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Abstract. We introduce Krull topological algebras. In particular, we characterize

the Krull property in some special classes of topological algebras. Connections with
the theory of semisimple annihilator Q′-algebras are given. Relative to this, an in-

vestigation on the relationship between Krull and (weakly) regular (viz. modular)

annihilator algebras is considered. Subalgebras of certain Krull algebras are also pre-
sented. Moreover, conditions are supplied under which the Krull (resp. Q′-) property

is preserved via algebra morphisms. As an application, we show that the quotient of

a Krull Q′-algebra, modulo a 2-sided ideal, is a topological algebra of the same type.
Finally, we study the Krull property in a certain algebra-valued function topological

algebra.

2000 Mathematics Subject Classification: 46H05, 46H10, 46K05, 46M05.

Key words and phrases: Krull algebra, annihilator algebra, semisimple algebra, socle,
Q′-algebra, (D)-algebra, (weakly) regular annihilator algebra, (ortho)complemented

algebra.

Introduction. In [14: p. 3732, Theorem 4.7] we considered the relationship
between “duality” and “complementation” for (Hausdorff) locally C∗-algebras, the
latter being Krull algebras in the sense of Definition 2.1 below, which that moti-
vated the present study of this sort of topological algebras (see also [15: p. 198,
Corollary 2.2 and Theorem 2.4]). So, we characterize the Krull property in a topo-
logically semiprime, weakly regular annihilator (much more precomplemented) (D)-
algebra (Theorem 3.2) or even in a semisimple regular annihilator topological al-
gebra (Proposition 3.7). Conditions under which the Krull (resp. Q′-)property is
preserved, via algebra morphisms, are also considered (Lemma 3.10). The quotient
of a Krull Q′- algebra, modulo a 2-sided ideal, is an algebra of the same type (Theo-
rem 3.11). Examples of Krull and semisimple annihilator as well as (D)Q′-algebras
are given. We also exhibit an example of a Q′- algebra which is not a Q-algebra.
In Theorem 3.14 we present certain algebraic-topological properties of a semisimple
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annihilator Q
′

l (or Q
′

r)-algebra. Using this, we get information about the factors (be-
ing minimal closed 2-sided ideals) of a decomposition of the algebra in question (see
Remark 4.4). Furthermore, conditions are given that a locally convex H∗-algebra be
Krull (Proposition 4.1). We also study special subalgebras of certain Krull algebras.
Finally, the Krull property is studied in a certain algebra-valued function topological
algebra (see Section 5).

1. Notation and preliminaries. All algebras considered are taken over the
field C of complexes. Notation and definitions not given here are taken from Rickart’s
book [24].
Let E be an algebra. If (∅ 6=)S ⊆ E, Al(S) (resp. Ar(S)) denotes the left (right)
annihilator of S. Al(S) (resp. Ar (S)) is a left (right) ideal of E, which in partic-
ular, is a 2−sided ideal, if S is a left (right) ideal. In case of a topological algebra
(separately continuous multiplication) the previous ideals are closed. We denote by
Ll(E) ≡ Ll (Lr(E) ≡ Lr, L) the set of all closed left (right, 2−sided) ideals in a topo-
logical algebra E, while Ml(E) (resp. Mr(E)) stands for the set of all closed maximal
regular left (right) ideals of E. An algebra E is called left (resp. right) preannihila-
tor, if Al(E) = (0) (resp. Ar(E) = (0)). If Al(E) = Ar(E) = (0), E is called prean-
nihilator. In particular, a topological algebra E is said to be an annihilator algebra,
if it is preannihilator with Ar(I) 6= (0) for every I ∈ Ll , I 6= E and Al(J) 6= (0)
for every J ∈ Lr , J 6= E. A topological algebra E is called an (M′

r)−algebra (alias,
a right annihilator algebra [26]), if E is the only closed left ideal having a trivial
right annihilator; viz. one has I = E for every I ∈ Ll with Ar(I) = (0). An
(M′

l)−algebra is defined analogously, by interchanging “left” by “right”. Obviously,
an annihilator algebra is an (M′

l) and (M′
r)−algebra. A topological algebra E sat-

isfying Al(Ar(I)) = I for all I ∈ Ll and Ar(Al(J)) = J for all J ∈ Lr is called
a dual algebra. A topological algebra E such that I ∈ L and I2 = (0) implies
I = (0) is called topologically semiprime. A topological algebra E is named a Q′l
(resp. Q′r)−algebra, if every maximal regular left (resp. right) ideal is closed. In
particular, E is a Q′−algebra, if it is both a Q′l and Q′r-algebra. A Q−algebra is a
Q ′-algebra (see, for instance, [22: p. 43, Definition 6.3 and p. 67, Theorem 6.1]). In
this respect, we note that the conditions involved in the definition of a Q′-algebra
have also been considered by Smiley and Yood for topological rings (see [25: p. 698],
[31: p. 33]) and by Barnes, Husain and Wong for topological algebras ([3: p. 571,
Theorem 5.2 and p. 578, Example 8.1], [18: p. 142, Lemma 2.1, p. 143, Lemma 3.3
and p. 144, Theorem 3.6]). Yet, A. Mallios too has explicitly remarked [22: p. 73,
Scholium 7.1] the significance of Q′−property, singling out, for instance, continuous
characters. However, the terminology Q′-algebra was introduced in [12]. Now, by a
deep (or shortly (D))-algebra, is meant an algebra whose every (non-zero) left (resp.
right) ideal contains a minimal left (resp. right) ideal. We denote by Id(E ) the set
of all non-zero idempotent elements of an algebra E, namely, the set of all x ∈ E
with 0 6= x = x2. A minimal element of an algebra E, is a non-zero idempotent x
such that xEx is a division algebra. A non-zero element of E is called primitive,
if it can not be expressed as the sum of two orthogonal idempotents; viz. of some
y, z ∈ Id(E ) with yz = zy = 0. The Jacobson radical of E is denoted by R(E); E is
semisimple, if R(E) = (0). A topological algebra E is called left (resp. right) pre-
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complemented, if for every I ∈ Ll (resp. in Lr) there exists I ′ ∈ Ll (resp. in Lr) with
E = I⊕I ′; E is called precomplemented, if it is both left and right precomplemented.
A locally convex H*-algebra is an algebra E equipped with a family (pα)α∈Λ of Am-
brose seminorms in the sense that pα , α ∈ Λ arises from a positive semi-definite
(pseudo-) inner product (denoted by < , >α) such that the induced topology makes
E into a locally convex (topological) algebra. Moreover, the following conditions are
satisfied: For any x ∈ E, there is an x∗ ∈ E, such that

(1) < xy, z >α=< y, x∗z >α

(2) < yx, z >α=< y, zx∗ >α

for any y, z ∈ E and α ∈ Λ.
A locally m-convex H∗-algebra is also considered.
Given a locally convex H∗−algebra E and I ∈ Ll , the orthogonal of I , denoted by
I⊥ is

(3) I⊥ = {x ∈ E :< x, y >α= 0 for every y ∈ I, α ∈ Λ},

which obviously, is a closed left ideal (cf. [10: p. 456, Lemma 3.2]). In this context,
E is called an orthocomplemented algebra, if for every I ∈ Ll and every J ∈ Lr,
E = I ⊕⊥ I⊥ and E = J ⊕⊥ J⊥ (here ⊕⊥denotes orthogonal direct sum). This
kind of complementation leads to a complemented algebra in the sense of [14: p.
3723, Definition 2.1]; see also [10: p. 457, Lemma 3.3]. A locally C∗-algebra is an
involutive complete locally (m-)convex algebra (E, (pα)α∈A) such that pα, α ∈ A is a
C∗-seminorm (viz. pα, α ∈ A is a seminorm with pα(x∗x) = pα(x)2 for every x ∈ E
[19: p. 198, Definition 2.2]).

