is symmetric on £,,

5° for P=(x,y,p,w,q,r)eR,, hel,, and for s€S' we have

LA B LA
(8) a,D,®,(P)+ ), —bPD, ®,(P)+ Y D
=1 h ii=1 hihy

6° there exist constants L, L, =0 such that |D,®,(P) <L, ||D,®,(P)l

< L,, [D,®,(P)] < L,, Pe®,, hel, and

Qh(P) 2 09

rij

[Dy(x, ¥, P, W, g, )= Py(x, y, p, w¥, ¢, 1) S LIIw*—w|,, on Q,
7° there exists ¢, > 0 such that hihj“1 <cg b, j=1,...,n, for hel,.

AssUMPTION H,. Suppose that the operators A, A and A® satisfy the
Sollowing conditions:

1° for each i,j=1,...,n we have Y (s =0, Y 5l =0,

2° a,20 for seS and Y sa,=1.

We define

b = max[ max ) [bY|, max ) |c®[].
1<j<n seS 1<i,j<n seS

AsSUMPTION H,;. Suppose that the operators A;, B;, i =1, ..., n, satisfy the
Jollowing conditions:

1° @4, ¥y E,—~R",

2° o = (g, .-, ) [0, a]—»R’;, Bi= (Bir> ---» Bu): [0, a]—)R’fF’ i=
1,..,n, and Yk o(x) =1, Y%, Bii(x) = 1 for xe[0, a],

30 (Zi = ({iiOa vy iik): [O’ a]_)Rk+1’ ﬂi = (ﬂio, feey ﬁik): [Os a]“—)Rk+1;
where i=1, ..., n

Now we state a result on the stability of the method (6), (7).

-

THEOREM 1. Suppose that

1° Assumptions H,—H; are satisfied,
2° w,e Z(EX L E,, R) is a solution of (6), (7),
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3° v,e Z(E{® UE,, R) and there exist functions y, y, 7,: I1,— R, such that
D, o™ (x)— @, (x, Y™, Avf™(x), B, 407 (x), AP v (x))| < y(h),

melJ, xe[0, a],

©) o™ (x)— 4,0 (0| < h25(h), med§), j=1,...,n, xel0, al,
i (x)— B,oi™ (x)| < hiy(h), meJD, j=1,...,n, xe[0, a],
and
(10) o, (x, Y™) =, (x, YN < yolh)  for (x, y™)e E.
Then
(11) 1on—Wallax < mu(x),  x€[0, al, where
ﬁ’o(h) for xe[—1,,0], L >0,
M(x) = (yo(h)+¥>e2“—% for x€[0, a], L >0,
(12) ‘
vo(h) for xe[~1y,0], L =0,
M) = {§(h)x+yo(h) for xe[0, a], L =0,
(13) y(h) = y(A)+ 2L |hl1*F() + Lo cobni(h) (1 + k),  hel,.

Proof. It follows from Assumptions H, and Hj that the solution w, of (6),
(7) exists on [—1,, a]. We prove that

(14) win(x) < viP(x)+n,(x), x€[0,a], mel.
To do this, we apply Lemma 1. Let

,(x, y™) = v,(x, Y™ +n,(x) for xe[0, a], meJ,

(15) _
5,0, Y™) = v,(x, y™)+1,(0) for xe[—1, 0], meJ,

and

(16) Oy(x, y™) = 4;54"(x)  for xe[0,a],meJ7),j=1,...,n,

By(x, y™) = B;of”(x) for xe[0, a], meJiP,j=1,...,n -
Then we have #,: E{” U E,—R. We first show that
(A7) DM (x) = B, (x, Y™, AT (%), B, AT (x), AP (%)),

xe[0, a], meJ,
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where o, = 0,} BB Write

RT3(x) = D, o™ (x) = By (x, y™, A (x), 8, 45 (x), AP (x)),
R (x) = D of(x) — By (x, y™, Avf”(x), B, 40§ (x), AP0} (x)),
Ri(x) = Dy (x, y™, A" (x), Gy, A0i™(x), 42 0f"(x))

— @, (x, Y™, AV (x), B, 405V (x), AP (x),

where xe[0, a], meJ. Then we have

(18)

(19) RiB(x) = R (x)+ RiB () +mi(x),  x€[0, al, meJ.
It follows from (9) that
(20) RM(x) = —y(h), melJ, xe[0,a].

