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On the structure of the LPbP2-solution sets of 
Volterra integral equations in Banach spaces

Abstract. It was proved by Szufla in [6] that the set of Lp-solutions of a Volterra integral 
equation in Banach spaces is a compact Rs, i.e. it is homeomorphic to the intersection of 
a decreasing sequence of compact absolute retracts. We prove a similar theorem for the set of 
Lpl,P2-solutions.

Let = [0, d j ,  D2 = [0, d2] be compact intervals in R, D = Dx xD 2, 
and let E, F be Banach spaces. For a pair p = {p1,p 2) of real numbers 
Pi, p2 > 1 we denote by LP(D, E) the space of all strongly measurable functions 
u: D-+E with

Nip = ( J ( J N*i» t2)\\pldtl)P2lPidt2)1/P2 < oo,
Ü2 D\

provided with the norm ||w||p.
Consider the integral equation

(1) x(t) = f(t)+ f K(t, s)g(s, x(s))ds,
D(t)

where D(t) = (tgR2: 0 < Tj < 0 < t2 < t2) and t — (tly t2)eD.
We assume that

1° P = (Pi, P2)> Q = (9i. <h)> Pi > <h > 1 and P i ^ (h >  !; let r = (rt , r2) 
be such that l/q1 + \/r1 = 1 and 1 jq2 + l/r2 = 1, and let m — (mt , m2) be such 
that 1/Pi + l/r± + l/ml = 1 and l/p2 + l/r2 + l/m2 = 1 (if we put
mi = oo ).

2° feU {D , E).
3° (s, x)-^6f(s, x) is a function from D x E  into F such that
(i) g is strongly measurable in s and continuous in x;
(ii) ||g(s, x)|| ^  a(s) + b||x|| for seD  and xeE ,  where aeLq(D, R) and 

b ^  0.
4° К is a strongly measurable function from D xD  into the space <£ {F, E) 

of continuous linear mappings F -+E such that || K(t, -)|| eU{D, R) for a.e. teD  
and the function t-*k(t) = ||K(t, • )||r belongs to LP(D, R).
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5° H is a nonnegative function belonging to Lm{D, R) and cc(g(s, 2Q) ^  
^  H(s)a(X) for seD  and for each bounded subset X  of F, where a denotes the 
Kuratowski measure of noncompactness.

The purpose of this paper is to prove the following Aronszajn-type
Theorem. I f  l°-5° hold, then the set S of all solutions xeLP(D, E) of (1) is 

a compact Rô, i.e. S is homeomorphic to the intersection of a decreasing sequence 
of compact absolute retracts.

This result extends a similar theorem from [6] concerning the case when 
p is a real number > 1.

Proof. For simplicity put LP = LP(D, E). Note that from 1° it follows that 
each x e l l  belongs to Lq(D, E) and

(2) \\x\\q < oo||x||p,

where со = d\lqi~llpid2lq2~1/P2.
Consider now a mapping F defined by

F(x)(t)— J K(t, s)g(s, x(s))ds (xeL p,te D ).
D(t)

By 1°, 3°, 4°, (2) and the Holder inequality, we get

\\F(x)(t)\\ ^  J \\K(t, s)\\(a(s) + b\\x(s)\\)ds
D(t)

^  k(t)(\\a\\q + b\\ xxoitAq) < k(t)(\\a\\q + bco\\xxm \\p)

for teD  and x e l l ,  so that F(x)eU  for xeL p.
We shall show that F is a continuous mapping LP->LP. Let x„, x0eLp and 

lim,,-^ ||x„ —x0||p = 0. Suppose that ||F(xn) — F(x0)||p does not converge to 0 as 
n -* oo. Then there are £ >  0 and a subsequence (xnj) such that

(3) l|F(x„.)-F(x0)||p > e for j  = 1, 2 , . . .  

and
lim xn.(t) = x0(t) for a.e. teD .