The next lemma is frequently used in the sequel (cf. [12: p. 150, Lemma 3.3]).

Lemma 1.1 A semisimple (topological) algebra E is (topologically) semiprime and
thus preannihilator. Moreover, E has no nilpotent left or right ideals.

2. Krull algebras.

Definition 2.1 A left Krull algebra is a topological algebra satisfying the condi-
tion:

Every (proper) closed left ideal is contained
in a closed maximal regular left ideal.

A right Krull algebra is analogously defined, by considering right ideals. A left and
right Krull algebra is simply called a Krull algebra.

Examples 2.2 1) The group algebra L1(G) with G a locally compact abelian group
is a Krull algebra. In fact, L1(G) as a Banach algebra, has the Q′−property (see
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Section 1). Besides, every proper closed ideal in L1(G) is contained in a maximal
regular ideal (cf. for instance, [24: p. 326]), closed by “Q′”. See also Example 3)
below.

2) The algebra given by B.A. Barnes in [2] is a normed (non-complete) semisimple
annihilator Q′−algebra and hence (Theorem 3.14 below) a Krull algebra.

The following examples are referred to non-normed topological algebras.
3) We note that every unital Q′-algebra is a Krull algebra. In fact, if I is a proper

closed left ideal, then it is regular and hence (Zorn) it is contained in a maximal
(regular) left ideal, closed by the Q′-property. Similarly, for right ideals. An instance
of this type of algebra is provided in Examples 3.6, 6).

4) Every locally C∗-algebra is a Krull algebra (see [15: p. 198, Corollary 2.2]).
A f o r t i o r i,̇ every C*-algebra E is a Krull algebra. In this case, every closed (left)
ideal of E is the intersection of the (closed) maximal regular (left) ideals containing
it (see, for instance, [6: p. 56, Theorem 2.9.5]).

5) In [22: p. 350, Theorem 6.1], Mallios proves that for a (commutative) Pták-
Šilov-algebra with a locally equicontinuous spectrum the notion “Wiener-Tauber al-
gebra” is equivalent to the property “every proper closed ideal has a non-empty hull”,
equivalently, it is contained in a closed maximal regular ideal. Thus, in this case,
the notions “Wiener-Tauber algebra” and “Krull algebra” coincide. See also [ibid.
Corollary 6.1].

6) Let X be a (Hausdorff) completely regular space and Cc(X) the (locally m-
convex) algebra of all continuous C-valued functions on X in the compact open topol-
ogy (see, for instance, [22: p. 19, Example 3.1]). Then Cc(X) is a Krull algebra.
Apply Theorem 3.1 in (loc.cit., p. 337; see also p. 338, (3.11)). We note that
Cc(X) is not complete, unless X is a k-space. In this case, and under the standard
involution, Cc(X) is a locally C∗-algebra (see [21: p. 231, Theorem 12] and/or [30:
p. 267]). Thus, by Example 4) above, we get another justification that this algebra
is a Krull one.

7) Every semisimple Hausdorff orthocomplemented (locally convex H*-)algebra E
being moreover, a Q′-algebra is Krull. In fact, E is dual and it has a dense socle (see
Lemma 1.1, [10: p. 458, Theorem 3.9] and [13: p. 149, Theorem 3.10]). Moreover,
by [31: p. 41, Lemma 3.11], E is a regular annihilator algebra. The assertion now
follows from Theorem 3.14 below.

Based on Example 7) and the fact that a proper (Banach) H∗−algebra is or-
thocomplemented [1] and semisimple [20: p. 696] we get that a proper Hausdorff
H ∗-algebra is Krull. See also the comments after Proposition 4.1.

8) A proper complete locally m-convex H∗- algebra (E, (pα)α∈A) with continuous
involution and a unit e such that pα(e) = 1, α ∈ A is a Krull algebra, (see Example
4) above and [15: p. 198, Proposition 2.5]).

9) (See also [33: p. 292]). Let E be a unital commutative complete locally
m−convex algebra. For any closed ideal I of E the quotient algebra is a locally
m−convex algebra as well (see [22]); thus every closed ideal is contained in a closed
maximal (regular) ideal and so E is a Krull algebra.

For a non-Krull algebra, see Scholium 3.15 below.
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Remark 2.3 - If a precomplemented Krull algebra E has no divisors of zero,
then it is left (resp. right) topologically simple: If I is a proper closed left ideal
in E, then (Krull) I ⊆ M for some closed maximal regular left ideal of the form
M = E(1 − x0) ≡ {y − yx0 : y ∈ E} for some x0 ∈ Id(E ) (cf. also [14: p. 3729,
Theorem 3.9 and Remarks 3.10]). Now, if x ∈ M , then x ∈ Al(x0E) and hence
xx0 = 0. So, x = 0; namely, M = (0), a f o r t i o r i , I = 0. Similarly, for closed
right ideals.

In this connection, I am indebted to the referee whose relevant remarks led to
the above.

For convenience we also use the following terminology: Let E be a (topological)
algebra. A (closed) maximal regular left (resp. right) ideal is called Peirce decom-
posable, if it has the form E(1− x) (resp. (1− x)E ≡ {y − xy : y ∈ E}) for some
x ∈ Id(E ). Thus, a topological algebra in which every maximal regular left (right)
ideal is Peirce decomposable is a Q ′-algebra. So (see also the justification in Remark
2.3) a precomplemented algebra is a Q ′-algebra if and only if its maximal regular left
(right) ideals are Peirce decomposable.

3. (Weakly) regular annihilator, quotient, Krull and Q′- algebras. We
are mainly concerned here with relations between Krull, weakly regular annihilator or
even regular annihilator topological algebras, annihilator algebras and Q′-algebras.

In the sequel by a left ( resp. right) regular annihilator algebra we shall mean
an algebra in which Al(M) 6= (0) (resp. Ar(M) 6= (0)) for every maximal regular
right (left) ideal M ; if both conditions hold, it is called a regular annihilator algebra.
The definition given by Barnes in [3: p. 568] includes, moreover, the condition
Al(E) = (0) (resp. Ar(E) = (0)). However, Yood still employs regular annihilator
algebras with no non-trivial nilpotent 1-sided ideals (see also [31: p. 37]).

