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Notes on binary trees of elements in C(K) spaces
with an application to a proof of a theorem of

H. P. Rosenthal

Abstract. A Banach space X contains an isomorphic copy of C([0, 1]), if it con-

tains a binary tree (en) with the following properties (1) en = e2n + e2n+1 and

(2) c max2n6k<2n+1 |ak| 6 ‖
P2n+1−1

k=2n akek‖ 6 C max2n6k<2n+1 |ak| for some con-
stants 0 < c 6 C and every n and any scalars a2n , . . . , a2n+1−1. We present a proof

of the following generalization of a Rosenthal result: if E is a closed subspace of a
separable C(K) space with separable annihilator and S : E → X is a continuous

linear operator such that S∗ has nonseparable range, then there exists a subspace Y

of E isomorphic to C([0, 1]) such that S|Y is an isomorphism, based on the fact.
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Binary trees with some algebraic and geometric properties are sometimes used
to describe properties of some special Banach spaces. For example we have the
following

Proposition 0.1 If p > 1 and (en) is a sequence in a Banach space X such that

(1) en = e2n+e2n+1
2p for every n,

(2) there exist constants 0 < c 6 C such that for every n and scalars a2n , . . . , a2n+1−1

c
(2n+1−1∑

k=2n

|ak|p
) 1

p

6
∥∥∥2n+1−1∑

k=2n

akek

∥∥∥ 6 C
(2n+1−1∑

k=2n

|ak|p
) 1

p

,
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then the subspace lin{en : n ∈ N} of X is isomorphic to the Lebesgue space Lp(λ),
where λ is the Lebesgue measure on [0, 1]. Moreover, if c = C, the subspace is
isometric to Lp(λ).

The proposition is an exercise in [3, p. 211]. A Banach space X contains a
subspace isomorphic to the space C([0, 1]), if there exists a binary tree of elements
of X with properties (1) and (2) for the special case p = 0 of the fact above (see
Proposition 1.1). The author uses the fact in [7] and [8] to study properties of vector
valued monotonic functions and continuous linear operators on the space D(0, 1) of
all bounded scalar (real or complex) functions on the interval [0, 1) that are right
continuous at each point of [0, 1) with left-hand limit at each point of (0, 1]. The aim
of the paper is to show the following generalization of the Rosenthal theorem (see
[10, Thm. 1], [11]) for subspaces of separable C(K) spaces with small annihilators:

THEOREM 2.1 Let K be a compact metric space. Let X be a Banach space.
Let E be a closed subspace of C(K) such that E⊥ = {x∗ ∈ C(K)∗ : x∗(E) = 0}
is separable. If S : E → X is a continuous linear operator such that S∗(X∗) is
a nonseparable subset of E∗, then there exists a subspace Y of E isomorphic to
C([0, 1]) such that S|Y is an isomorphism.

If E = C(K) above, we get the Rosenthal theorem. We should notice that
Theorem 2.1 may be deduced from Proposition 3.6 of [2]. The Alspach result, in
fact, does not concern operators, it works with nonseparable weak∗ compact subsets
of E∗ and subspaces of E that are normed by them. We do not know whether
has someone noted the result in the form above. We present a proof of the result
based on quite simple and standard ideas. The reader may find another proof of
the Rosenthal result in [10] and more information about the subject in [12]. The
Rosenthal result was generelized by Lotz and Rosenthal in [6] for continuous linear
operators on separable Banach lattices with weakly sequentially completes duals.
The author find some problems with the proof of the Rosenthal theorem in [15]. The
Rosenthal result is a straightforward consequence of Theorem 2 in [15]. But the proof
of Theorem 2 in [15] applied in the part c) on page 178 the fact that the operator
T : C(X) → C(Y ) is a difference of two positive operators, i.e. T = T+ − T−,
where X and Y are perfect, compact, metric spaces. Operators that are differences
of two positive operators between Banach lattices form usually a small subspace of
the space of all operators. It is so also for operators between C(X) and C(Y ) (see [1,
p. 10] for an example of a continuous linear operator between C[−1, 1] and C[−1, 1]
that is not a difference of two positive operators).

