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Notes on binary trees of elements in C(K) spaces

with an application to a proof of a theorem of
H. P. Rosenthal

Abstract. A Banach space X contains an isomorphic copy of C([0,1]), if it con-
tains a binary tree (en) with the following properties (1) en, = e2n + eap4+1 and
(2) ¢ maxgn ¢ jcont1 lag| < || Zi:;fl ager|| < C maxgn p,ont1 |ag| for some con-
stants 0 < ¢ < C and every n and any scalars asn,...,a9n+1_;. We present a proof
of the following generalization of a Rosenthal result: if E is a closed subspace of a
separable C(K) space with separable annihilator and S : E — X is a continuous
linear operator such that S* has nonseparable range, then there exists a subspace Y
of E isomorphic to C([0,1]) such that S|y is an isomorphism, based on the fact.

1991 Mathematics Subject Classification: 46B20, 46B25.

Key words and phrases: C(K)-spaces.

Binary trees with some algebraic and geometric properties are sometimes used
to describe properties of some special Banach spaces. For example we have the
following

PROPOSITION 0.1 Ifp > 1 and (e,) is a sequence in a Banach space X such that

(1) e, = Enteenst for cvery n,

2P
(2) there exist constants 0 < ¢ < C' such that for everyn and scalars agn, . .., agn+1_1
on+1_q 1 on+1_q on+1_q 1
p P
o( X o) <| ¥ aal<c( X lar)"
k=27 k=27 k=2n
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then the subspace lin{e, : n € N} of X is isomorphic to the Lebesgue space LP()\),
where X is the Lebesgue measure on [0,1]. Moreover, if ¢ = C, the subspace is
isometric to LP(X).

The proposition is an exercise in [3, p. 211]. A Banach space X contains a
subspace isomorphic to the space C([0,1]), if there exists a binary tree of elements
of X with properties (1) and (2) for the special case p = 0 of the fact above (see
Proposition 1.1). The author uses the fact in [7] and [8] to study properties of vector
valued monotonic functions and continuous linear operators on the space D(0, 1) of
all bounded scalar (real or complex) functions on the interval [0,1) that are right
continuous at each point of [0, 1) with left-hand limit at each point of (0, 1]. The aim
of the paper is to show the following generalization of the Rosenthal theorem (see
[10, Thm. 1], [11]) for subspaces of separable C(K) spaces with small annihilators:

THEOREM 2.1 Let K be a compact metric space. Let X be a Banach space.
Let E be a closed subspace of C(K) such that E+ = {z* € C(K)* : z*(E) = 0}
is separable. If S : E — X is a continuous linear operator such that S*(X*) is
a nonseparable subset of E*, then there exists a subspace Y of E isomorphic to
C([0,1]) such that S|y is an isomorphism.

If E = C(K) above, we get the Rosenthal theorem. We should notice that
Theorem 2.1 may be deduced from Proposition 3.6 of [2]. The Alspach result, in
fact, does not concern operators, it works with nonseparable weak* compact subsets
of E* and subspaces of E that are normed by them. We do not know whether
has someone noted the result in the form above. We present a proof of the result
based on quite simple and standard ideas. The reader may find another proof of
the Rosenthal result in [10] and more information about the subject in [12]. The
Rosenthal result was generelized by Lotz and Rosenthal in [6] for continuous linear
operators on separable Banach lattices with weakly sequentially completes duals.
The author find some problems with the proof of the Rosenthal theorem in [15]. The
Rosenthal result is a straightforward consequence of Theorem 2 in [15]. But the proof
of Theorem 2 in [15] applied in the part ¢) on page 178 the fact that the operator
T:C(X) — C(Y) is a difference of two positive operators, i.e. T =T+ — T,
where X and Y are perfect, compact, metric spaces. Operators that are differences
of two positive operators between Banach lattices form usually a small subspace of
the space of all operators. It is so also for operators between C'(X) and C(Y) (see [1,
p. 10] for an example of a continuous linear operator between C[—1, 1] and C[—1, 1]
that is not a difference of two positive operators).

The proof of Theorem 2.1 for E = C(K) is a little bit easier then the one
presented in the general case. The proof of the general case involves the Rudin-
Carleson theorem (see Proposition 1.2) that may be replaced by the Tietze theorem
it E=C(K) (see Remark 2.2).