By looking at the analogous topological notions, we set the next.

Definition 3.1 A topological algebra E is called a weakly left (resp. right) regular
annihilator algebra, if Al(M) 6= (0) (resp. Ar(K) 6= (0)) for all M ∈ Mr(E) (resp.
K ∈ Ml(E)). If both conditions hold, E is said to be a weakly regular annihilator
algebra.

Remarks - The class of weakly (right) regular annihilator algebras includes that of
modular annihilator (Banach) algebras, given by Duncan in [8: p. 89], since in this
case, every maximal regular (left) ideal is closed.

The following are direct consequences of the very definitions:
i) An annihilator algebra is weakly regular annihilator. The reverse implication

holds e.g. for preannihilator Krull algebras (cf. Remarks after Theorem 3.2 below).
Notice that, in general, an annihilator algebra is not a regular annihilator algebra
(see [31: p. 39, the comments preceding Theorem 3.5]).

ii) A topological algebra E with Al(E) 6= (0) (resp.Ar(E) 6= (0)) is weakly left
(resp. right) regular annihilator. But, one has weakly regular annihilator algebras
even if Al(E) = Ar(E) = (0) (take e.g. an annihilator algebra, see i)).

Left regular annihilator topological algebras coincide with weakly left regular
annihilator algebras for the following sorts of (topological) algebras:
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1) Q′r−algebras or equivalently topological algebras that have no proper dense
regular right ideals (cf. [12: p. 149, Proposition 1.3]). In particular,

2) topological algebras, say E, in which every maximal regular right ideal M has
an algebraic complement (namely, E = M⊕N for some right ideal N of E), since in
that case, the only maximal regular right ideals of E are Peirce decomposable (see
[14: p. 3729, Theorem 3.9 and p. 3730 Definition 3.13]). Thus, E is a Q′r-algebra
(see the comments at the end of Section 2). In this context, we also note that a
maximal regular (left) ideal of an algebra is Peirce decomposable if and only if it has
an algebraic complement.

Now, we show that the Krull property characterizes annihilator algebras over all
topologically semiprime, (D)-algebras which moreover, are weakly regular annihila-
tor (a f o r t i o r i precomplemented) algebras. Notice that (D)-property is used
only in 1)⇒2) while the assumption that E is a weakly regular annihilator algebra
or yet precomplemented is used only in 2) ⇒ 1). Moreover, 1) ⇒ 2) improves and
generalizes Theorem 5.2 in [3: p. 571]; see Remarks.-2) below, as well as Remarks
after Definition 3.1.

Theorem 3.2 Let E be a topologically semiprime, (D)-algebra which moreover, is a
weakly regular annihilator (a f o r t i o r i, a precomplemented) algebra. Then the
following are equivalent:

1) E is an annihilator algebra.
2) E is a Krull algebra.

Proof 1) ⇒ 2) : If I ∈ Ll with I 6= E, then Ar(I) 6= (0). Thus, in virtue of
(D)-property (see Section 1), there exists a minimal right ideal of the form xE with
x a minimal primitive (idempotent) element, such that xE ⊆ Ar(I) (cf. also [12: p.
154, Corollary 3.7]). Therefore, I ⊆ Al(Ar(I)) ⊆ E(1 − x). Since the closed right
ideal xE is minimal, it is minimal closed and hence E(1− x) is a maximal (regular)
left ideal (see Lemma 1.1 and [12: p. 151, Lemma 2.6]), which obviously, is closed.
That is, E is a left Krull algebra. Similarly, for closed right ideals.

2) ⇒ 1) : We first note that E, as topologically semiprime, is preannihilator (see
Lemma 1.1). Suppose now that E is a weakly regular annihilator algebra. Consider
a proper closed left ideal I in E. Then (Krull), there exists some closed maximal
regular left ideal, sayM , with I ⊆M . Thus, Ar(M) ⊆ Ar(I) and henceAr(I) 6= (0).
Similarly, Al(J) 6= (0) for every proper closed right ideal J in E. Namely, E is an
annihilator algebra.

Claim that a precomplemented algebra is a weakly regular annihilator algebra.
In fact, if M is a closed maximal regular left ideal, then E = M ⊕M ′ with M ′ ∈
Ll. Thus, by [14: p. 3729, Theorem 3.9 and Remarks 3.10], M has the form M =
E(1− x) for some x ∈ Id(E ) and hence Ar(M) = xE 6= (0). Similarly, E is weakly
regular annihilator on the right and this completes the proof. �

Remarks - As a byproduct of the previous proof one gets that for a Krull alge-
bra the notions “(M′

l) and (M′
r)−algebra” and “weakly regular annihilator algebra”

coincide.
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1) Concerning 2) ⇒ 1) in the previous theorem, something more general is ac-
tually true. More precisely, every preannihilator weakly regular annihilator Krull
algebra is an annihilator one. (Note that a topologically semiprime algebra is pre-
annihilator; see Lemma 1.1).

2) In [3: p. 571, Theorem 5.2], Barnes proves that a semisimple annihilator
Q′l-algebra is regular annihilator. Using this, he proves that the algebra, in question,
has (in our terminology) the Krull property (on the left). Since a semisimple regular
annihilator topological algebra is topologically semiprime, (D)Q′-algebra (see also
[ibid. p. 568, Theorem 4.1 and p. 569, Theorem 4.2]), we get that the information,
of being the algebra a Krull one, is a consequence of our Theorem 3.2 above (see
also the comments preceding it), where the algebra is not necessarily assumed to be
a Q′l-algebra.

3) Equivalence of statements 1) and 2), in Theorem 3.2, is still valid, if we replace
“precomplementation” of the algebra, by the property “every closed maximal regular
left (right) ideal is Peirce decomposable”.

4) The implication 2) ⇒ 1) of the same theorem is valid, as well for any pre-
annihilator left precomplemented *-algebra. This is immediate from Corollary 4.6 in
[14: p. 3732], where a left Krull algebra suffices instead of a Krull algebra.

Since every unital algebra is preannihilator and its ideals are regular, we get that
every unital weakly regular annihilator Q′- algebra is an annihilator one. In fact, for
I ∈ Lr with I 6= E there exists a maximal (regular) right ideal, say M, with I ⊆M ,
which is closed. Thus, Al(M) ⊆ Al(I) and hence Al(I) 6= (0).

Since Q′-property is frequently used in this paper, our objective is to give some
examples of Q′-algebras. For this, we make use of the following result taken from [3:
p. 569, Theorem 4.3]. Let E be an algebra with no nilpotent left or right ideals (take
e.g. E semisimple; see Lemma 1.1). Then E is a right regular annihilator algebra if
and only if every maximal regular left ideal has the form E(1-x) with x a minimal
(idempotent) element. Obviously, this leads to the next.

Proposition 3.3 Every regular annihilator topological algebra with no nilpotent left
or right ideals is a Q′− algebra.