The proof of Theorem 2.1 for E = C(K) is a little bit easier then the one
presented in the general case. The proof of the general case involves the Rudin-
Carleson theorem (see Proposition 1.2) that may be replaced by the Tietze theorem
if E = C(K) (see Remark 2.2).

There are quite many natural examples of subspaces of separable C(K) spaces
with small annihilators. For example: the disk algebra A(D) i.e. the closed linear
hull of functions {zn : n ∈ N ∪ {0}} in C(T) where T = {z ∈ C : |z| = 1}, the
closed linear hull of functions {zn

1 z
m
2 : (n,m) ∈ Z2 \Π} in C(T2) where Π is a sector

in R2 whose aperture is less then π (it is a consequence of the Bochner theorem
(see [5, p. 168])), any kernel of a continuous linear surjection from separable C(K)
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space onto l2 (see [14, p. 187] for examples of such operators). Moreover, if E is a
closed subspace of a C(K) space with small annihilator, then every closed subspace
F of C(K) such that E ⊂ F has also small annihilator. The reader may find more
information about subspaces of C(K) with small annihilators in [9].

1. Preliminaries. Throughout the paper X will be a real or complex Banach
space and K will be a compact Hausdorff space. The closed unit ball of X is denoted
by BX . For a given subset A of X its closed linear span is denoted by linA. The
Banach space of all scalar (real or complex), continuous function on K equipped
with the supremum norm is denoted by C(K). We identify the dual space C(K)∗

with the Banach space ca(K) of all scalar countably additive Radon measures on K
equipped with the norm ‖x‖ = |x|(K), where |x| denotes the variation of x ∈ ca(K).
The subset of ca(K) of all positive measures is denoted by ca+(K). For compact
metric spaces the families of Radon and Borel measures coincide. We say that
the measures µ and ν are singular and write µ ⊥ ν if there exists Borel subsets
A and B of K such that A ∩ B = ∅, |µ|(B) = 0 = |ν|(A) and µ(C ∩ A) = µ(C),
ν(C∩B) = ν(C) for every Borel subset C of K. For a closed subspace E of C(K) we
denote by E⊥ = {ν ∈ ca(K) : 〈f, ν〉 =

∫
K
f dν = 0 for every f ∈ E} the annihilator

of E. The subspace of ca(K) of all absolutely continuous measures with respect to
a given ν ∈ ca+(K) is denoted by L1(ν). There are more information about Borel
and Radon measures in [13].

We say that x is a condensation point of a subset A of a topological space L, if
every neighborhood of x contains uncountable many elements of A. In the sequel
we will apply the fact that an uncountable subset A of a separable metric space
contains a condensation point which is a member of A.

We start with the following result on copies of the space C({−1, 1}N) in Banach
spaces. The reader may find its proof in [7, Fact 3]. According to the Milyutin
theorem for any compact metric uncountable space K the Banach space C(K) is
isomorphic to C({−1, 1}N).

Proposition 1.1 If (en) is a sequence in a Banach space X such that

(1) en = e2n + e2n+1 for every n,

(2) there exist constants 0 < c 6 C such that for every n and scalars a2n , . . . , a2n+1−1

c max
2n6k<2n+1

|ak| 6
∥∥∥2n+1−1∑

k=2n

akek

∥∥∥ 6 C max
2n6k<2n+1

|ak|,

then the subspace lin{en : n ∈ N} of X is isomorphic to C({−1, 1}N). Moreover, if
c = C, the subspace is isometric to C({−1, 1}N).

The idea of the proof of Theorem 2.1 is the following: we construct a sequence
(fn) ⊂ E with the properties (1) and (2) such that also the sequence S(fn) has the
properties with another constants where S is the operator from Theorem 2.1. But
to do this we will need some more tools. First of them is the following version of
the Rudin-Carleson theorem (see [5, p. 57-58]).
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Proposition 1.2 Let K be a compact metric space. Let E be a closed subspace of
C(K). Let S be a closed subset of K such that |ν|(S) = 0 for every ν ∈ E⊥. Then
for every f ∈ C(S) and a strictly positive ϕ ∈ C(K) with |f(s)| 6 ϕ(s) for every
s ∈ S there exists g ∈ E such that g|S = f and |g(t)| 6 ϕ(t) for every t ∈ K.

