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On the structure of the IF*P2-solution sets of
Volterra integral equations in Banach spaces

Abstract. It was proved by Szufla in [6] that the set of I7-solutions of a Volterra integral
equation in Banach spaces is a compact R;, ie. it is homeomorphic to the intersection of
a decreasing sequence of compact absolute retracts. We prove a similar theorem for the set of
IP+P2.golutions.

Let D, = [0, d,], D, = [0, d,] be compact intervals in R, D = D, xD,,
and let E, F be Banach spaces. For a pair p =(p,, p,) of real numbers

P1, P, > 1 we denote by LP(D, E) the space of all strongly measurable functions
u: D— E with

lull, = (§ (f lutey, £)174de,)P/Prde,) P2 < oo,
Dy Dy
provided with the norm [u],.
Consider the integral equation

1) x() = f@®)+ | K(t, 5)g(s, x(s))ds,
D)
where D(t) = {teR*: 0< 1, <1;,,0<1,<t,} and t = (¢, t,)eD.
We assume that

1°p=(p1,P2),4=41-95), Py =g, >12and p, 2 g, > L let r=(r(, 1))
be such that 1/q, +1/r; =1 and 1/q,+1/r, = 1, and let m = (m,, m,) be such
that 1/p,+1/r;+1/m; =1 and 1/p,+1/r,+1/m,=1 (if p,=¢q; we put
m; = o).

2° fel?(D, E).

3° (s, x)—>g(s, x) is a function from D x E into F such that

(i) g is strongly measurable in s and continuous in x;

@) llg(s, x)| < a(s)+b|x|| for seD and xeE, where acL!D, R) and
b>0.

4° K is a strongly measurable function from D x D into the space Z(F, E)
of continuous linear mappings F — E such that |K(t, -)|| e (D, R) for a.e. te D
and the function t— k(t) = | K(¢, *)||, belongs to L*(D, R).
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5° H is a nonnegative function belonging to L*(D, R) and a(g(s, X)) <
< H(s)a(X) for se D and for each bounded subset X of E, where « denotes the
Kuratowski measure of noncompactness.

The purpose of this paper is to prove the following Aronszajn-type

THEOREM. If 1°-5° hold, then the set S of all solutions x€ I?(D, E) of (1) is
a compact R, i.e. S is homeomorphic to the intersection of a decreasing sequence
of compact absolute retracts.

This result extends a similar theorem from [6] concerning the case when
p is a real number > 1.

Proof. For simplicity put I = I?(D, E). Note that from 1° it follows that
each xe I belongs to L(D, E) and

03] Ixl, < wllxll,
where @ = d{/h“llmd%/qz-llpz.
Consider now a mapping F defined by
F(x)()= | K(t, 99(s, x(s))ds (xeI?, teD).

D(?)
By 1°, 3°,4° (2) and the Holder inequality, we get
IFey®1 < [ 1K, s)li(als)+blx(s)l)ds

D(t)
< k(®)(lall,+ bl xxpelly) < k(@) (llall,+bwll xxpel )

for teD and xel?, so that F(x)eIlf for xel”’.

We shall show that F is a continuous mapping [f — I*. Let x,, x,€ I and
lim, o, [|x,—X,ll, = 0. Suppose that || F(x,)— F(x,)ll, does not converge to 0 as
n—co. Then there are ¢ >0 and a subsequence (x,) such that

3) IF(x,)—F(xl,>e forj=1,2,...

and
lim x, (t) = xo(¢) for ae. teD.
j= o
By 3°(i) we have
lim |lg(z, x,, () —9g(t, xo@)| =0 for ae. teD.
jmw
Moreover, as lim,. |[x,—x,ll, =0, the sequence (x,) has equi-absolutely
continuous norms in I?. By 3°(ii) and (2) this implies that the sequence (g(-, x,))
has equi-absolutely continuous norms in 4D, F). Thus

lim {ig(-, x,)—g(", xo)ll, = 0.

j— o
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Since
IF(x,) = F(xo)ll, < Ikl 19 (-, %, )= a( X0}l

this proves that lim;.,, | F(x,)—F(xo)l, = 0, which contradicts (3).
For any positive integer n and xe€I? put

0 if te D),
[ K, 9)gl(s, x(s))ds if teD\D(d"),

D(t—dn)

Ex) (1) =

where d" = (d,/n, d,/n). Arguing as for F, it can be shown that E, is
a continuous mapping I’ —If and

“ IF.x) Ol < k@) (lally+ bl xxpel,) for xelP and teD.
Moreover, |
&) IFx)(®)—F,(x) Ol < k,(@)(lall; + bl xxpell,)
for xeI” and teD, where
k() = {k(t) i'f te D(d"),
" IK(t, ) xpenpe-amll, — if t€ D\D(").