Proposition 3.4 Let E be a topologically semiprime (M′
r)− algebra. Then the

following are equivalent:
1) E is a Q′l-algebra.
2) Ar(M) is not contained in R(E) for every maximal regular left ideal M.

Proof 1) ⇒ 2) : If Ar(M) ⊆ R(E) for some maximal regular left ideal M, then
Ar(M) ⊆ M and Ar(M) ⊆ Ar(Ar(M)). Thus, Ar(M)2 = (0) and hence Ar(M) =
(0) (cf. [12: p. 149, Theorem 2.1] as well). Therefore, M = M = E, a contradiction
(see also [ibid. p. 149, Proposition 1.3]).

2) ⇒ 1) : By [3: p. 568, Theorem 3.4], M = E(1 − x) with x a minimal
(idempotent) element. Thus, M is closed. Notice that 2) ⇒ 1) holds, more generally,
for any right preannihilator topological algebra. �
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By the above proof, one gets Ar(M) = xE 6= (0). Thus, a right preannihilator topo-
logical algebra satisfying 2) of Proposition 3.4 is a (weakly) right regular annihilator
algebra (see also [3: p. 569, Theorem 4.3 and its proof]).

The following result provides a sort of a converse to Proposition 3.3, pertaining
to 2)⇒ 1) in Corollary 3.5 (see also [3: p. 571, Theorem 5.2, (i)]; a similar remark is
valid for Example 8.1 in [3: p. 578]. For 1)⇒ 2) of the same corollary, apply Lemma
1.1 and Proposition 3.3.

Corollary 3.5 Let E be a semisimple topological algebra. Consider the assertions:
1) E is a regular annihilator algebra.
2) E is a Q′l-algebra.

Then 1) ⇒ 2). (In effect 1) ⇒ 2′) E is a Q′-algebra. Besides, 2) ⇒ 1), if E is an
annihilator algebra.

As a consequence of the above Corollary 3.5, (see also Remarks, 1) after Defini-
tion 3.1, and [12: p. 153, Theorem 3.6]), Q ′l-algebras, algebras with no proper dense
regular left ideals, regular annihilator algebras, Q ′-algebras, and (D)-algebras agree
for semisimple annihilator algebras. (See also Theorem 3.14 below). Further, based
on Corollary 3.5, the proof of Theorem 3.2, [4: p. 659, C7] and [5: p. 126, Corollary
20], it is easily seen that the 2-sided ideals of a semisimple regular annihilator topo-
logical algebra E are semisimple regular annihilator (D)Q ′-algebras. Besides, E is a
(D)Q ′-algebra too. Thus, the aforementioned ideals are algebras of the same type as
E. Here we get an example of a (D)Q′-algebra that indirectly entails the properties
(D) and Q′ on some special class of subalgebras.

Now, we come to the promised examples of Q′-algebras, some of which are
(D)−algebras, as well.

Examples 3.6 1) Let E be a non-unital commutative semisimple topological alge-
bra with discrete space of maximal regular ideals. Then by [3: p. 578, Example
8.4] E is a regular annihilator algebra. Hence (Lemma 1.1, Proposition 3.3 and [3:
p. 569, Theorem 4.2]) E is a a (D)Q ′-algebra, as well. In the unital case, there are
topological algebras as before, which are not Q

′
-algebras. Take, for instance, the

(semisimple) locally C∗-algebra Cc(X) with X a discrete space; see also Examples
2.2, 6) and Scholium 3.15 below.

2) According to [3: p. 576], a semisimple finite-dimensional algebra is regular
annihilator. Therefore, every semisimple finite-dimensional topological algebra is a
(D)Q ′-algebra.

3) By Lemma 1.1, Proposition 3.3 and [3: p. 569, Theorem 4.2 and p. 576,
Theorem 7.2], every semisimple normed algebra, whose left regular representations
are completely continuous (take e.g. the algebra completely continuous) is a (D)Q ′-
algebra.

4) If E is a semisimple normed regular annihilator algebra (thus, a Q′-algebra;
see Lemma 1.1 and Proposition 3.3) and I a maximal regular 2-sided ideal of E, then
E/I is an algebra of the same type as E (with an identity and finite-dimensional),
which in particular, is a (D)-algebra. Apply the argument of Example 2) above, and
[3: p. 574, Theorem 6.4, see also its proof]. Here we also use the fact that a maximal
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regular 2−sided ideal is primitive (cf. [24: p. 54, Theorem 2.2.9]). Concerning the
Q′-property of E/I, see also Theorem 3.11 below.

5) Consider the normed algebra AP (G) of all almost periodic functions on a
topological group G the underlying linear space being a pre-Hilbert space. Then
every (not necessarily closed) 2-sided ideal in AP (G) is a regular annihilator dual
Q ′-algebra (cf. [32: pp. 261 and 266]). Here we also get an example of a (not-
complete) normed algebra which is dual (a f o r t i o r i an annihilator one).

6) In [34] Żelazko provides an example of a topological Q′-algebra, which is not
a Q-algebra. More precisely, the free algebra in countably many variables, provided
with the maximal locally convex topology, is a unital non-commutative complete
locally convex Q′- algebra (all linear subspaces and so all ideals are closed), which is
not a Q-algebra (the only invertible elements are the scalar multiples of the identity).

In this respect, I am greatly indebted to Professor W. Żelazko, who drew my
attention to this example.

Notice that the same example is also a Krull algebra, since it is a unitalQ′-algebra
(see Examples 2.2, 3)).

In the next proposition, we further characterize the Krull property in a semi-
simple, regular annihilator topological algebra.

Proposition 3.7 Let E be a semisimple, regular annihilator topological algebra.
Then the following are equivalent:

1) E is a Krull algebra.
2) Every proper closed left (resp. right) ideal is contained in a proper left (resp.

right) annihilator ideal.

Proof 1) ⇒ 2) : If I is a proper closed left ideal in E, then by assumption, I⊆M
for some closed maximal regular left ideal of the form M = E(1 − x), with x a
minimal (idempotent) element in E (see also the comments before Proposition 3.3).
Thus I⊆Al(xE). A similar proof holds for “right”.

2) ⇒ 1) : Let I be a non-zero proper closed left ideal in E. Then, I⊆Al(J),
where J is a (non-empty) subset of E. Obviously, J 6=(0) and J 6=E. So, since
J⊆Ar(Al(J))⊆Ar(I), Ar(I) R(E). Hence, by [3: p. 569, the proof of Theorem
4.2, (3)], I⊆Al(Ar(I))⊆E(1− x) with E(1− x) a maximal regular left ideal, which
is closed, since x is idempotent. Similarly, for right ideals. �

Given an algebra E, rE(x) denotes the spectral radius of an element x ∈ E.

Corollary 3.8 Let (E, (p)α)α∈A)be a Hausdorff regular annihilator locally convex
algebra, such that

(4) pα(x) ≤ rE(x); for every x ∈ E,α ∈ A.