There are quite many natural examples of subspaces of separable C'(K) spaces
with small annihilators. For example: the disk algebra A(D) i.e. the closed linear
hull of functions {z” : n € NU{0}} in C(T) where T = {z € C : |z| = 1}, the
closed linear hull of functions {27'23" : (n,m) € Z?\ 11} in C(T?) where II is a sector
in R? whose aperture is less then 7 (it is a consequence of the Bochner theorem
(see [5, p. 168])), any kernel of a continuous linear surjection from separable C(K)
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space onto ls (see [14, p. 187] for examples of such operators). Moreover, if E is a
closed subspace of a C'(K) space with small annihilator, then every closed subspace
F of C(K) such that £ C F has also small annihilator. The reader may find more
information about subspaces of C(K) with small annihilators in [9].

1. Preliminaries. Throughout the paper X will be a real or complex Banach
space and K will be a compact Hausdorff space. The closed unit ball of X is denoted
by Bx. For a given subset A of X its closed linear span is denoted by lin A. The
Banach space of all scalar (real or complex), continuous function on K equipped
with the supremum norm is denoted by C'(K). We identify the dual space C(K)*
with the Banach space ca(K) of all scalar countably additive Radon measures on K
equipped with the norm ||z|| = |z|(K), where |z| denotes the variation of z € ca(K).
The subset of ca(K) of all positive measures is denoted by ca’(K). For compact
metric spaces the families of Radon and Borel measures coincide. We say that
the measures p and v are singular and write 4 L v if there exists Borel subsets
A and B of K such that AN B =0, |u|(B) =0 = |[v|(A) and p(C N A) = u(C),
v(CNB) = v(C) for every Borel subset C of K. For a closed subspace E of C(K) we
denote by E+ = {v € ca(K) : (f,v) = [ fdv =0 for every f € E} the annihilator
of E. The subspace of ca(K) of all absolutely continuous measures with respect to
a given v € cat(K) is denoted by L'(v). There are more information about Borel
and Radon measures in [13].

We say that x is a condensation point of a subset A of a topological space L, if
every neighborhood of x contains uncountable many elements of A. In the sequel
we will apply the fact that an uncountable subset A of a separable metric space
contains a condensation point which is a member of A.

We start with the following result on copies of the space C'({—1,1}) in Banach
spaces. The reader may find its proof in [7, Fact 3]. According to the Milyutin
theorem for any compact metric uncountable space K the Banach space C(K) is
isomorphic to C({—1,1}").

PROPOSITION 1.1 If (e,) is a sequence in a Banach space X such that
(1) en = eapn + €ant1 for every n,
(2) there exist constants 0 < ¢ < C' such that for everyn and scalars agn, . .., agn+1_1

ontl_q

¢ max |ag| < H E akekH <C  max |agl,
2n Ch<2ntl = 2n Ch<2ntl

then the subspace lin{e,, : n € N} of X is isomorphic to C({—1,1}). Moreover, if
c = O, the subspace is isometric to C({—1,1}Y).

The idea of the proof of Theorem 2.1 is the following: we construct a sequence
(fn) C E with the properties (1) and (2) such that also the sequence S(f,,) has the
properties with another constants where S is the operator from Theorem 2.1. But
to do this we will need some more tools. First of them is the following version of
the Rudin-Carleson theorem (see [5, p. 57-58]).
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PRrROPOSITION 1.2 Let K be a compact metric space. Let E be a closed subspace of
C(K). Let S be a closed subset of K such that |v|(S) = 0 for every v € E+. Then
for every f € C(S) and a strictly positive p € C(K) with |f(s)| < ¢(s) for every
s € S there exists g € E such that g|ls = f and |g(t)] < p(t) for every t € K.

The next tool is the following

PROPOSITION 1.3 Let K be a compact metric space. Let E be a closed subspace of
C(K) such that E+ is separable. Let A\ € ca™(K) be a measure such that E+ C
LY()\). Let Ty be the set of all countable ordinals. If L is a bounded, absolutely
convex, nonseparable subset of E* = ca(K)/E* in the norm topology of E*, then
there exists € > 0 such that for every 0 < 6 < € there exists a subset {x, : v € T'g}
of ca(K) such that

a) z,+ Et € L and ||z, | = ¢ for every v € T,
b) for every B € Ty there exists a Borel subset Ag of K such that
|za|(Ag) =0 for every a < B, |xa,2sll >€—96, AAg)=0.

The proof of the fact above is very similar to the proof of [10, Lemma 4], but for
the sake of completeness we present it here.