The next tool is the following

Proposition 1.3 Let K be a compact metric space. Let E be a closed subspace of
C(K) such that E⊥ is separable. Let λ ∈ ca+(K) be a measure such that E⊥ ⊂
L1(λ). Let Γ0 be the set of all countable ordinals. If L is a bounded, absolutely
convex, nonseparable subset of E∗ = ca(K)/E⊥ in the norm topology of E∗, then
there exists ε > 0 such that for every 0 < δ < ε there exists a subset {xγ : γ ∈ Γ0}
of ca(K) such that

a) xγ + E⊥ ∈ L and ‖xγ‖ = ε for every γ ∈ Γ0,

b) for every β ∈ Γ0 there exists a Borel subset Aβ of K such that

|xα|(Aβ) = 0 for every α < β, ‖χAβ
xβ‖ > ε− δ, λ(Aβ) = 0.

The proof of the fact above is very similar to the proof of [10, Lemma 4], but for
the sake of completeness we present it here.

Proof Since L is a nonseparable subset of E∗ in the norm topology of E∗, there
exists ε > 0 and {yγ : γ ∈ Γ0} ⊂ L such that

‖yα − yβ‖ > 2ε

for every α, β ∈ Γ0, α 6= β. Let 0 < δ < ε. Let q : ca(K) → ca(K)/L1(λ) be
the quotient map. For every γ ∈ Γ0 there exists a xγ ∈ L̃ = (sup{‖x‖ : x ∈
L}+ 1)Bca(K) ∩ q−1(L) such that q(xγ) = yγ . Consequently,

‖xα − xβ‖ > 2ε

for every α, β ∈ Γ0, α 6= β. For every measure µ ∈ ca+(K), the space L1(µ+ λ) is a
separable subspace of ca(K) (by the Lusin theorem (see [13, Thm. 2.23]) measures
{f(µ+λ) : f ∈ C(K)} form a dense subset of L1(µ+λ)). For a given x ∈ ca(K) and
ν ∈ ca+(K) we denote by dx

dν ν the Radon-Nikodym derivative of x with respect to ν.
The set

{ dxγ

d(µ+λ) (µ+λ) : γ ∈ Γ0

}
has a condensation point dxγ0

d(µ+λ) (µ+λ) ∈ L1(µ+λ)
for some γ0 ∈ Γ0. Hence there exists α ∈ Γ0 such that∥∥∥d(xα − xγ0)

d(µ+ λ)
(µ+ λ)

∥∥∥ < δ.

Then
2ε

‖xα − xγ0‖
xα − xγ0

2
∈ L̃,

∥∥∥ 2ε
‖xα − xγ0‖

xα − xγ0

2

∥∥∥ = ε,

xα − xγ0 −
d(xα − xγ0)
d(µ+ λ)

(µ+ λ) ⊥ µ, xα − xγ0 −
d(xα − xγ0)
d(µ+ λ)

(µ+ λ) ⊥ λ,∥∥∥ ε

‖xα − xγ0‖

(
xα − xγ0 −

d(xα − xγ0)
d(µ+ λ)

(µ+ λ)
)∥∥∥ > ε− δ.
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Applying the transfinite induction, the fact above and the fact that every separable
subset of ca(K) is contained in L1(ν) for some ν ∈ ca+(K) we show that there exists
a subset {xγ : γ ∈ Γ0} of L̃ with properties a) and b). �

Let (K, ρ) be a compact metric space. We denote by K(K) the space of all
nonempty closed subsets of K equipped with the Hausdorff metric i.e.

dH(A,B) = max
(
sup
x∈A

inf
y∈B

ρ(x, y), sup
y∈B

inf
x∈A

ρ(x, y)
)
.

It is well known that (K(K), dH) is a compact metric space. The reader may find
more information about K(K) in [4, Problems 2.7.20, 3.12.26 and 4.5.22]. In the
sequel we will need the following fact.