Our next concern will be the estimate of R{%(x) for xe[0, a], meJ. Write
J¥={m=(my,...,m). —N;+2<m;<N;—2for j=1,...,n}.

We need only consider two cases.

(i) Suppose that me J*. It follows from (15), (16) and from Assumption H,
that Avf"(x) = A5 (x), AP vi™(x) = 4@ ™ (x), xe[0, a], and

@y s —Bpllnx < 1,000+ [RIZF(R),  x€[0, a],
and consequently.
(22) R (x) > —L{n,(x)+ 16, — vylla<]
> —2Ln,(x)—L||h||*y(h), x€[O0,a], meJ*.
(i) Assume that meJ\J*. We introduce the following notations:
S(m] = {seS: m+seJ}, S{[m]={seS: m+seli},
S{[m] = {seS: m+seJ{)} where i=1,...,n.
Then we have

(23) A () — AP () < mulx) Y 4y

seS[m]

a,[1 4,02 (x)— A, 55" 2 (0 + 112 7 (1]

m]

+ 2
i=1

seS{

)
+2 2 a[IBum () — B ()] + Al *F(A)]

n
i=1 se8(*){m}

< () + kI 9th),  xe(o, a].
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In a similar way we obtain

9 APW-aw = 3 [T B A 0)

seS{~)[m]

+ Y BP0 B )]

seS{*)m]

Hence, by (9), (24) and by Assumption H, we get

(25) 4,08 (x)— 4,8 ()| < cobllhlv(), j=1,...,n, x€[0,a].
Our next aim is to show that

(26) APV (x)— AP F(x)| < c3by(h), i,j=1,...,n, xe[0, a].

To show (26), we derive from Assumption H, the relation

AP o (x)— A?’ﬁ.’"’(X)

i [ Z cgi,j)(vgm+s)(x)_Aj,vﬁlmﬁ’s)(x))

hl ji=1 sesg,‘)[m]

+ Y (I — A%, 6, ..., n, xe[0, a].

seS§Hm]

Now, (26) follows from (9).
It follows from (21), (23)-(26) and from Assumption H, that
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R{M(x) > —2Ln,(x)—2LIIAI>y(h) — Lo cobny(h) (L +|lAlD), xe€[0, al, me J\J*.

Thus we see that
R () + REB(x) +1i(x) = —y(h)—2Lny(x) +ni(x),  x€[0, a], meJ.
The above inequality and (12), (13), (18), (19) imply (17).

It follows from condition 1° of Assumption H, that the right-hand sides of
(6), (7) are non-decreasing with respect to the functional argument and satisfy
the Volterra condition. Now we prove that they possess the quasi-monotone

property.

Suppose that w*e Z(EY UE,, R) and w, we F (E{® U E,, R). Assume
that xe[0, a], meJ are fixed and w™(x) = w™(x), w™(x) < w™(x) for meJ.

Suppose that meJ*. By standard manipulations we find that
B, (x, y™, AW™(x), w*, Aw™(x), 4P w™(x))

_Qh(X, y(rn)’ AW("‘)(x)’ w*, AW('")(x) A(Z)W("‘)(x)

seS’ l

= Z (W(m+s)(x)—w(m+s)(x))l:asD ?,(0)+ Z __b(x)D 8,(0)

1
£y i r (Q)] <0

i,j=1
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where Q is an intermediate point. Suppose that meJ\J*. Write S,[m] =
{seS': m+seJ} and W = w—W. Then

D,(x, Y™, AW™(x), w*, Aw™(x), 4P W™ (x))

—@,(x, y™, AW™(x), w*'AW‘""(x) AP (x))

={ Z (m+s)(x)+ Z [ Z Z x)w““"‘“»(x)

seSolm] j=1 seS{7Im] i=
o LA .
+ 5'Z > By ”(x)]}[ast(QH Y 4 Dai @b
seS{tm] i=1 i= i
£y —c('”D,,,cbh(Q”)}so
i,j= 1 z]

where ¢ is an intermediate point. This completes the proof of the quasi-
monotone property of the right-hand sides of (6), (7).