PRrROOF Since L is a nonseparable subset of E* in the norm topology of E*, there
exists ¢ > 0 and {y, : v € Iy} C L such that

Yo — ysll = 2¢
for every a,3 € Ty, a # 3. Let 0 < § < e. Let ¢ : ca(K) — ca(K)/L'(\) be

the quotient map. For every v € Iy there exists a z, € L = (sup{|jz| : = €
L} + 1) Bea(xy N g~ (L) such that ¢(z,) = y,. Consequently,

[2a — ]| > 2¢

for every «a, 3 € Ty, a # 3. For every measure y € ca®(K), the space L' (u+ \) is a
separable subspace of ca(K) (by the Lusin theorem (see [13, Thm. 2.23]) measures
{f(u+X): f € C(K)} form a dense subset of L!(y+\)). For a given x € ca(K) and

v € ca® (K) we denote by %V the Radon-Nikodym derivative of & with respect to v.

The set {%(;H—)\) : 7 € Ty } has a condensation point ddﬂ(;ﬁ—)\) € L'(u+N)

(u+X)
for some 7y € I'g. Hence there exists o € I'y such that

d(l‘a _x’Yo)
dlra =220, 4y <
H Ay WA
Then
2e To — Ty _ > 2e To =T
elr, H Bl =g,
[Ta =25l 2 [0 — Tyl 2
(o — a) A(wq = )
o= - A) Ly, xo— - A) LA,
T 5U'YO d(/-//‘i’)\) (:LL+ ) M x x’Yo d(M+/\) (u’+ )

5 d(za — x+,)

|y (o =~ S e ) > e
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Applying the transfinite induction, the fact above and the fact that every separable
subset of ca(K) is contained in L' (v) for some v € ca™ (K) we show that there exists
a subset {x, : v € I'o} of L with properties a) and b). n

Let (K, p) be a compact metric space. We denote by K(K) the space of all
nonempty closed subsets of K equipped with the Hausdorff metric i.e.

dyg (A, B) = max(sup inf p(z,y),sup inf p(z,y)).
(A, B) (xegyEBp( ), sup inf, p( Y))

It is well known that ((K),dp) is a compact metric space. The reader may find
more information about I(K) in [4, Problems 2.7.20, 3.12.26 and 4.5.22]. In the
sequel we will need the following fact.

PROPOSITION 1.4 Let (K, p) be a compact metric space. If U is an open subset of
K, then {A € K(K): AC U} is an open subset of K(K).

PROOF For every closed subset B of U 0 = inf,cx\yinfyep p(z,y) > 0. Conse-
quently, {4 € K(K) :dy(A,B) < $} C{AeK(K): AC U} n

In the proof of Theorem 2.1 we will need the following technical result.

PROPOSITION 1.5 If (f,) is a sequence in a Banach space X such that

for41 = fr — for
for every k € N, then

a)
10g2 2lk'+12

for=Ffi— > forirai-o
=1

for every k, where I € 2N U {1} is the smallest natural number such that
(I +1)27 =2k + 2 for some j € NU {0},

b) in the descriptions of all members of the set { fon,..., font1_1} forn € N every
function from the set {f; : j = 2,4,...,2""1 — 2} appears exactly two times:
once with plus and once with minus and the function fi appears only once.

PROOF a) The formula is clear for k = 1 and k = 2,3. For 2" < k < 2"*! we apply
the mathematical induction with step 2™.

b) Since {fs, f3} = {f2, f1 — f2}, the fact is clear for n = 1. Applying the
mathematical induction and the fact that {fax, for+1} = {for, fx — for} for every
2" < k < 2! we show the fact for each n € N. =

2. Main results. Now we are prepared to show our main result.
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THEOREM 2.1 Let K be a compact metric space. Let X be a Banach space. Let E be
a closed subspace of C(K) such that E+ = {z* € C(K)* : 2*(E) = 0} is separable.
If S: E — X is a continuous linear operator such that S*(X*) is a nonseparable
subset of E*, then there exists a subspace Y of E isomorphic to C([0,1]) such that
Sly is an isomorphism.

PROOF We use the mathematical inducton to construct a sequence (f,) C F with
the following properties:

(1) fa = fon + font1,
(2)

ontl_q
. max |ag| < H Z akka <4 max |agl,
||SH 2n<k<2n+1 P 2n<k<2n+1
(3)
gn+1_
<|ls( S wn)|<uis
¢, max o] < | 3 k)| < 1Sl qay ol
for every n and scalars agn,...,aon+1_; and some constant ¢ > 0. First, let us

note that if we find a sequence with property (1), then we only need to show the
right-hand side inequality of (2) and the left-hand side inequality of (3). It is a
straightforward consequence of the continuity of S

n+1l __

2
¢ max |ag| < HS( Z akfk>H < ||S||H Z akka <4|S|| max |agl
k:27b k:2’”.