Proposition 1.4 Let (K, ρ) be a compact metric space. If U is an open subset of
K, then {A ∈ K(K) : A ⊂ U} is an open subset of K(K).

Proof For every closed subset B of U δ = infx∈K\U infy∈B ρ(x, y) > 0. Conse-
quently, {A ∈ K(K) : dH(A,B) < δ

2} ⊂ {A ∈ K(K) : A ⊂ U}. �

In the proof of Theorem 2.1 we will need the following technical result.

Proposition 1.5 If (fn) is a sequence in a Banach space X such that

f2k+1 = fk − f2k

for every k ∈ N, then

a)

f2k+1 = fl −
log2

2k+2
l+1∑

j=1

f2j l+2j−2

for every k, where l ∈ 2N ∪ {1} is the smallest natural number such that
(l + 1)2j = 2k + 2 for some j ∈ N ∪ {0},

b) in the descriptions of all members of the set {f2n , . . . , f2n+1−1} for n ∈ N every
function from the set {fj : j = 2, 4, . . . , 2n+1 − 2} appears exactly two times:
once with plus and once with minus and the function f1 appears only once.

Proof a) The formula is clear for k = 1 and k = 2, 3. For 2n 6 k < 2n+1 we apply
the mathematical induction with step 2n.

b) Since {f2, f3} = {f2, f1 − f2}, the fact is clear for n = 1. Applying the
mathematical induction and the fact that {f2k, f2k+1} = {f2k, fk − f2k} for every
2n 6 k < 2n+1 we show the fact for each n ∈ N. �

2. Main results. Now we are prepared to show our main result.



238 Notes on binary trees of elements in C(K) spaces

Theorem 2.1 Let K be a compact metric space. Let X be a Banach space. Let E be
a closed subspace of C(K) such that E⊥ = {x∗ ∈ C(K)∗ : x∗(E) = 0} is separable.
If S : E → X is a continuous linear operator such that S∗(X∗) is a nonseparable
subset of E∗, then there exists a subspace Y of E isomorphic to C([0, 1]) such that
S|Y is an isomorphism.

Proof We use the mathematical inducton to construct a sequence (fn) ⊂ E with
the following properties:

(1) fn = f2n + f2n+1,

(2)

c

‖S‖
max

2n6k<2n+1
|ak| 6

∥∥∥2n+1−1∑
k=2n

akfk

∥∥∥ 6 4 max
2n6k<2n+1

|ak|,

(3)

c max
2n6k<2n+1

|ak| 6
∥∥∥S(2n+1−1∑

k=2n

akfk

)∥∥∥ 6 4 ‖S‖ max
2n6k<2n+1

|ak|,

for every n and scalars a2n , . . . , a2n+1−1 and some constant c > 0. First, let us
note that if we find a sequence with property (1), then we only need to show the
right-hand side inequality of (2) and the left-hand side inequality of (3). It is a
straightforward consequence of the continuity of S;

c max
2n6k<2n+1

|ak| 6
∥∥∥S(2n+1−1∑

k=2n

akfk

)∥∥∥ 6 ‖S‖
∥∥∥2n+1−1∑

k=2n

akfk

∥∥∥ 6 4 ‖S‖ max
2n6k<2n+1

|ak|.

Let L = S∗(BX∗). It is clear that L is an absolutely convex weak∗ compact subset
of ca(K)/E⊥. We assume that L is a nonseparable subset of ca(K)/E⊥ in the norm
topology of ca(K)/E⊥. Let λ ∈ ca+(K) be a measure such that E⊥ ⊂ L1(λ). Let
q : ca(K) → ca(K)/L1(λ) be the quotient map. Let L̃ = q−1(L) ∩ {µ ∈ ca(K) :
‖µ‖ 6 1 + sup{‖x‖ : x ∈ L}}. Let Γ0 be the set of all countable ordinals. By
Proposition 1.3 there exists ε > 0 such that for every 0 < δ < ε there exists a
subset {xγ : γ ∈ Γ0} of L̃ with properties (1) and (2) of Proposition 1.3. Fix
0 < δ < min{ 1

4 ,
ε
4}. Then there exists a subset {xγ : γ ∈ Γ0} of L̃ with the following

properties

a) q(xγ) = xγ + E⊥ ∈ L and ‖xγ‖ = ε for every γ ∈ Γ0,

b) for every β ∈ Γ0 there exists a Borel subset Aβ of K such that

|xα|(Aβ) = 0 for every α < β, ‖χAβ
xβ‖ > ε− δ

42
, λ(Aβ) = 0.

