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On the comparison of the density type topologies
generated by sequences and by functions

Abstract. In the paper we investigate density type topologies generated by functions
f satisfying condition lim inf @ > 0, which are not generated by any sequence.
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Through the paper we shall use standard notation: R will be the set of real
numbers, N the set of positive integers, £ the family of Lebesgue measurable subsets
of R and |E| the Lebesgue measure of a measurable set E. By ®4(F) we shall
denote the set of all Lebesgue density points of measurable set E (i.e. ®4(E) =

W =1¢) and by 7; the density topology consists of

{.T S R; limh_,0+
measurable sets satisfying £ C ®4(E). For any operators ®, ¥ : L — L we write
OCUifP(E)CY(E)forevery E € L. If® C U and ® # ¥ then we write & ¢ U.

We will consider two generalizations of Lebesgue density. First of them, called
a density generated by a sequence, was introduced by J. Hejduk and M. Filipczak
in [6]. For a convenience we will formulate definitions using decreasing sequences
tending to zero, instead of nondecreasing sequences going to infinity.

Let S be the family of all decreasing sequences tending to zero. We will denote
sequences from S by (a,) or by (a). Let (a) € S, E € £ and x € R. We shall say
that x is an {(a)-density point of E (a right-hand {(a)-density point of E) if

lim| Niz—a x+a]|:1(hm| N [x; 2 4 ay]

n—oo 2a, n—oo A,

—1).

By @ (E) ((DZ;> (E)) we will denote the set of all (a)-density (right-hand (a)-
density) points of E. In the same way one may define left-hand {(a)-density point of

E and the set (E). Evidently, ®q)(E) = (I)th (E)Nn P (E).
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In [6] it was proved that @,y is a lower density operator and the family
Ty ={E€L;EC Q) (E)}

is a topology containing the density topology 7;. Moreover for a,, = %, D) = Py
and 'T<a> = ,]'d

For any pair of sequences (a) and (b) from S we denote by (a)U(b) the decreasing
sequence consisting of all elements from (a) and (b). It is clear that (a) U (b) € S
and that

ProrosiTION 1 If (I)<a> C <I)<b> then (I)<a>U<b> = (I)<a>.

The second type of density we will observe are densities generated by functions.
We denote by A the family of all functions f : (0;00) — (0;00) such that

(Al) lim f(x)=0,

r—0t

(A2) liminf @ < o0,

z—0t

(A3) f is nondecreasing.

Let f € A. We say that «x is a right-hand f-density point of a measurable set F
if
et B
h—0+ f(h)

By @}"(E) we denote the set of all right-hand f-density points of E. In the same

way one may define left-hand f-density points of E and the set Py (E). We say that
x is an f-density point of E if it is a right and a left-hand f-density point of E. By
®;(E) we denote the set of all f-density points of E, i.e. ;(E) = CID}'(E) Ne, (E).
For any f € A, the family

0.

T; ={E € L;E C ®;(E)}

forms a topology stronger than the natural topology on the real line (see [1, Th. 7]
and [4, Th. 1)).

PROPOSITION 2 ([4, PROP. 4]) For each f,g € A, an inclusion Ty C T, holds if
and only if @y C @,.

In [2] and [3] it has been shown that properties of f-density operator ®; and
f-density topology 7; are strictly depended on I;IE inf @ In our paper we are

interested in topologies generated by functions f € A for which lim inf =) 5 .

x
z—0t+t ¥

The family of all such functions we will denote by A*.
Topologies generated by functions from A* and from A\ A! have quite different
properties (for example they satisfy different separation axioms - see [3, Th. 5 and
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Th. 7)]). On the other hand for any function f from A' properties of 7; are similar
to properties of topologies generated by sequences, so similar to properties of the
density topology 74 (compare [4, Th. 3], [9], [7] and [8]). Moreover

PROPOSITION 3 ([4, TH. 5]) For any sequence (s) € S, the function f defined by
a formula
f(x)=s, for x€ (Spi1;Sn]

belongs to A' and Oy = 0y.

COROLLARY 4 For each (a),(b) € S, an inclusion Tiay C Ty holds if and only if
Doy T Py
(a) (b)

In [4] we have constructed a function f € A' such that ®; # @, for cach

(s) € S. We will remain the definition of that function, omitting the proof, because
we will construct a similar one in Theorem 11.

EXAMPLE 5 ([4, TH. 6]) Let us define sequences

(w) =1(2,2,3,3,3,4,4,4,4,..),
<T> = (172’1’27371’2’3)47"')7

ap—1
ap =1, ap, = n2 forn>1,
wn
Ap—1
b, = apw, = for n > 1.
n
Evidently
. An—1 . n
lim = lim — = oo.
n—oo n n—oo an

The function f defined by a formula

| ap—1 for z € (by;an—],
f(z) = { bprn,  for € (ap;by].

belongs to A" and @y # @, for each (s) € S.