Suppose that every proper closed left (right) ideal is contained in a proper left (right)
annihilator ideal. Then E is a semisimple annihilator Krull (D)Q′-algebra (with
dense socle).
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Proof For x ∈ R(E), rE(x) = 0, provided that R(E) ⊆ {x ∈ E : rE(x) = 0} (see
[5: p. 126, Proposition 1]; this is stated for Banach algebras, but its proof is purely
algebraic). Thus, x = 0 and hence E is semisimple. By Corollary 3.5 and Proposition
3.7, E is a Krull Q′-algebra. Moreover, E as a regular annihilator Q′-algebra, is a
weakly regular annihilator algebra (see Remarks after Definition 3.1) and hence it
is an annihilator algebra, as well (see Remarks after Theorem 3.2). Theorem 3.14
below, completes the proof (see also [3: p. 571, Theorem 5.2]). �

Scholium 3.9 By the above proof, the assertion of Corollary 3.8 remains valid, if
(4) holds true for every x ∈ R(E), and α ∈ A.

We are interested now in conditions under which the Krull (resp. Q′-)property
is preserved via algebra morphisms. In what follows, analogous results hold for the
left Krull (right Krull, Q′l or Q′r−)properties.

Lemma 3.10 Let E, F be topological algebras and ϕ : E → F an algebra epimor-
phism. Then the following hold:

i) If ϕ is a continuous closed map and E is a Krull algebra, then F is a Krull
algebra.

ii) Suppose that F is a Krull algebra and ϕ a continuous closed map, such that
ker(ϕ) j I for every proper closed left or right ideal I in E. Then E is a Krull
algebra.

iii) If ϕ is a closed map and E is a Q′-algebra, F is a Q′−algebra.
iv) Suppose that F is a Q′-algebra and ϕ continuous such that ker(ϕ) ⊆ M for

every maximal regular (left) ideal M in E. Then E is a Q′-algebra.

Proof i) If I is a proper closed left ideal in F, then ϕ−1(I) is a closed left ideal in
E with ker(ϕ) ⊆ ϕ−1(I) (see, for instance, [7: p. 316, Proposition B.5.4]) so that
ϕ−1(I) ⊆M for some closed maximal regular left ideal M in E. Hence ker(ϕ) ⊆M
and I = ϕ(ϕ−1(I)) ⊆ ϕ(M), so that, by the assumption for ϕ, ϕ(M) is a closed
maximal regular left ideal in F.

ii) If J ⊂ E is a proper closed left ideal, then ϕ(J) is a proper closed left ideal
in F (see also [ibid.]). Hence ϕ(J) ⊆ N for some closed maximal regular left ideal
in F . Therefore, J = ϕ−1(ϕ(J)) ⊆ ϕ−1(N), with ϕ−1(N) a closed maximal regular
left ideal in E.

iii) If M is a maximal regular (left) ideal in F , then [ibid.], ϕ−1(M) is a maximal
regular (left) ideal in E, such that ker(ϕ) ⊆ ϕ−1(M). By hypothesis, ϕ−1(M) is
closed. Thus, M = ϕ(ϕ−1(M)) is closed.

iv) If N is a maximal regular (left) ideal in E, ϕ(N) is a maximal regular (left)
ideal in F [ibid.], hence closed. Therefore, N = ϕ−1(ϕ(N)) is closed, as well. �

Theorem 3.11 Let E be a topological algebra and I a 2-sided ideal in E. Then, the
following hold.

i) If E is a Q′-algebra, E/I is also.
ii) If I ⊆ R(E) and E/I is a Q′-algebra, the same is true for E.
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iii) If E is a Krull algebra so that E/I is a Q′-algebra, then E/I is a Krull
algebra.

iv) If E is a Krull Q′-algebra, E/I is an algebra of the same type with E.

Proof Notice first that E/I is equipped with the quotient topology.
i) Consider the (canonical) continuous epimorphism π : E −→ E/I and M a

maximal regular (left) ideal in E/I. Then π−1(M) is a maximal regular (left) ideal
in E (cf. e.g. [7: p. 316, Proposition B.5.4]), hence closed by hypothesis, so that M
is closed, as well.

ii) Let N be a maximal regular (left) ideal in E. By assumption, I ⊆ N and
hence ker(π) ⊆ N . Now, by the continuity of π and Lemma 3.10, E is a Q′-algebra.

iii) Since π is a continuous epimorphism, E/I is Krull (see [15: p. 197, Proposi-
tion 1.2]).

iv) Immediate from i) and iii). �

Corollary 3.12 A topological algebra E is a Q′-algebra if and only if E/R(E) is a
Q′-algebra.

Thus, there is no restriction by looking at semisimple Q ′−algebras.
If the cartesian product and the direct sum of topological algebras with the usual

topologies are Q′-algebras, then the same holds for the factor algebras, whenever the
corresponding projection maps are closed. For the converse it suffices only one of the
factors to be a Q′-algebra having also the property that the kernel of the respective
projection map is contained in the (Jacobson) radical of the product or direct sum
algebra. An analogous statement is valid for a projective limit (topological) algebra,
provided the restrictions of projection maps on the projective limit algebra be onto
(cf. also [15: p. 199, Definition 2.7]).

Now, we also note that the inverse limit of Banach algebras may even be not a
Q′-algebra, as the following example shows. Let E be a unital commutative complete
(locally) m-convex algebra with non-compact spectrum (provided with the weak star
topology; take for instance, the algebra Cc(X) with X a k-space, see Examples 2.2).
Consider the Arens-Michael decomposition E = lim

←−
Êα of E (cf. [22: p. 91, relation

(3.32)]). The Êα’s, being Banach algebras, have the Q′-property, while E is not
a Q′-algebra, since it contains a dense maximal (regular) ideal (see [12: p. 149,
Proposition 1.3] and [33: p. 296, Proposition 1]).

Scholium 3.13 Concerning Theorem 4.3 in [3: p. 569], Barnes gives some equiv-
alent aspects for an algebra to be right regular annihilator. In this context, we
remark that, if E is a unital advertibly complete locally m-convex algebra with spec-
trum M(E), having no nilpotent left or right ideals and its socle S contains invertible
elements, then the hull h(S) of S is empty. In fact, if x ∈ S is an invertible element,
then f(x) 6= 0 for every f ∈ M(E) (see, for instance, [22: p. 98, Corollary 5.2, see
also its proof]). Thus,

h(S) = {f ∈ M(E) : ker(f) ⊇ S} = ∅
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(see also [ibid.: p. 330, Definition 1.1]). Therefore, by the above argument and
[3: p. 569, Theorem 4.3 and p. 570, (4.2)], E is a regular annihilator Q ′-algebra.
Now, based on [ibid. p. 571, Theorem 5.2. (1)] it is easily seen that a topological
algebra, as before, has either a dense socle or h(I)=∅ for some proper closed 2-sided
ideal I. Finally, from [29: p. 7, Theorem 6], see also [22: p. 106, Theorem 6.3] for
a commutative Hausdorff locally m-convex C-algebra the statements “Q-algebra”,
“advertibly complete algebra with equicontinuous spectrum” and “Q ′-algebra with
equicontinuous spectrum” are equivalent.