j-*ao

By 3°(i) we have
lim \\g(t, xnj(t))-g(t, x0(t))|| = 0 for a.e. teD .
j~*ao

Moreover, as lim,,.-^ ||x„ — x0||p = 0, the sequence (xn) has equi-absolutely 
continuous norms in II. By 3°(ii) and (2) this implies that the sequence (g( -, xnj) 
has equi-absolutely continuous norms in U(D, F). Thus

lim \\g(-, xn) - g f ,  x0)||e = 0.
/-►CO
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Since
l№ ^)-^(*o)llp  ^  l|fc|lPll0(-. xnj)-g (- ,  x0)||e,

this proves that lim ^* ||7r(jc ) — F(x0)||p = 0, which contradicts (3). 
For any positive integer n and x e U  put

F „ m )  =
0 if teD(dn),

J K(t, s)g(s, x(s))ds if teD\D(dn),
D (t —  dn)

where dn = {djn, d2jn). Arguing as for F, it can be shown that Fn is 
a continuous mapping LP->LP and

(4) l|F„(x)(t)|| < k{t)(\\a\\q + bco\\xxD(t)\\p) for x e U  and t sD .  

Moreover,

(5) ||F(x)(t)-F„(x)(t)|| ^  kn(t)(\\a\\q + b(ü\\xX m \\p) 

for x e LP and teZ), where

MO =
k{t)
J I ^ ( L  ' ) X D ( t) \D ( t  - d n) \ \ r

if teD(d”), 
if t e  D\D(d").

Choose <5 > 0 such that ||fcxA||p < l/(2bco) for each measurable subset A of 
D with ц(А) < ô ([i the Lebesgue measure), and choose points a0, a1 aj e D 
in such a way that 0 = a° ^  a1 ^  ... ^  aj = d and /z(D(ai+1)\D(a')) < Ô for 
i = 0 ,. . .  , j — 1. Let c  be a positive number, q = (2j+1 — 2)(c + ||/ | |p + \\a\\q/(2bwj), 
U = {x e LP: ||x||p c}, and let В = {x e U : ||x||p ^

Put G(x) = f+F(x)  and G„(x) = f + F n{x) for x e B. Then G and G„ are 
continuous mappings of В into Lp and, by (5),

(6) lim ||G(x)—G„(x)||p = 0 uniformly in x e B .

Now we shall prove that / —Gn: F-»LP is an into homeomorphism (I is 
the identity mapping).

It is easy to see that for any x, у e B

x - G n{x) = y - G n(y) => x = y.

It is enough to prove the continuity of (I — Gn)~1. Suppose that x i5 x 0e B and 

lim ||xf — Gn(x,) — x0 + Gn(x0)||p = 0.
i~* oo

Since

в п(х>)(*) = G„(x0)(t) = f(t) for tED(dn), we have lim ||(x,—x0)xD(<,n)||p = 0.
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Further

X i ( t ) - x 0 {t) = (x/0-G„(*J(0-*o(0+</,(*o)(0)

+  { F n(x iXD(d")) (0 -  F „ { x 0 XD(d">) (0)

for teD(2dn)\D(dn) and i = 1 ,2 , ... By the continuity of Fn this proves that

lim ||(Xj x o)XD(2dn)\D(dn) II p =  0

and, consequently, lim,.**, ||(х{ — x0)xD(2d")\\P = 0- Arguing similarly we get 
lim^oo ||(х£- х 0)хв(М")11р = 0 for l = 3 , . . . ,n ,  so that l i m ^  ||x ,-x 0||p = 0. 
This proves the continuity of (/ —Gn)_1.

Fix n. For a given yeU  we define a sequence of functions xf, i = 1, . . . ,n ,  
by

* i(t) = y(t) + f{t) for teD(dn),

Jx,(0 for teD(idn),
Xt+l[t) = b(t)+/(t)+F„(x,.)(t) for teD((i+l)d")\D(id").