The function constructed above proves that the family {Tf, fe Al} is big-
ger than {T(S); (s) € S } We will show that there exist continuum topologies from

{Tp; f e AT\ {’T<S>; (s) € g‘} and that for any pair of sequences (a) , (b) € S satis-
fying T(,y & Tipy there is a function f € A! such that T,y & Ty G Ty and Ty # T
for (s) € S.

Set
x

falz)=f (a) and  sq (n) = as(n)
for f € AL, (s) € S and o > 0. Obviously f, € A and (s,) € S.
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PROPOSITION 6 If (I)f = (I)<s> then q)fa = (I)<s,,>-
PROOF It is sufficient to prove that for any measurable set E

0ed; (B) <= 0 ,(E).

Ifoe @Jfa (E) then

’(O;x)ﬂéEl‘ _ é|(0;ax)ﬂE'| 1;0;&-0
f(2) fa (az) ’
and so 0 € <I>;F (éE) = @Z;> (iE) Hence

(0350 () VE'| _ [(035(m)) N ZF'| o 0
Sa (1) s(n) ’

which gives 0 € (I)Xea) (E).

Conversely, if 0 € ®, , (E) then

0,

and consequently 0 € (I)ZZ) (éE) = <I>;f (éE) Thus

|(0;s(n)) N éE" (0584 (n)) N E| n—oo

(0:2) N £ _ ] (0:2) N E'| oo
o (@) 7 () |

which implies 0 € <I>}La (E). m

COROLLARY 7 If ®f ¢ {<I><S>; (s) € g} then @y, ¢ {<I><S>; (s) € §} for any a > 0.

THEOREM 8 If f is the function defined in Ezample 5 then @7, & s, for any
a>pB>1.

PROOF Since f is nondecreasing, we have f, < fz and ®;, C ®,. Let (n;) be an
increasing sequence of positive integers such that r,, = 1 for every 4. Define

E =R\ {J (Bbn,; Bbn, /) -
i=1

It is sufficient to show that

0€®y, (E)\ 2, (E).
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Without loss of generality, we can assume that for any n

Ba, <b, and b, < ab, < Bb,/w, < an_1.

If # € (Bby,; Ban,—1] for some i then

(0;2) NE'| _ Bour/Trs B B
0 < - - o=
fﬁ (l‘) f (%) An;—1 Wn,;

If z € (Bay,; Bby,] for some i then

[(0;2) N E| A, an, 1
2 = =
( ) fﬁ (.13) < f (%) rmbni Wn;

If x € (Bap; Bby—1] and n; < p < n;4q for some i then

. !
3) [(0;2) N EY| < <i'
fa (z) rpbp Wy
From (1)-(3) we conclude that 0 € ®;, (E).
On the other hand for x; = aby,

. / . —
|(0;2) N E| > |(Bbr;; by, ) _ (o= B) by, —a—f3>0,
and consequently 0 ¢ @5, (E). n

In [4, Th. 1] it has been proved that for each function f € A there is a continuous
function g € A such that @5 = ®,. Thus there is at most continuum different f-
density topologies. Combining this result with Corollary 4, Corollary 7 and Theorem
8 we obtain

COROLLARY 9 The family {Ty; f € Al}\{T@; (s) € g} has cardinality continuum.

In the next theorem we will compare densities generated by sequences. Let us
formulate a useful lemma from [5]. Fix (a) and (b) from S. There is an unique
sequence (k) of positive integers such that

b € (@, +1; ax,]
for each n with b,, < a7. From now on (k,,) will denote this unique sequence.
LEMMA 10 ([5, Th. 7]). The following conditions are equivalent
(a) (I><a> C <I><b>.
(b) For arbitrary increasing sequence (n;) of positive integers

akni

L. by,
< 00 or liminf —— = 1.
n; i—00 Ak, +1

lim inf
1—00
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THEOREM 11 Let (a),(b) € S. If Dy & Doy then there is f € A such that
‘b(b> C (bf C ¢<a> and (I)f # ‘I)<S> for <S> esS

PRrROOF By Proposition 1 we can asume that (a) is a subsequence of (b). Since
Doy SZ D3, there exists an increasing sequence (n;) of positive integers such that

kn,

by
L =00 and M =liminf —2— > 1.
n; =00 Ak, +1

lim

1—00

Let us denote
5 VM ; M <o
] 2 i M=o00"

Replacing (n;) by a subsequence we can assume that (k) is increasing and for
every i

> 3% and b <ﬂ51fM<oo

ag

(4) T >

bni ak" +1

Let us define

) U (bn,)

(a
Py =(1,2,1,2,3,1,2,3,4,...),
(07%

()=
(r) =
x)
)
)

a1 (z) = for x € (ant1;an],
g2 (x) = ¢, for x € (cpa1;cnl],
g3 (x) =b, for z € (bpy1;bn],

rib,, for z€ (aknﬁl;bm] ,

flz) = { g1 (z) for z¢ 2, (akniJrl;bni] .
Since 1 < r; <42, f € Al and g3 < g2 < f < g1. Thus
(I)(b) = (I)g3 C (I)<c> = <I>g2 C (I)f C (I)gl = <b<a>.