2'7L<k-<2n+1 27L<k<2n+1

n+1l__

Let L = S*(Bx~). It is clear that L is an absolutely convex weak+ compact subset
of ca(K)/E+. We assume that L is a nonseparable subset of ca(K)/E" in the norm
topology of ca(K)/E+. Let A € cat(K) be a measure such that E+ C L*(\). Let
q : ca(K) — ca(K)/L'()\) be the quotient map. Let L = ¢~ (L) N {u € ca(K) :
lell < 1+ sup{||z|]] : © € L}}. Let T’y be the set of all countable ordinals. By
Proposition 1.3 there exists € > 0 such that for every 0 < § < ¢ there exists a
subset {z, : 7 € To} of L with properties (1) and (2) of Proposition 1.3. Fix
0 <6 <min{4, £}. Then there exists a subset {2, : v € [y} of L with the following
properties

a) q(vy) =z, + E+ € L and ||z, = ¢ for every v € Iy,

b) for every 8 € T'y there exists a Borel subset Ag of K such that

1)
|zal(Ag) = 0 for every a < 8, |Ixa,25l > €= 15, A(Ap) = 0.

For every v € T'y we find a continuous function g, € C(K) such that ||g,|| <1 and
lgyzy — [24|| < & (equivalently, [g,2+|(K) > [lz4]| — &). It is a straightforward
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consequence of the Hahn decomposition theorem (see [13, Thm. 6.12]) and the Lusin
theorem.

First step. For every v € I'y there exists a compact subset B,ly of K such that
B, C A, and |z,|(B)) > ¢ — 2. Since K(K) x Be(g) is a separable metric
space, there exists a condensation point (B] ,g,) of the set {(Bl,g,) : v € T'o}
in K(K) x Be(k), where 71 € TI'p. Let U; be an open subset of K such that
B,ly1 C U;. By Proposition 1.2 there exists fi € E such that fi|lp, = g5,
If1]l < 1and |f1(2)] < g for every t € K \ Uy. Let V] be an open subset of K such
that B C Vi C Vi C Uy and |f1(t) — g4, (t)] < S for every t € Vi. Let I'y = {y €
Lo:y>m,B) cV, l9+[55 = 9 7 llcar) < g}. Applying Proposition 1.4 it is easy
to see that the set I'y is uncountable.

Second step. Let B(a) = min{y € T; : v > a} for every a € T';. Since
'y C Ty, B(«) is well defined member of I';. Since measures x4, Tq = XAo\Ag (o) Tar

XAp(ayTB(a) are singular, we find compact subsets B2, Bg of V4 such that

(@)
2 3 2 3
BamBﬁ(a) :(Z)a Ba CAOU Bﬁ(a) CAB(O‘)’
) 1)
ral(B) > e = 5 lmsl(Bia) > e = [mal(Bl) =0

Since K(K)? x B2 is a separable metric space, there exists a condensation point

c(V1)
(33273337972|V1’973‘V1) of the subset {(B2 Bg(a ga|71, 98(a) |71) o€l a>m}

of K(K)? x 32 o) where v9,73 € Ty and 11 < 72 < 73 = B(72). Let Us, Us
be open subsets of K such that Uy N Us = @ and B CcU; Cc Vjforj=23.
By Proposition 1.2 there exmts f2 € FE such that f2| B2, = g72| B2, f2l Bs, =0,
[fo]l < 1 and |fo(t)] < 455 for every t € K\U2 Deﬁne fs = fi — f2. Then
5O < A0 = 98]+ a2, (1) = 9,0 (8)] < § for every ¢ € B2, o) = 9, (8] <
LF1(8) = g9 ()] — L9 (1) — g ()] + 1ale)] < & Tor every ¢ € B, Tet Va, V3 be open
subsets of K such that B] C V; C V; C Uj for j = 2,3 and |f2(t) — g,m( )| < =
for every t € Va, |fa(t)] < 135 for every t € V3, and |f3(t) — g+, (t)] < & + 25 for
every t € Vs, |f3(t)] < %—i— 4%2 for every t € V. Let I'; = {y €Ty : v > v, B] C
Vi llgvlvr = 94, [ lle ) < 225} for j = 2,3. According to Proposition 1.4 sets I's,
I's are uncountable.