Choose 6 > 0 such that |ky,|l, < 1/(2bw) for each measurable subset 4 of
D with u(A) < 8 (u the Lebesgue measure), and choose points a°, a!, ..., a’e D
in such a way that 0 =a°<a' <...<d’ =d and p(D(@*')\D(d)) < é for
i=0,...,j—1. Let ¢ be a positive number, ¢ = (2" =2)(c+ | f 1 ,+ lall ,/2bw)),
U={xel” ||x|,<c}, and let B={xel*: ||x|, < ¢}.

Put G(x) = f+F(x) and G,(x) = f+F,(x) for xe B. Then G and G, are
continuous mappings of B into I? and, by (5),

(6) lim [|G(x)—G,(x)|,=0 uniformly in xeB.
Now we shall prove that I—G,: B—I” is an into homeomorphism (I is

the identity mapping).
It is easy to see that for any x, yeB

x=G,(x) =y—G,(y) = x=y.
It is enough to prove the continuity of (I—G,) " . Suppose that x;, x,€ B and

lim x;— G, (x) = Xo + G, (x)ll, = 0.

Since

G,(x) () = G,(x)(t) = f(t) for teD(d"), we have lim | (x;—Xo) xp@nll, = 0.
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Further
x,(1) = %o () = (3;(8) — G, (x)(8) — xo () + G, (x0) (1))
+(F (¢ Xpiam) () = F (X Xpam) (1))
for te D(2d"\D(d") and i = 1, 2, ... By the continuity of F, this proves that

lim [|(x; — Xo) Xp2am\pam|l, = 0
1=

and, consequently, lim;.q ||(X;—Xo)Xpanll, = 0. Arguing similarly we get
lim;_ o l(x; — Xo) Xpaam |, = 0 for I=3,...,n, so that lim;,, ||x;—x,l, = 0.
This proves the continuity of (I—G,)~!.

Fix n. For a given ye U we define a sequence of functions x;,i=1,...,n,

by
x,&)=y@®)+f(@) for teD("),
s X for teD(id"),
%)= {0 for teD\D(id"),

x;(t) for te D(id"),
Xee1(l) = {y(t)+ f@)+F, X)) for teD((i+1)d")\D(id").
Then x,el? and
x,(t) = y()+ f(t)+ F,(x,)(t) for teD.
In view of (4) we have
™ I, < ly@ I+ I f Ol + k@) (lall,+bollx,xpwll,)  for teD.

We shall show that

lallg

%) (l=1,2,...,]).

@ 1% XD, < (241 —2)<C+ £+
It follows from (7) that
I%axp@nll, <IN, + 11,4 1kxp@y | (lall, + boll X, xp@yl )

lall,
2bw

< C+”f”p+ +%uanD(al)"p,

ie.

Irazmnl, < 2{c+ 11, + 5ok,

Suppose that (8) holds for some i, 1 <i <j. Then by (7)

"anD(a“")\D(a')"p < ||)’||p+ ||f||p+ kX D@t + 1)\Deat) “p(”a"q+ba) “anD(ai“)"p)
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<c+ifll, + (Hall +bo || x, XD+ @yl p + 0@ X, XDyl )

Hallq)
2bw

lla II,,

Sctlflpt+s

= 2"<c

so that

+% "anD(a”1)\D(a‘)“p+(2i_ 1)<C+ A1,

lall
2ba‘)‘ +‘% “anD(a" + 1)\D(a')[|p,

“""XD<a*“>\D<af>Hp<2”1( +I11 +]|a“)

Consequently,
"anD(aHl)”p < HanD(aiH)\D(af)”p"‘ ”anD(a")”p

< (2,.+,_2)< o, )

This proves (8). From (8) it is clear that x,eB. This shows that

(10) Uc(I-G)(B) for all n.

Before passing to further considerations we shall quote two lemmas. For
a given set ¥ of functions from D into E we define a function v by v(t) = «(V(t))
for te D, where V(t) = {x(t): xeV}.

LemMa 1 (Heinz [2]). Let V be a countable set of strongly measurable
functions D — E such that there exists pe (D, R) such that ||x(t)| < u(t) for
xeV and teD. Then the corresponding function v is integrable and

af{f x()dt: xeV}) <2 [o(t)dr.

Let «, denote the Kuratowski measure of noncompactness in L'(D, E).

LemMA 2 (Szufla [5]). Let V be a countable set of strongly measurable
Sfunctions D— E such that

(i) there exists pe (D, E) such that |x(t)| < u(t) for xeV and teD,
(ii) lim sup | | x(¢+h)—x(t)l dr =

h—=0 xeV D
Then o (V) < 2[pv(t)dt.
Now we shall prove that
(11)  (I-G)"Y(C) is compact for each compact subset C of L”.