For every γ ∈ Γ0 we find a continuous function gγ ∈ C(K) such that ‖gγ‖ 6 1 and
‖gγxγ − |xγ |‖ < δ

42 (equivalently, |gγxγ |(K) > ‖xγ‖ − δ
42 ). It is a straightforward
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consequence of the Hahn decomposition theorem (see [13, Thm. 6.12]) and the Lusin
theorem.

First step. For every γ ∈ Γ0 there exists a compact subset B1
γ of K such that

Bγ ⊂ Aγ , and |xγ |(B1
γ) > ε − δ

42 . Since K(K) × BC(K) is a separable metric
space, there exists a condensation point (B1

γ1
, gγ1) of the set {(B1

γ , gγ) : γ ∈ Γ0}
in K(K) × BC(K), where γ1 ∈ Γ0. Let U1 be an open subset of K such that
B1

γ1
⊂ U1. By Proposition 1.2 there exists f1 ∈ E such that f1|Bγ1

= gγ1 |Bγ1
,

‖f1‖ 6 1 and |f1(t)| < δ
8 for every t ∈ K \ U1. Let V1 be an open subset of K such

that B1
γ1
⊂ V1 ⊂ V1 ⊂ U1 and |f1(t) − gγ1(t)| < δ

8 for every t ∈ V1. Let Γ1 = {γ ∈
Γ0 : γ > γ1, B

1
γ ⊂ V1, ‖gγ |V1

−gγ1 |V1
‖C(V1)

< δ
8}. Applying Proposition 1.4 it is easy

to see that the set Γ1 is uncountable.
Second step. Let β(α) = min{γ ∈ Γ1 : γ > α} for every α ∈ Γ1. Since

Γ1 ⊂ Γ0, β(α) is well defined member of Γ1. Since measures χAα
xα = χAα\Aβ(α)

xα,
χAβ(α)xβ(α) are singular, we find compact subsets B2

α, B
3
β(α) of V1 such that

B2
α ∩B3

β(α) = ∅, B2
α ⊂ Aα, B3

β(α) ⊂ Aβ(α),

|xα|(B2
α) > ε− δ

42
, |xβ(α)|(B3

β(α)) > ε− δ

42
, |xα|(B3

β(α)) = 0.

Since K(K)2×B2
C(V1)

is a separable metric space, there exists a condensation point

(B2
γ2
, B3

γ3
, gγ2 |V1

, gγ3 |V1
) of the subset {(B2

α, B
3
β(α), gα|V1

, gβ(α)|V1
) : α ∈ Γ1, α > γ1}

of K(K)2 × B2
C(V1)

where γ2, γ3 ∈ Γ1 and γ1 < γ2 < γ3 = β(γ2). Let U2, U3

be open subsets of K such that U2 ∩ U3 = ∅ and Bj
γj
⊂ Uj ⊂ V1 for j = 2, 3.

By Proposition 1.2 there exists f2 ∈ E such that f2|B2
γ2

= gγ2 |B2
γ2

, f2|B3
γ3

= 0,
‖f2‖ 6 1 and |f2(t)| < δ

422 for every t ∈ K \ U2. Define f3 = f1 − f2. Then
|f3(t)| 6 |f1(t) − gγ1(t)| + |gγ1(t) − gγ2(t)| < δ

4 for every t ∈ B2
γ2

, |f3(t) − gγ3(t)| 6
|f1(t)− gγ1(t)| − |gγ1(t)− gγ3(t)|+ |f2(t)| < δ

4 for every t ∈ B3
γ3

. Let V2, V3 be open
subsets of K such that Bj

γj
⊂ Vj ⊂ Vj ⊂ Uj for j = 2, 3 and |f2(t) − gγ2(t)| < δ

422

for every t ∈ V2, |f2(t)| < δ
422 for every t ∈ V3, and |f3(t) − gγ3(t)| < δ

4 + δ
422 for

every t ∈ V3, |f3(t)| < δ
4 + δ

422 for every t ∈ V2. Let Γj = {γ ∈ Γ1 : γ > γj , B
j
γ ⊂

Vj , ‖gγ |Vj
− gγj |Vj

‖C(Vj)
< δ

4j2} for j = 2, 3. According to Proposition 1.4 sets Γ2,
Γ3 are uncountable.