i) and v) of the next theorem are included in [3: p. 571, Theorem 5.2]. Here, they
are reworded in our terminology. The same theorem deals with further properties
of a semisimple annihilator Q ′l (or Q′r)−algebra. For more information concerning
this type of algebras see also [12]. We note that such topological algebras are of
interest for instance, in Quantization Theory (see e.g. [17]. My thanks are due
to Prof. A. Mallios for drawing my attention to that paper). In this context, we
also remark that M.A. Hennings proves in [ibid. p. 185, Proposition 4] that, for
any maximal closed left ideal M in a semisimple annihilator Q-*-algebra, the right
annihilator Ar(M) is a (non-zero) minimal right ideal. This is still valid for more
general topological algebras; take, for instance, a semisimple annihilator Q ′l-algebra
(see the next result and [12: p. 152, Theorem 3.4]).

Theorem 3.14 Let E be a semisimple annihilator Q′l (or Q′r)-algebra. Then
i) E is a regular annihilator algebra.
ii) E is a Q′-algebra.
iii) E is a (D)-algebra.
iv) E has a dense socle.
v) E is a Krull algebra.

Proof By [3: p. 571, Theorem 5.2], E is regular annihilator and hence a (D)Q′-
algebra. (The properties i)-iii) are actually equivalent; see the comments following
Corollary 3.5). Besides, from [3: p. 571, Theorem 5.2], and the Q′-property, E is a
Krull algebra, as well; in this concern, we also note that in any topological algebra E
every closed maximal regular (left) ideal ( equivalently, every closed regular maximal
(left) ideal) is a maximal regular closed (left) ideal. The converse is true, if E is, for
instance, a Q′−algebra. Moreover, an annihilator Q ′-algebra is semisimple if and
only if, it has a dense socle (see [12: p. 158, Theorem 4.3]) and this completes the
proof. �

Scholium 3.15 In this context, we remark that the hypothesis in Theorem 3.14 of
being the algebra Q′l (or Q′r) is necessary: Indeed, Yood remarks that the (Arens)
algebra Lω (cf. e.g. [22]) is an example of a real unital commutative semisimple
annihilator (topological) algebra without closed maximal ideals, hence the algebra in
question is not a Q ′-algebra neither a Krull one. Moreover, Lω is not a regular
annihilator algebra and its socle is trivial [31: p. 30, Example 2.5 and p. 39, the
comments preceding Theorem 3.5]. Moreover, we note that there are semisimple
(normed) Q ′-algebras, which are not annihilator algebras and they have not dense
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socle. Such an example is provided by [2: p. 573, see also p. 575, Lemma 3 and
Theorem 1 as well as, its proof]. This same example is, in particular, a closed 2-sided
ideal in a semisimple normed annihilatorQ′-algebra. But, in case of a minimal closed
2−sided ideal in a more general topological algebra, i.e., in a semisimple annihilator
Q′-algebra, the aforementioned properties i)-v) of Theorem 3.14 remain valid (see
Remark 4.4 below). Finally, we note that a proper H*-algebra [1] is a (regular)
annihilator Krull (D)-algebra with dense socle. This follows from Theorem 3.14 and
the fact that the algebra in question is semisimple and dual (cf. e.g. [23: p. 334 and
p. 335, II]). Concerning semisimplicity, see the comments following Proposition 4.1
below. For an analogous, more general situation, see also Proposition 4.1, i) below,
where semisimplicity is assumed. Concerning the density of the socle in a topological
algebra, we also note that a regular annihilator Pták-Šilov-Wiener-Tauber algebra
E with minimal ideals and equicontinuous spectrum has a dense socle. In fact, by
semisimlicity of E, the socle S is defined (see Lemma 1.1, [22: p. 334, Definition
2.3] and [24: p. 46, Lemma 2.1.12]). Now, if E 6= S, h(S) 6= ∅ (see, for instance,
[22: p. 350, Theorem 6.1]), a f o r t i o r i, h(S) 6= ∅). Therefore, from [3: p. 569,
Theorem 4.3]) E is not regular annihilator, a contradiction.

In this concern we also note that there are Krull locally m-convex algebras which
are not Q′-algebras. In fact, if X is a (Hausdorff completely regular non-compact)
k−space and Cc(X) the complete locally m-convex algebra of all continuous C-
valued functions on X, in the compact open topology, then Cc(X) is a Krull algebra
(see Examples 2.2). Besides, the same algebra can not be a Q′-algebra. In fact,
M(Cc(X)) = X (within a homeomorphism) is not compact (see [22 : p. 223, Theo-
rem 2.1)]. Hence Cc(X) has a dense maximal ideal (see [33: p. 296, Proposition 1])
and therefore it is not a Q′-algebra (see [12: p. 149, Proposition 1.3]).

Following [27: p. 50] a (non-zero) idempotent element x of a complemented
algebra E (see [14: p. 3723, Definition 2.1]) is called a left (resp. right) projection,
if the complement of xE (resp. Ex), in E, is (xE)⊥ = (1 − x)E (resp. (Ex)⊥ =
E(1 − x)). If, moreover, x is minimal, it is called a minimal left (right) projection.
We quote now a result from [27: p. 50, Lemma 1.1] stated for semisimple annihilator
complemented Banach algebras.

Lemma 3.16 Let E be a semisimple annihilator left complemented Q′l-algebra. Then,
every non-zero left ideal I contains a minimal (primitive) right projection. If, in
particular, (0)6= I ∈ Ll and (xi)i∈Λ is the family of all minimal (primitive) right
projections in I, then I=

∑
iExi.

Proof By Theorem 3.14, E is a (D)-algebra. Thus, I contains a minimal left ideal,
say J, of the form Ex with x a minimal primitive (idempotent) element and thus
closed (see the proof of Theorem 3.6 in [12]). Claim that the complement J⊥ of J ,
in E, is a closed maximal left ideal. In fact, if M is a proper closed left ideal in E
with J⊥ ⊆ M, then M⊥ ⊆ J. If M⊥ = (0), we derive a contradiction. So, since
the ideal J is minimal closed, M⊥ = J and hence J⊥ = M. Besides, M is regular
(see Theorem 3.14 and [12: p. 152, Theorem 3.4]; see also the proof of Theorem
3.14). Hence J⊥ = E(1 − z) and J = J⊥⊥ = Ez, z ∈ Id(E) (cf. [14: p. 3729,
Theorem 3.9 and Remark 3.10]). By [12: p. 154, Theorem 3.9 and p. 155, Corollary
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3.10] z is a minimal (primitive) right projection and this proves the first part of the
assertion. Thus, we can consider the family (xi)i∈Λ of all minimal (primitive) right
projections in I. Obviously,

∑
iExi ⊆ I. Put K =

∑
iExi . If I 6= K, there exists

some x ∈ I with x /∈ K.Since E = K ⊕ K⊥, x = y + z with y ∈ K, z ∈ K⊥.
Thus, 0 6= z = x − y ∈ I ∩ K⊥. So, there exists some minimal right projection,
say x0, in I ∩K⊥(being a non-zero left ideal) and hence in I, such that x0 /∈ K, a
contradiction. �

The next lemma provides conditions for the uniqueness of a complement.