Nezxt steps. Suppose that we are able to construct sets I'y,...,T'gn_1 for some
n € N. Applying consideration similar to the one in the second step for every k =
2n—1 .., 27 —1, we are able to construct measures Trgps Tryoryr € Ly Y2k, Yort1 € Tk,

Yor—1 < Yok < Yak+1, honempty compact subsets Bwk,B?Yf;r ! of K, open subsets
Usg, U2k+1 of K such that Uy, N U2k+1 = () and

, — , d
BJ CA,, Bl CcUCcU;CVy, |zy,[(B])>e— ye)

for j = 2k, 2k+1. Then |g,, (t) — g+, (t)| < 125 for every t € Vj, where j = 2k, 2k + 1.
By Proposition 1.2 for every k = 2771, ... 2" — 1 there exists for, € F such that
Farlpzs = gralmzs s forlpzin =0, ||f2k|| < 1 and [fo(t)| < gy for every ¢ €
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K\ Usg. Define forr1 = fr — fox. According to Proposition 1.5

2k+42
log, T

foerr=fi— Y foraia

j=1

where | € 2N U {1} is the smallest natural number such that (I + 1)27 = 2k + 2
for some j € N. It is clear that if ;s € N and r < s, then Us; C U, if and only if
s € 2™y, 2mr+2m 1] where m is the integer part of 10g2 . Since k = 2P~ 1[+2P71—1

where p = log, 2 l+1 Vi CViand Vi NUgsp0i o =0 for j=1,...,p—1. Hence

[For1 (O] < 1fi(8) = g7 (O] + 195 () = Gryare ()] + 1921 (8) = F2r (1)

log, 2lk++1271 5 5 log, 2;14&271 5
+ Z | fas110i 2(t)] < o Tam T Z PR ESTEOTY

j=1 Jj=1

for every t € Bm and
10g2 2;«::—12
| fort1(t) = G O] < LAi()) = 9 (D] + 197 (D) = G D1+ Y [ fairg2i—2(D)]
j=1
58 &
Smitmt X pEvn

J=1

for every t € Bgi“ktll Let Vag, Vapi1 be open subsets of K such that nyj cV;C
V; C U; for j = 2k,2k + 1 and

log, 2lk+2
+1 5

[ for () = g ()] < 35 and |forsa (B)] < & + Z ey forevery te Vor,

log, 22 5
[ for(8)] < g5 and | forg1(8) = Gropss ()] < 21 + Z FEIEETRCTY for every t € Vopt1.
j=1

Let Tj = {y € 1 : v > 75, B], C Vj,llgy — 9y, o) < ©03) for j = 2k, 2k + 1.

Accordlng to Proposition 1.4 sets I'ag, I'ogy1 are uncountable.

Now we show that the right-hand side inequality of (2) holds. Let h,, = i:;_l | fx]-

It is enough to show that h, <3+ 7—6 Let us note that

1+24+ % iftelhul,

ha(t) = | f2(0)] + |f1(8) = fa(8)] < {3 i ¢ Vo UVal

First we show that
2m—1

ho(t) <14~ +Z42k2
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ontl_q
for every t € Uy_on = Vi If forp1 = fi — Z] 1 foiryoi_o where p = log, 2111+12 and

I € 2N U {1} is the smallest natural number such that (I + 1)2/ = 2k + 2 for some
j € NU {0}, then
2k42

log, T+1

1) 1)
|f2k+1(t)|<1+ﬂ+ Z FPESTE
=1

for every t € Voj11. Let us note that {2k + 1} UUY_, 2777 (271 + 27 —2),2P77 (21 +
2 —2) 4 2P — 1] = [200,2P0 + 2P — 1). If j € [2™(27] + 2" — 2),27(27] + 2 —
2) + 2™ — 1] where r = 1,...,p and m = p — r, then Vi C Varigor—o2. Moreover,
Usir 14251 —2 N Usizyyois o = 0 for every ji,j2 € {1,2,...,p}, j1 # j2. Hence

[forr1 O] < 1fi(#) = 97 (D] 41950 () = Grori oo (O F (9o 5 (8) = foripar—2(t)]

log, z++1 5 log, 2116-%—_*-12 )
+ Z | foitqai—a(t)] < 1 + Z 1274229

Jj=1,j#r
for j € [2™(271 + 2" — 2),2™(2"] + 2" — 2) + 2™ — 1] and every t € V;, and