Next steps. Suppose that we are able to construct sets Γ1, . . . ,Γ2n−1 for some
n ∈ N. Applying consideration similar to the one in the second step for every k =
2n−1, . . . , 2n−1, we are able to construct measures xγ2k

, xγ2k+1 ∈ L̃, γ2k, γ2k+1 ∈ Γk,
γ2k−1 < γ2k < γ2k+1, nonempty compact subsets B2k

γ2k
, B2k+1

γ2k+1
of K, open subsets

U2k, U2k+1 of K such that U2k ∩ U2k+1 = ∅ and

Bj
γj
⊂ Aγj

, Bj
γj
⊂ Uj ⊂ Uj ⊂ Vk, |xγj |(Bj

γj
) > ε− δ

42

for j = 2k, 2k+1. Then |gγk
(t)−gγj

(t)| < δ
4k2

for every t ∈ Vk where j = 2k, 2k+1.
By Proposition 1.2 for every k = 2n−1, . . . , 2n − 1 there exists f2k ∈ E such that
f2k|B2k

γ2k
= gγ2k

|B2k
γ2k

, f2k|B2k+1
γ2k+1

= 0, ‖f2k‖ 6 1 and |f2k(t)| < δ
42k2

for every t ∈
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K \ U2k. Define f2k+1 = fk − f2k. According to Proposition 1.5

f2k+1 = fl −
log2

2k+2
l+1∑

j=1

f2j l+2j−2

where l ∈ 2N ∪ {1} is the smallest natural number such that (l + 1)2j = 2k + 2
for some j ∈ N. It is clear that if r, s ∈ N and r < s, then Us ⊂ Ur if and only if
s ∈ [2mr, 2mr+2m−1] wherem is the integer part of log2

s
r . Since k = 2p−1l+2p−1−1

where p = log2
2k+2
l+1 , Vk ⊂ Vl and Vk ∩ U2j l+2j−2 = ∅ for j = 1, . . . , p− 1. Hence

|f2k+1(t)| 6 |fl(t)− gγl
(t)|+ |gγl

(t)− gγ2k
(t)|+ |gγ2k

(t)− f2k(t)|

+
log2

2k+2
l+1 −1∑

j=1

|f2j l+2j−2(t)| <
δ

4l2
+

δ

4l2
+

log2
2k+2
l+1 −1∑

j=1

δ

42j l+2j−22

for every t ∈ B2k
γ2k

and

|f2k+1(t)− gγ2k+1(t)| 6 |fl(t)− gγl
(t)|+ |gγl

(t)− gγ2k+1(t)|+
log2

2k+2
l+1∑

j=1

|f2j l+2j−2(t)|

<
δ

4l2
+

δ

4l2
+

log2
2k+2
l+1 −1∑

j=1

δ

42j l+2j−22

for every t ∈ B2k+1
γ2k+1

. Let V2k, V2k+1 be open subsets of K such that Bj
γj
⊂ Vj ⊂

Vj ⊂ Uj for j = 2k, 2k + 1 and

|f2k(t)− gγ2k
(t)| < δ

42k2
and |f2k+1(t)| < δ

4l +
log2

2k+2
l+1∑

j=1

δ

42j l+2j−22
for every t ∈ V2k,

|f2k(t)| < δ
42k2

and |f2k+1(t)− gγ2k+1(t)| < δ
4l +

log2
2k+2
l+1∑

j=1

δ

42j l+2j−22
for every t ∈ V2k+1.

Let Γj = {γ ∈ Γ1 : γ > γj , B
j
γj
⊂ Vj , ‖gγ − gγj‖C(Vj)

< δ
4j2} for j = 2k, 2k + 1.