Lemma 3.17 Let E be a linear space and A, A′, B linear subspaces of E, such that
the following hold true:

1) E = A⊕A′.
2) A′ ⊆ B.
3) B ∩A = (0).

Then B = A′.

Proof If b ∈ B, there exist a ∈ A, a′ ∈ A′ with b = a + a′. Thus, b − a′ = a ∈
B ∩A. Therefore, b = a′ ∈ A′. �

In the next result, we collect a number of equivalent expressions of the Krull
property in a certain class of topological algebras; see also [27: p. 50, Theorem 3.3].

Theorem 3.18 Let E be a semisimple complemented Ql
′-algebra consider the as-

sertions:
1) E is a Krull algebra.
2) E is an annihilator algebra.
3) Every non-zero left (right) ideal contains a minimal (idempotent) primitive

element.
4) Every non-zero left (right) ideal contains a minimal (primitive) right (left)

projection.
5) Every closed maximal left (right) ideal is regular.
6) Every closed maximal left (right) ideal has a non-zero right (left) annihilator.

Then 1) ⇔ 2), 2) ⇒ 3),4),5) and 6), 3) ⇒ 5), 4) ⇒ 5) ⇒ 6). If E is moreover,
unital, then 6) ⇒ 1). Namely, the above assertions are equivalent.

Proof 1) ⇔ 2): Apply Lemma 1.1, Theorem 3.2 (see also the remarks preceding
it), and Theorem 3.14.

2) ⇒ 3): Let I 6= (0) be a left ideal in E. By Theorem 3.14, E is a (D)−algebra.
Thus, I contains a minimal left ideal of the form Ex with x a minimal primitive
element of E (see also [12: p. 153, the proof of Theorem 3.6]).

2) ⇒ 4): See Lemma 3.16.
4) ⇒ 2): It is trivial.
2) ⇒ 5): From [12: p. 152, Theorem 3.4], every maximal closed left ideal M has

the form E(1− x) with x a primitive idempotent. Hence M is regular.
2) ⇒ 6): It is obvious.
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4) ⇒ 5): Let M be a closed maximal left ideal. Then the left ideal M⊥ is
minimal. In fact, if I is a non-zero left ideal, such that I ⊆ M⊥, there exists
a minimal (primitive) right projection, say y, with Ey ⊆ I. Since I⊥ ⊆ (Ey)⊥ =
E(1−y), M ⊆ E(1−y). Moreover, E(1−y) 6= E, otherwise, yE = (0). In particular,
y = 0, a contradiction. Thus, M = E(1− y).

3) ⇒ 5): Repeat the reasoning following in the proof of 4) ⇒ 5). Here, we use
the fact that (Ez)⊥ = E(1 − z) with z a minimal primitive (idempotent). Indeed,
by Peirce decomposition and complementation in E, we get E = Ez ⊕ E(1 − z) =
Ez⊕ (Ez)⊥. Thus, (Ez)⊥ ⊆ E(1− z) and since Ez∩E(1− z) = (0), we get (Lemma
3.17), (Ez)⊥ = E(1− z).

5) ⇒ 6): Let M be a closed maximal left ideal. M, as regular, is Peirce decom-
posable (cf. [14: p. 3729, Theorem 3.9 and Remarks 3.10]). Therefore Ar(M) 6= (0).

A similar argument establishes the analogous results for right ideals. Now, sup-
pose that E is moreover, unital. Then we prove that 6)⇒ 1). Indeed, by assumption,
every closed maximal (regular) left ideal has non-zero right annihilator. Thus, E is
a (weakly) regular annihilator algebra on the left (see also the remarks preceding
Theorem 3.2). Analogously, for right ideals. Namely, E is a (D)Q′-algebra (see
Lemma 1.1, Proposition 3.3, as well as [3: p. 569, Theorem 4.2]). Hence, according
to Examples 2.2, 3), E is a Krull algebra. �

In the next proposition by a pre-C*-algebra we mean a (C-)normed algebra
with an involution satisfying the C∗-condition. For its proof apply Corollary 3.5,
Theorem 3.14 as well as [24: p. 188, Theorem 4.1.19] and [28: p. 263, Corollary
4.3].

Proposition 3.19 Let E be a regular annihilator pre-C*-algebra, in which every
minimal left ideal is complete. Then E is a semisimple dual Krull (D)Q′−algebra
(with dense socle).

We end this section by giving a certain class of topological algebras in which the
notions “annihilator algebra” and “dual algebra” coincide.

Theorem 3.20 Let E be a topological algebra with the following properties:
i) x2 = 0 if and only if x=0, for every x ∈ E.
ii) Al(I) = Ar(I) for every I ∈ Ll ∪ Lr (namely, E is isotropic).
iii) The ideal I +Al(I) (= I +Ar(I)) is closed for every I ∈ Ll ∪ Lr.

Then the following assertions are equivalent:
1) E is an annihilator algebra.
2) E is a dual algebra.
3) E is complemented with complementor the annihilator operator Al(= Ar).

Proof 1) ⇒ 2) : Claim that

(5) E = I ⊕Al(I), I ∈ Ll.

Indeed, if x ∈ I∩Al(I), then x2 = 0 and hence x = 0. Thus, I∩Al(I) = I∩Ar(I) =
(0) (see also ii)). Consider the closed left ideal K = I ⊕ Al(I) = I ⊕ Ar(I). If
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y ∈ Ar(K), Ky = (0) and thus, Iy = (0), Ar(I)y = (0). Therefore, y2 = 0 and thus,
y = 0. So, since E is an annihilator algebra, K = E. Now, by ii) and (5), we get
E = Ar(I)⊕Al(Ar(I)). Consequently, by I ⊆ Al(Ar(I)) and Al(I) ∩Al(Ar(I)) =
Ar(I)∩Al(Ar(I)) = (0), we get that I = Al(Ar(I)) (see Lemma 3.17). In the same
way, J = Ar(Al(J)) for every J ∈ Lr. The above argument shows that E is a dual
algebra.

1) ⇒ 3) : The mapping

⊥ := Al : Ll −→ Ll : I 7→ I⊥ := Al(I)(= Ar(I))

defines a left complementor on E (see [15], see also the proof of 1) ⇒ 2)). Similarly
for the “right”.