Then xneLP and

(7) II*„(011 ^  \\y(t)\\ + 11/(011 + k m \a \\q + bco\\xnXDit)\\P) for teD .

x,(0 for teD(idn),
0 for teD\D(idn),

xn{0  = y(t) + / ( 0  + Fn(xn) ( 0  for teD .

In view of (4) we have

We shall show that

It follows from (7) that

i.e.

Suppose that (8) holds for some i, 1 ^  i < j. Then by (7)

\\XnXD(ai + i)\D(ai)Wp < IMIp+ \\f\\p+ II + »>\I><e‘>MMI« +  Ь(°  \\x«X№+ »)U
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< c + Ц/1|p + 2^ ( | | a\\q + bœ\\xni D(ai + ||p + bco||x„xD(ai)||p)

^  c+ ll/llp + ‘̂ ”  + ill:,cnZl)(a< + 1)\D(fl<)llp + (2l— 1)^C+

= 2l^c+  Il /  II p +  2 ^ ^  +  2 II *n XO(af + 1)\D(e‘) II p 5 

so that

II + 1 )\1)(аО II p  ^  2 l+ 1 ^ C +  | | / | | p +  2 b ^ J '

Consequently,
ЦхиХп(а1+1)11р ^  ll;XnXn(e‘+1)\D(ei)llp+ ll-̂ nXD(a‘)llp

<(2'+1-2)(c+imi1, + ^ .

This proves (8). From (8) it is clear that xneB. This shows that

(10) U a  (I — G„) (B) for all n.

Before passing to further considerations we shall quote two lemmas. For 
a given set F of functions from D into E we define a function v by u(t) = a(F(t)) 
for teD, where V(t) = (x(t): xeV}.

Lemma 1 (Heinz [2]). Let V be a countable set of strongly measurable 
functions D-+E such that there exists pel}{D, R) such that ||x(t)|| ^  p{t) for 
x e V  and teD. Then the corresponding function v is integrable and

a({J x(t)dt: x e  F}) < 2 J v(t)dt.
D D

Let ocj denote the Kuratowski measure of noncompactness in Ü{D, E).

Lemma 2 (Szufla [5]). Let V be a countable set of strongly measurable 
functions D-rE such that

(i) there exists p e L^D, E) such that ||x(t)|| ^  p(t) for x e V  and te D ;

(ii) lim sup j \\x(t + h) — x(t)\\dt = 0.
f t - > 0  x e V  D

Then а/F )  ^  2$Dv(t)dt.

Now we shall prove that

(11) (/ —G)_1(C) is compact for each compact subset C of LP.

Let C be a given compact subset of If  and let (un) be a sequence in (I — G)_ 1 (C).
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Since un — G(un)eC, we can find a subsequence (u„k) and zeC  such that

lim \\unk- G ( u J - z \ \p = 0.
k-+  QO

By passing to a subsequence if necessary, we may assume that 

lim (u„k(t) — G(unf)(t)) = z(t) for a.e. teD .
k~* oo

Moreover, by the inequality

(12) ||F(x)(t)|| ^  k(t)(\\a\\q + bcoQ) for x e B  and teD
and the Egorov and Lusin theorems, for each e > 0 there exists a closed subset 
De of D and ME > 0 such that n(D\DE) < e and ||u„k(t)|| ^  ME for all к and 
teD e. Let V= {иПк: к = 1 ,2 ,...}  and let W = F(V). It is clear that 
a1(V) = aX{W) and <x(V(t)) = a(W(t)) for a.e. teD.

Observe that for x e B  and teD  we have

||F(x)(t + h) — F(x)(t)|| ^  d(t, h),
where !

d(t h) = i k^ aK + b(°Q̂  if t + h$D,
K ’ '  j ||K ( t  + /i, -)-K (t, OHrflNq + bcoQ) if t + heD.