Since w,, is a solution of (6), (7), using (10), (17) and Lemma 1 we have the
estimate (14). In a-similar way we obtain the inequality

27) o (x)—1,(x) < wi(x), xe[0,a], mel.
Now, (11) follows from (14), (27), which completes the proof.

Remark 1. Theorem 1 enables us to get estimates of the difference
between solutions of two problems of the form (6), (7). Suppose that

1°d,: Q,—R,d,: E—>Rand 4, 4, 4? are operators given by (2), (3)
with a,, 5§i’,~c“§i”') instead of a,, b, 7, ~ _ .
2° @ Wy By R, @y = (Gnrs -5 P W= Wnas ..., Yin) and
oF = (i, ..., a}%): [0, a] >R, '
Bt =B, ... BR: [0, al->RY,
GF = (a%, ..., &%): [0, a] > R¥",
Bt =Bk, ..., Bf): [0, a] >R, where i=1,...,n,
3° Assumptions H,—H; are satisfied.
Consider the problem (6), (7) together with the following one:
D w™(x) = (x Y Awm™(x), W, Aw™(x), Z‘Z’w(""(x)),
(6) xe[0, a], meJ,

w(x) = @,(x, y™)  for xe[—1,, a], meJ,

wm(x) = A,w™(x) for xe[0,a]l,meJ{V,i=1,...,n,

wm(x) = Bw™(x) for xe[0,a], meJ{™, i=1,...,n,
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and A, B,,i=1,...,n, are defined by (4), (5) with ¥, ¥, a*, ¥, &,, ¥,

instead of «;, B;, &, Bi, Ons Wy
Denote by w,e Z(E{® U E,, R) the solution of (6), (7) and assume that

there exists a solution W, e Z,(E” U E,, R) of (6), (7). Suppose that there exist
7, 7> 7o: Io— R, such that

Dy(x, Y™, AW (x), Wy, AW (x), ADW(x))
— &, (x, y™, AWM(x), Wy, AWM (x), AP (x)| < p(h), x€[0, al, meT,

and

Wi (x) = WP (x)| < yo(h), xe[—1q, 0], meJ,
|4;Wm (x)— AWM () < hijth), meJ§),j=1,...,n,xe[0,d],
|B;Wi™ (x)— B,wim(x)| < k2y(h), meJ$D,j=1,...,n,x€[0,d].

Then |lw,—W,llnx < n,(x), xe[0, a], where n, is given by (12), (13). This
estimate follows from Theorem 1.

IV. The convergence of the line method. We prove that if the method (6), (7)
is stable and satisfies the consistency condition with respect to (1) then it is
convergent.

AssumpTION H,. Suppose that
1° feC(Q,R), e C(E®, R) and ¢;e C(PE{", R), ;e C(OE{", R), j =

=1,...,n,
2° there exists a solution v of (1) such that v|g is of class C3,
3° there exists y: I,—>R, such that

(28)  |®,(x, y™, Avf™(x), B, Avi™(x), APV (x))
—f(x, y™, A" (x), v, 0™ (x), APV ()| < y(h), x€[0, a], mel,
where v, = vlgo g, and
(29) lim y(h) =
Ik} >0
3° there exist v, y,: Io—R, such that
lo,(x, ™) —o(x, y™) < yo(h), (x, y™)e EfY,
o™ (x) — 4,08 (x)] < hiy(h), melJi),j=1,...,n,x€[0,a,
[v§™(x)— By (x)] < h¥y(h), meJP,j=1,...,n,xe[0,al,
lim yo() =0, lim 7(h) =

k|l =0 [1h]| >0
AssumpTION H,. Suppose that
1° fori,j=1,...,n we have ) .ss;b\’ = 6;; where &;; is the Kronecker
symbol,
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2° for i,j,i,j=1,...,n we have

Z Sj'cgl'j) = 0, 2 si'Sj'C_(‘l"’) = 5i’i5j'j7 for i #],

seS seS

Z Si'Sj'cgl"’) = 25,',"51']", for i =j.

seS
THEOREM 2. Suppose that

1° Assumptions H,—Hs are satisfied,
2° w,e Z(E{X UE,, R) is a solution of (6), (7).
Then lim, - |[|W), —ylls,x = O uniformly in xe[0, al.