According to Proposition 1.4 sets Γ2k, Γ2k+1 are uncountable.
Now we show that the right-hand side inequality of (2) holds. Let hn =

∑2n+1−1
k=2n |fk|.

It is enough to show that hn 6 3 + 7δ
20 . Let us note that

h2(t) = |f2(t)|+ |f1(t)− f2(t)| 6

{
1 + δ

4 + δ
42 if t ∈ V2 ∪ V3

3 if t /∈ V2 ∪ V3.

First we show that

hn(t) 6 1 +
δ

4
+

2n−1∑
k=1

3δ
42k2
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for every t ∈
⋃2n+1−1

k=2n Vk. If f2k+1 = fl −
∑p

j=1 f2j l+2j−2 where p = log2
2k+2
l+1 and

l ∈ 2N ∪ {1} is the smallest natural number such that (l + 1)2j = 2k + 2 for some
j ∈ N ∪ {0}, then

|f2k+1(t)| 6 1 +
δ

4l
+

log2
2k+2
l+1∑

j=1

δ

42j l+2j−22

for every t ∈ V2k+1. Let us note that {2k+ 1} ∪
⋃p

j=1[2
p−j(2j l + 2j − 2), 2p−j(2j l+

2j − 2) + 2p−j − 1] = [2pl, 2pl + 2p − 1]. If j ∈ [2m(2rl + 2r − 2), 2m(2rl + 2r −
2) + 2m − 1] where r = 1, . . . , p and m = p − r, then Vj ⊂ V2rl+2r−2. Moreover,
U2j1 l+2j1−2 ∩ U2j2 l+2j2−2 = ∅ for every j1, j2 ∈ {1, 2, . . . , p}, j1 6= j2. Hence

|f2k+1(t)| 6 |fl(t)− gγl
(t)|+ |gγl

(t)− gγ2rl+2r−2(t)|+ |gγ2rl+2r−2(t)− f2rl+2r−2(t)|

+
log2

2k+2
l+1∑

j=1,j 6=r

|f2j l+2j−2(t)| 6
δ

4l
+

log2
2k+2
l+1∑

j=1

δ

42j l+2j−22

for j ∈ [2m(2rl + 2r − 2), 2m(2rl + 2r − 2) + 2m − 1] and every t ∈ Vj , and

|f2k+1(t)| 6
δ

4l2
+

log2
2k+2
l+1∑

j=1

δ

42j l+2j−22

for j ∈ [2n, 2n+1 − 1] \ [2pl, 2pl+ 2p − 1] and every t ∈ Vj . When we gather together
the estimations above and we apply Proposition 1.5 b), we get

hn(t) 6 1 +
δ

4
+

2n−1∑
l=1

3δ
42l2

< 1 +
7δ
20

for every t ∈
⋃2n+1−1

j=2n Vj . The estimations show also that

hn(t)− |fk(t)| 6 δ

4
+

2n−1∑
l=1

3δ
42l2

<
7δ
20
.

for every k ∈ [2n, 2n+1 − 1] and t ∈
⋃2n+1−1

j=2n,j 6=k Vj . We show now applying the
mathematical induction that

hn(t) 6 3 +
δ

4
+

2n−1∑
k=1

3δ
42k2

for every t ∈ K and n ∈ N. It is clear that hn+1 =
∑2n+1−1

k=2n |f2k| + |fk − f2k|.
Applying the following facts: U2k ⊂ Vk, |f2k(t)| 6 δ

42k2
for every t /∈ U2k and
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k = 2n, . . . , 2n+1 − 1 and Vl ∩ Vj = ∅ for every l, j ∈ {2n, . . . , 2n+1 − 1}, l 6= j, we
obtain