Let C be a given compact subset of I and let (u,) be a sequence in (I —G)™*(C).
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Since u,—G(u,)eC, we can find a subsequence (u,) and zeC such that
lim |u, —G(u,)—z|l,=0.
k-
By passing to a subsequence if necessary, we may assume that
lim (u,, ()—G(u,)(®) = z(t) for ae. teD.
k=

Moreover, by the inequality
(12) IFx)®I < k@)(lall,+bwg) for xeB and teD

and the Egorov and Lusin theorems, for each ¢ > 0 there exists a closed subset
D, of D and M, > 0 such that u(D\D,) <e¢ and |ju, (t)] < M, for all k and
teD,. Let V={u,:k=1,2,...} and let W=F(V) It is clear that
(V) =a,;(W) and a(V(2)) = a(W(r)) for ae. teD.
Observe that for xe B and te D we have
IFG)@+h)—FO) < d, b,

dt, by = k(®)(llall,+ bwe) :_, if t+hé¢D,

’ K+ h, y—K(t, )|, (IIaH +bwg) if t+heD.
From 4° it is clear that | K| belongs to the mixed norm space I'! = [*[L'] (see
[3], pp. 401-402). Since C(D x D, Z(F, E)) is dense in the space L*'(Z(F, E))

of all strongly measurable functions u: Dx D — %(F, E) such that |lu|eL"!,
we have

where

lim | |K(t+h, )—K(, ), dt =

h—=0D

Consequently,
lim sup [ [Ix(¢+h)—x(1)lldt =

h—0 xeW D

From the above and (12) it follows that the function t —v(f) = a(V(t)) satisfies
all assumptions of Lemmas 1 and 2. Hence v is integrable on D and

(13) o, (V) = o, (W) < 2 [ v(r)dt.
D
Fix now te D such that k(t) < oo, and put T = D(t) n D, and P = D(t)\D,. Let
= {K(t,)g(-,u,): i=1,2,...}. As )
IK(t, )g(s, u, () < IK(2, s)ll(a(s)+bwM,)
for seTand i=1,2,..., by 5° and Lemma 1 we get

a(iZ(s)ds) j «(Z s))ds<2j IK (¢, )l a(g(s, V(s)))ds

2_f IK(t, I H(s)v(s)ds <2 | [IK(¢t, s)l| H(s)v(s)ds

D()
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Moreover, by 3° and the Hdlder inequality
FIK (@, 91 |lg(s, ()] ds < K (2, )xpll,(lall,+ bewo)

P

fori=1,2,... Since -
v(t) < alf Z(s)ds)+of | Z(s)ds),
T P

we obtain

v() <2 | K@, I H(s)v(s)ds + 21 K (2, )xp l,(llall, +bwpg).

D(t)

As ¢ is arbitrary, this shows that

(14) v() <2 [ |K(t, s)||H(s)v(s)ds for ae. teD.
D(t)

Now we shall prove that v(t) = 0 for a.e. te D. Choose n > 0 such that
2|H||,kx4ll, <1 for each measurable subset 4 of D with u(4) <#, and
choose b°, b*, ..., b*eD in such a way that 0 =h° <b' <...<b*=d and
(DG N\D(BY) <y for 1 =0, ..., k—1. From (14) it follows that

v(t) < 2k |H|  lvxpeyll, for teD(bY),
so that
loxpenll, < 21kxpenll, 1H L Hoxpens -

This implies that [ vxpeyl, = 0, ie. v(t) = 0 for a.e. te D(b'). Again from (14) we
obtain

v(t) <2k(t) | |K(, )| H()v(s)ds for teD,
D(\D(b?)
so that
o(t) < 2k | H|l  lvxpep2yppenll, for teD(b?).
Hence
lvxpenoenll, < 21kxpw2p el | HI 10X pe2n Dol 5

which proves that |[vxpe2ypeyl, =0 and, consequently, v(t)=0 for ae.
teD(b?). Arguing similarly we deduce that o(t)=0 for ae. teD(b),
I=3,...,k, ie. v(t)=0 for ae. teD.

Therefore, by (13), (W) = 0, ie. W is relatively compact in L'. On the
other hand, from (12) it follows that W has equi-absolutely continuous norms
in I”. Thus W is relatively compact in I?. From the above it follows that V is
relatively compact in I, which proves (11).

From (6), (10) and (11) we deduce that the mapping I—G satisfies all
assumptions of Theorem 7 of [1]. Therefore, the set (I —G)~1(0) is a compact R;.
On the other hand, if x € S, then analogously as for x, in the proof of (10), it can
be shown that x e B. Consequently, S = (I —G)~!(0). This completes the proof.
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