2k42
log, I

1) 0
| for41(t)] < ) + Z PEETTE
j=1

for j € [27,2"F1 — 1]\ [2P,2P] + 2P — 1] and every t € V;. When we gather together
the estimations above and we apply Proposition 1.5 b), we get

n+1l__
for every t € U?:Qn ! V;. The estimations show also that

5 A= 35 76
_ < = = <
hn(t) |fk(t)| ] + i 4219 < 20

n+1_
for every k € [27,2"T! — 1] and t € U? on J;kV We show now applying the
mathematical induction that

2" —1
ha(t) <3+ = +Z42k2

n+1l__
for every ¢ € K and n € N. It is clear that hn+1 = i o | forl + 1 fr — forl-

Applying the following facts: Usx C Vi, |far(t)] < 42k2 for every t ¢ Us, and
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k:2”,...,2”+1—1andVlﬂVj = ( for every l,j € {2”,...,2”“—1},l;«réj7 we
obtain

ontl_q 2" —1 ontl_q

0 76
hna(t) Shn(8) +2 3 [far(8) <3+ +Z42k2 > <3ty

k=2m k=2m

n+1l__
for every t ¢ (i _on "V Applying the inequality proved above we obtain

ontl_q 2" —1 2ntl g
hng1(t) < 2 fo; (B +ha(®)+2 > |far(t)] <2+1+5 +Z42k2+ Z 4%2
k=2n k#j —on

for each j € {27,...,2"" — 1} and t € V.
It remains to show the left-hand side inequality of (3). Applying the estimations
above for every j € N we get

§ = 0
\<fj,x34jx»yj>|>\<fj—gw+gw_j,x34j%>|>/Bj 9oy dan, = (543 35

4 42k2
Vi k=1
>/ dz | 1) 176 S 1) 6 176
> Tn.| ———e—2e— — — — — eE—0.
j Vi 42 60 42 42 60
2
For every n and 2" < j < 2"*! and scalars aon,...,agn+1_; such that la;| =

mMaXgngj<on+1 |a;| We have

ontl_g ontl_g
(3 )] | X o)

k=2n k=2n

on+l_q
> ‘< Z akfk,Xng'jxvj>) - |Gj||<hn,XK\B£'{j|$,\/j‘>|

k=2n
1)
> a1 (155 X3, 73} = Ko = 531, Xy, |2, )] = 475)
26 176 75 )
il

&
— el e ) > ;
TEe 60 20 4) 3 on 02X lasl-

Thus we show the left-hand side inequality of (3). =

REMARK 2.2 If E = C(K), we may use the Tietze theorem to construct functions
@; € C(K) such that ¢;(K) C [0,1], ¢; |‘7j =1 and p;|x\v, = 0 for every j where
U; and V; are sets defined in the proof above. Next we apply the following simple
fact:

PROPOSITION 2.3 Let K be a compact Hausdorff space. If () is a sequence in
C(K) such that

1) ¢n =20 and ||pn|| =1 for every n and
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2) pon + Yont1 < p for every n,

then the sequence (1) given by 1 = ¢1 and

o = ©n if n =2k
Tk —ea ifn=2k+1

satisfies condition (1) and (2) of Proposition 1.1 with constants ¢ = C = 1. Conse-
quently, the subspace lin{p,, : n € 2N U {1}} of C(K) is isometric to C({—1,1}").

Since we may select g, in such a way that |g.,| = 1, the sequence (f,) given by
fn = ¥ngy, has properties (1) and (2) of Proposition 1.1 with constants ¢ = C' = 1.
Applying the fact that f;(t) = g,,(t) and |g,, — g, (t)] < i:l 5 < 3 for every
t € V; and j € N similar as in the proof above we show that the sequence (f,)
satisfies the left-hand side inequality of (3).

COROLLARY 2.4 Let K be a compact metric space. Let X be a Banach space. Let
E be a closed subspace of C(K) such that E+ is separable. If S : C(K) — X is
a continuous linear operator such that S*(X™*) is a nonseparable subset of ca(K),
then there exists a subspace Y of E isomorphic to C([0,1]) such that S|y is an
isomorphism.

PROOF It is clear that (S|g)*(X*) is nonseparable subset of E* = ca(K)/E+. m

As a straightforward consequence of Theorem 2.1 we get the following fact noted
in [9, p. 52].

COROLLARY 2.5 Let K be a compact metric space. Let X be a Banach space. Let
E be a closed subspace of C(K) such that E* is separable. If Y is a quotient space
of E with nonseparable dual, then' Y contains an isomorphic copy of C([0,1]).
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