Proof. It follows from condition 2° of Assumption H, and from
Assumptions H,, H, that there exist constants ¢, ¢,, ¢, such that

|A0™ (x) — o™ (x)| < collhll,
(30) 140 () =D, v ™) < e llill, i=1,....n,
IAijv(m)(x)_D)‘i)’jv(M)(x)l < CZtha la.’ = 1, RN
where x€[0, a], meJ. We define
R (x) = f(x, y™, Av™(x), v, 40 (x), 4Pv™(x))
"(ph(x, y(m)5 Av;l”‘)(x)’ ﬁh’ Av§1M)(x)9 A(Z)vﬁm)(x)),
RM(x) = f(x, y™, v™(x), v, D,v"™(x), D,,v"(x))
—f(x, , Av'™(x), v, 4v"™(x), "™ (x)), xe[0, a], meJ.
£ (5, Y, Ay (), v, 20™(x), AP0(x), x€[0, al, meJ

It follows from (30) that there exists y*: I, —»R_ such that |R{"(x)| < y*(h),
x€[0, a], meJ, and limy, o y*(h) = 0. Define y(h) = y(h)+y*(h), heI,. Then

D, o™ (x) — @, (x, Y™, AvfP(x), B, Avi™(x), AP v (x))|
< IR+ IRM ) < y(h),  xe[0, a], meJ,

and limy, .oy(h) =0. It follows from Theorem 1 that |jw,—uv,l| < n,(x),
x€[0, a], hely, where n, is given by (12), (13). Since lim-o#n,(x)=0
uniformly in xe€[0, a], we have our assertion.

V. Examples of line methods.

ExampLe 1. Let M ={(i,j): i,j=1,...,n,i#j} and suppose that
M) M™) < M satisfy the following conditions:

() MO AMD =g, MOUM®P =M,

(i) if (i, j)e M7 then (j, ij)e M7, v
Assume that the operators A, 4 =(4,, ..., 4,), 49 = [4P]} -, are defined by
31 Aw™ (x) = w™(x),
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(32) AW™(x) = (2h) " WD (x) —wTHM ()], i=1,...,n,
and
AP W™ (x) = (2h;h) ™ [— W (x) — WD (o) — (=) () — y(~I) ()
+ 2w‘""(x) 4+ p(Eem) (x) 4T Jm) (x)] , (i, J) e M +)’
(33) AP W™ (x) = 2h;h) ™ L [WE™ () + W) (x) - =5 () 4w ~HmD (x)
— 2w (50) — W HmD () (I (i e MO,
AP W™ (x) = (h) "2 [Wi™(x) —2w™(x) + W "™ (x)], i=1,...,n,

where meJ, x€[0, a]. Then Assumptions H, and H, hold.
The condition (8) for the operators A4, 4, A® defined by (31)—(33) is
equivalent to

n

1 1
(34) —%qu,-‘l%,(P)l-i-EDr,,-%(P)— 21 71D, (P > 0
J i= i
i#j

j= 1, ceey n, PE.Qh,
and

o9 D,,8,(P)>0 for (i, )e M), PeQ,,
<0

D, ®,(P) for (i, )eM'”), PeQ,.

ExAMPLE 2. Suppose that the operators 4 and 4® are given by (32) and
(33) respectively. Assume that

Aw™(x) = Z (W (x)+w(x)),  melJ, xe[0, a].
)= .

If

1 1 2
;Dp¢h(P)_;l_,|qu(ph(P)l +47Dr,,Pn(P)
j

n 1 )
—2% D @P) 20, j=1,...n PeQ,
i;j J
and (35) hold then () is satisfied.

ExXAMPLE 3. Suppose the operator T,: F (EX’ UE,, R)»F x(E® UE, R)
satisfies the following conditions:

() if weZF (EQ VE,, R) then T,we C(E?Q UE, R),

; gu) if zg(oc)(E(]‘;’ U E, R) and z,, = z|go,, 5, then lim .o (T,2,—2) = 0 uni-
ormly on v
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Suppose that feC(Q, R) and

¢h(x’ y» p9 W> q, r)=f(x’ ya P, ’I;,W, q, r) on Qh'

If the operators A, 4, A® satisfy Assumptions H, and Hs, then the
consistency condition (28), (29) holds.

Remark 2. Theorems 1 and 2 can easily be extended to weakly coupled
systems of parabolic differential-functional systems.
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