hn+1(t) 6 hn(t) + 2
2n+1−1∑
k=2n

|f2k(t)| 6 3 +
δ

4
+

2n−1∑
k=1

3δ
42k2

+ 2
2n+1−1∑
k=2n

δ

42k2
6 3 +

7δ
20

for every t /∈
⋃2n+1−1

k=2n Vk. Applying the inequality proved above we obtain

hn+1(t) 6 2|f2j(t)|+hn(t)+2
2n+1−1∑

k=2n,k 6=j

|f2k(t)| 6 2+1+
δ

4
+

2n−1∑
k=1

3δ
42k2

+2
2n+1−1∑
k=2n

δ

42k2

for each j ∈ {2n, . . . , 2n+1 − 1} and t ∈ Vj .
It remains to show the left-hand side inequality of (3). Applying the estimations

above for every j ∈ N we get

|〈fj , χBj
γj
xγj 〉| > |〈fj − gγj + gγj , χBj

γj
xγj 〉| >

∫
Bj

γj

gγj dxγj − ε
(δ

4
+
∞∑

k=1

δ

42k2

)
>
∫

Bj
γj

d|xγj
| − δ

42
− ε

17δ
60

> ε− δ

42
− δ

42
− ε

17δ
60

.

For every n and 2n 6 j < 2n+1 and scalars a2n , . . . , a2n+1−1 such that |aj | =
max2n6i<2n+1 |ai| we have

∥∥∥S(2n+1−1∑
k=2n

akfk

)∥∥∥ >
∣∣∣〈2n+1−1∑

k=2n

akfk, xγj

〉∣∣∣
>
∣∣∣〈2n+1−1∑

k=2n

akfk, χBj
γj
xγj

〉∣∣∣− |aj ||〈hn, χK\Bj
γj
|xγj

|〉|

> |aj |
(
|〈fj , χBj

γj
xγj 〉| − |〈hn − |fj |, χBj

γj
|xγj |〉| − 4

δ

42

)
> |aj |

(
ε− 2δ

42
− ε

17δ
60

− ε
7δ
20
− δ

4

)
>
ε

2
max

2n6i<2n+1
|ai|.

Thus we show the left-hand side inequality of (3). �

Remark 2.2 If E = C(K), we may use the Tietze theorem to construct functions
ϕj ∈ C(K) such that ϕj(K) ⊂ [0, 1], ϕj |Vj

= 1 and ϕj |K\Uj
= 0 for every j where

Uj and Vj are sets defined in the proof above. Next we apply the following simple
fact:

Proposition 2.3 Let K be a compact Hausdorff space. If (ϕn) is a sequence in
C(K) such that

1) ϕn > 0 and ‖ϕn‖ = 1 for every n and
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2) ϕ2n + ϕ2n+1 6 ϕn for every n,

then the sequence (ψn) given by ψ1 = ϕ1 and

ψn =

{
ϕn if n = 2k
ψk − ϕ2k if n = 2k + 1

satisfies condition (1) and (2) of Proposition 1.1 with constants c = C = 1. Conse-
quently, the subspace lin{ϕn : n ∈ 2N ∪ {1}} of C(K) is isometric to C({−1, 1}N).

Since we may select gγ1 in such a way that |gγ1 | = 1, the sequence (fn) given by
fn = ψngγ1 has properties (1) and (2) of Proposition 1.1 with constants c = C = 1.
Applying the fact that fj(t) = gγ1(t) and |gγj − gγ1(t)| 6

∑j
k=1

δ
4k < δ

3 for every
t ∈ Vj and j ∈ N similar as in the proof above we show that the sequence (fn)
satisfies the left-hand side inequality of (3).

Corollary 2.4 Let K be a compact metric space. Let X be a Banach space. Let
E be a closed subspace of C(K) such that E⊥ is separable. If S : C(K) → X is
a continuous linear operator such that S∗(X∗) is a nonseparable subset of ca(K),
then there exists a subspace Y of E isomorphic to C([0, 1]) such that S|Y is an
isomorphism.

Proof It is clear that (S|E)∗(X∗) is nonseparable subset of E∗ = ca(K)/E⊥. �

As a straightforward consequence of Theorem 2.1 we get the following fact noted
in [9, p. 52].

Corollary 2.5 Let K be a compact metric space. Let X be a Banach space. Let
E be a closed subspace of C(K) such that E⊥ is separable. If Y is a quotient space
of E with nonseparable dual, then Y contains an isomorphic copy of C([0, 1]).
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