From 4° it is clear that ||X|| belongs to the mixed norm space Пл = L1 [Lr] (see 
[3], pp. 401-402). Since C(DxD, £F(F, E)) is dense in the space Lr,1(&(F, E)) 
of all strongly measurable functions и: DxD^>£F(F, E) such that \\и\\еПл , 
we hâve

lim J \\K(t + h, ■) - K ( t , -)\\rdt = 0.
h~>0 D

Consequently,
lim sup J \\x(t + h) — x(t)\\dt = 0.
h -> 0  x e W  D

From the above and (12) it follows that the function t-*v(t) = a(F(t)) satisfies 
all assumptions of Lemmas 1 and 2. Hence v is integrable on D and

(13) a1(F) = a1(fF K 2 ju (0 d t.
D

Fix now teD  such that k(t) < oo, and put T = D(t)nD. and P = D(t)\DE. Let
Z  = i=  1 ,2 ,...} . As

||K(f, s)g(s, u„.(.s'))|| sS ||K(t, s)||(a(s) + b(oMj

for s e T  and i = 1 ,2 , . . . ,  by 5° and Lemma 1 we get

a(J Z(s)ds) < 2 j a (Z{s))ds ^  2 J \\K(t, s)||a(gf(s, V(s)))ds
T  T  T

^  2j \\K(t, s)\\H(s)v(s)ds ^  2 f \\K(t, s)\\H(s)v(s)ds.
T  D (t )
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Moreover, by 3° and the Holder inequality

J I\K(t, s)|| \\g(s, nH|(s))||* ^  ||K{U -)ХрММ9 + Ь<ов)

for i = Since

we obtain

v{t) < dc(J Z(s)ds) + a(j Z(s)ds),

v ( t )^ 2  J \\K(t,s)\\H(s)v(s)ds + 2\\K(t,-)Xp\\r(\\a\\q + bcoQ).
D(t )

As s is arbitrary, this shows that

(14) v(t) ^  2 { \\K(t, s)\\H(s)v(s)ds for a.e. teD.
D(t)

Now we shall prove that v(t) — 0 for a.e. teD. Choose r\> 0 such that 
21 \Н\\т\\кХл\\Р < 1 for each measurable subset A of D with g(A) < q, and 
choose b°, b1, ..., bkeD in such a way that 0 = b° ^  h1 < ... < bk = d and 
fi(D(bl+1)\D(b1)) < ц for 1 = 0 , . . . ,  k — 1. From (14) it follows that

v(t)^2k(t)\\H\\n \\vxD(bi)\\p for teDib1),
so that

\ \ vXD(bl ) \ \ p  <Цкхо&)\\Р\\Щт\\»Хщъ')\\р-
This implies that Hf/D^qllp = 0» i-e. v{t) = 0 for a.e. teDib1). Again from (14) we 
obtain

so that 

Hence

v{t)^2k(t) J \\K(t, s)\\H(s)v(s)ds for teD,
D(t) \D(b»)

v{t)^2k(t)\\H\\m\\vxD(b2)\Dm\\p for teD{b2).

II UZz>(b2)\Z>(b1) Il p ^  2  WkXDtb^Dib^Wp \ \ H \ \ m l |^ n ( b 2)\D (bi)||p ,

which proves that \^Хщь2)щь^\\р — 0 and, consequently, v(t) = 0 for a.e. 
teD(b2). Arguing similarly we deduce that v(t) = 0 for a.e. teD(bl), 
I = 3 , . . . ,  k, i.e. v(t) = 0 for a.e. teD.

Therefore, by (13), a1(PF) = 0, i.e. W is relatively compact in L1. On the 
other hand, from (12) it follows that W has equi-absolutely continuous norms 
in If.  Thus W is relatively compact in If.  From the above it follows that V is 
relatively compact in I f ,  which proves (11).

From (6), (10) and (11) we deduce that the mapping I —G satisfies all 
assumptions of Theorem 7 of [1]. Therefore, the set (/ —G)-1(0) is a compact Rô. 
On the other hand, if xeS ,  then analogously as for xn in the proof of (10), it can 
be shown that xeB. Consequently, S = (/ —G)-1(0). This completes the proof.
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