We will show that @ # &,y for (s) € S. Suppose, contrary to our claim, that there
s (s) € S such that

(5) Qp=Pyy.
Let us consider the sets

T = {Z € N;dpen sm € [ﬂgakni+l;ibni]} ,
R {ri;1€T}.

We will prove that the set R is bounded. Suppose it is not true and so 7' is infinite.
Let (¢;) be an increasing sequence consisting of all elements from T, i.e.
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Let m; be a fixed positive integer such that

Smi S [530’]97”' +15 tzbn11i| .
We will show that
(6) Sm; < 2bn,,

for almost every i. Suppose on the contrary that there is an increasing sequence (p;)
of positive integers such s, , > 2bmp' for every i. Hence

2
Wk, (=8 bmpi

=
S, tp;b

=tp, >pi =i

TLtpi
and so
. ak"tp,.
lim L =00
71— 00 Sm
P
and s
. . mp.
liminf —2 > 2.
1—00 ne,.
i

This, by Lemma 10, contradicts the assumption that ®y C @ and finishes the
proof of (6).
Now we show that there are real numbers ¢ > § > 0 such that

) Ak, +1 < Oby, < ebp, < spm,

nt

for almost every i. If M = liminf a:’i”ﬂ < oo then by (4) it is sufficient to set
71— 00 n;

€= % and § = % If M = oo, then obviously it is sufficient to show that for some

positive € inequality

€bn,. < Sm,

holds for almost every i. Suppose on the contrary that there is an increasing sequence
(pi) of positive integers such iSm,, < bn,, for every i. Hence

. bntp,

lim — = .
71— 00 Smp‘
i

and s
liminf — 2 > 3% > 1.
12— 00 ak"tpi""l
which also contradicts the assumption that ®y C ®, and ends the proof of (7).
By our assumptions, the set R is not bounded. Thus there exists an increasing
sequence (p;) of positive integers such that

lim ry, = oo.
1—00 g
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Put 00
4= (b, 3bns,, ) -

1=

=

From (6) and (7) it follows that

’A N (0’ Smm )’ > Ebn‘p{, B 6bntm _ e—4
Sy, 2b

\

|
vV
o

ntm

for almost every i, and so
®) 0¢ o, (4).
We will show that 0 € <I>}“(A'). Let z € (aj;a;-1]. If j = kn,, for some i then

AN N Ebnt ’
(9) ‘ (07 :L.) ‘ < Pq — i .
f(.]?) rtpi b"tpi rtpi

On the other hand if kp,,, < j <k, for some i then

AN (O2)] _ ey, _ e, e £
fl@) T e a S+
Jj+1 k Pi+1 (Z+ )

Mpiga

(10)

From (5), (9) and (10) it follows that 0 € ‘P}'(A’) = @E*;) (A”), contrary to (8). Hence
we conclude that R is bounded.
Let L be a positive integer such that

L > supR,

(pi) be an increasing sequence of positive integers for which

sz' =L
and
<1
B = U (ﬁb”m;bnl’i) .
i=1
Since ) )
|B N (O’b“pl) anz‘ B Bb”m _ 1- il >0
fn,) 7 rpba, L ’
(11) 0¢ o7 (B).

We will prove that 0 € @z;(B’). By definition of (p;), p; ¢ T for every i and
consequently

Sm ¢ [53@knpi+1;l7ibnm]
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for m,i € N. Let us consider any term s,, of (s). There is a positive integer j such
that s, € (aj;a;-1]. If j = kn,, for some i then

3
Sm < B Uk, +1 OF  Sm > pibn,,, -
In the first case we have

bn,,, o ! 1

|B N (O; 5m)| < bn”i+1
x X 5 X 7 PR
Pix1 (1+1)

Sm ag

(12) <

+1 ag

P "Pit1

and in the second

—_

. by,
ERICESI

13 <
( ) Sm pzb

< -
np, 4

Moreover, if k"p,v <j< kan, then

|B N (0; $m)] <bn,,i+l < bnwrl < 21 <_ 1 N
Piy1 (i+1)

(14)

X
Sm aj+1 Ok,

From (5) and (12)-(14) it follows that 0 € <I><+S> (B') = (I);{(B’), contrary to (11). m

COROLLARY 12 If Ty & iy then there is f € Al such that Ty C Ty CTiay and
the topology Ty is generated by no sequence.
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