Since a dual algebra is an annihilator one, 2) ⇒ 3). Clearly, 3) ⇒ 2) ⇒ 1) and
this completes the proof. �

The previous theorem looks rather restricted, but notice that properties i)-iii)
are for instance, fulfilled for any commutative locally C∗-algebra E. Indeed, E as
topologically semiprime, satisfies i). For condition iii) see the proof of Theorem 3.1
in [16: p. 226; here, we use the fact that the closed ideals in E are self-adjoint]; see
also [19: p. 209, Theorem 2.7]. Besides, if X is a discrete space, then Cc(X) is a
commutative annihilator locally C∗-algebra (see Examples 2.2, 6) and [14: p. 3724,
Example 2.6]).

4. Orthocomplemented and Krull algebras. Subalgebras of Krull al-
gebras.

ii) of the following result concerns a special class of locally convex H*-algebras.
For the terminology applied, we refer to [13].

Proposition 4.1 Let E be an orthocomplemented algebra. Then the following hold.
i) If E is a semisimple Hausdorff Q′l-algebra, then it is a dual (regular annihila-

tor) Krull (D)Q′-algebra with dense socle.
ii) If E is a non-radical (bs) Ambrose Q′-algebra, then it is a semisimple dual

((regular) annihilator) Krull (D)-algebra with dense socle.

Proof i) This is immediate from Lemma 1.1, Theorem 3.14 and [10: p. 458,
Theorem 3.9].
ii) By [13: p. 144, Theorem 3.1 and p. 145 Theorem 3.3, see also the Scholium
following it]1, E contains a family (of axes), say (xi)i∈Λ, such that

(6) E = ⊕⊥i∈ΛExi = ⊕⊥i∈ΛxiE.

That is, E is the topological orthogonal direct sum of the minimal closed ideals
Exi, xiE, i ∈ Λ respectively. Moreover, E contains minimal left ideals (see [9: p.
965, the comments after Theorem 2.3]). Let (Lk)k∈K be the family of all minimal
left ideals of E. Since xi ∈ Id(E), i ∈ Λ, the minimal closed left ideal Exi is also
a minimal left ideal (cf. [11: p. 1176, Lemma 1.1]). Thus, the Ex ,

i s belong to the

1The quoted results from [13] are actually valid without the condition (PH) left or right.
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family (Lk)k∈K and hence
∑

i∈ΛExi ⊆ Sl. Similarly,
∑

i∈Λ xiE ⊆ Sr; (Here Sl,
Sr denote the left and right socles of E). Thus, (see also (6)), E has a dense socle.
Besides, by [10: p. 458, Theorem 3.9], E is a dual algebra a f o r t i o r i
an annihilator one. Therefore (see the proof of Theorem 3.14), E is semisimple, and
hence, by the same theorem (see also Examples 2.2, 7)), we get the assertion. �

A proper H∗−(Banach) algebra E [1] is a (bs) Ambrose orthocomplemented Q′-
algebra (see [11: p. 1182, the comments following Definition 4.1] and [13: p. 143,
the comments before Lemma 2.5]). So, E considered as a non-radical algebra, has
all the properties referred in ii) of Proposition 4.1. In this respect, we also note
that E is, in particular, semisimple getting thus another proof (avoiding “regular
representations” as in [23: p. 334]).

We deal now with appropriate subalgebras of certain Krull algebras.
It is obvious that any subalgebra F (equipped with the relative topology) of a left

Krull algebra E, so that Ll(F ) ⊆ Ll(E) and Ml(E) ∩ F ⊆ Ml(F ) is a left Krull
algebra. Similarly, on the right. As a realization, we get the next.

Proposition 4.2 Let E be a topologically semiprime, precomplemented, Krull alge-
bra. Then every I ∈ L is a Krull algebra.

Proof Our first task is to show that the ideals I ⊕Al(I) and I ⊕Ar(I) are dense
in E. Then it will follow that Ll(I) ⊆ Ll(E) and Lr(I) ⊆ Lr(E). In fact, it is
clear that (I ∩ Al(I))2 = (0). Thus, since E is topologically semiprime, it follows
I ∩Al(I) = (0). Inasmuch as the ideals I and Al(I) are 2-sided, IAl(I) ⊆ I ∩Al(I)
and hence Al(I) ⊆ Ar(I). In the same way, Ar(I) ⊆ Al(I). Therefore Al(I) =
Ar(I). Consider the 2-sided ideal K = I ⊕ Al(I); clearly Al(K) ⊆ Al(I) ⊆ K
and thus Al(K) ⊆ Al(Al(K)). It follows Al(K)2 = (0) and hence Al(K) = (0).
This implies Al(K) = (0) with K ∈ L. If K

′
is a complement of K in E, then

K K
′ ⊆ K∩K ′ and hence K

′ ⊆ Ar(K). Besides, by applying an argument as above,
we get Ar(K) ∩K = Al(K) ∩K = (0). It follows from Lemma 3.17, K

′
= Ar(K).

Therefore

E = I ⊕Al(I) = I ⊕Ar(I).

So, if J ∈ Ll(I), we get

EJ ⊆ I ⊕Al(I) J ⊆ IJ ⊂ J.

Thus, Ll(I) ⊆ Ll(E). Similarly, Lr(I) ⊆ Lr(E).
Now, let J be a proper closed left ideal in I. Since J is also a proper closed left

ideal in E, the Krull property implies that J ⊆ M for some M ∈ Ml(E). Thus,
J ⊆ M ∩ I. Claim that M ∩ I ∈ Ml(I). Obviously, M ∩ I is a regular left ideal in
I. Suppose that M ∩ I ( K ⊆ I with K ∈ Ll(I). But, K ∈ Ll(E), as well. So,
since E = I ⊕ I ′, we get K ∩ I ′ ⊆ I ∩ I ′ = (0). As a consequence of Lemma 3.17, we
take K = I. Therefore I is a left Krull algebra. A similar argument is applied on
the right, and this completes the proof. �
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ii) in the next proposition shows that the minimal closed 2-sided ideals (basic
in structure theory) of a semisimple annihilator Q′l -algebra, are rich enough in
algebraic-topological properties. But, see also the comments following Corollary
3.5.

Proposition 4.3 Let E be a semisimple regular annihilator Krull algebra and I
∈ L. Then, I is an algebra of the same type as E in each one of the following cases:

i) I satisfies the relation EI = I .
ii) I is a minimal closed 2-sided ideal.

Proof Let us first observe that a semisimple topological algebra is an annihilator
Q′l (or Q′r)-algebra if and only if, it is a regular annihilator, Krull algebra (see [3: p.
571, Theorem 5.2], as well as Lemma 1.1, Theorem 3.2, Corollary 3.5, the comments
after it and the proof of Theorem 3.14).

i) Since R(I) = I ∩ R(E) (cf. e.g. [5: p. 126, Corollary 20]), I is semisimple.
Moreover, an annihilator Q′-algebra is semisimple if and only if, it has a dense
socle (see [12: p. 158, Theorem 4.3]), so by [28: p. 258, Theorem 3.3], EI = I is
equivalent to IE = I. Thus, from Theorem 4.4 in [12: p. 158], I is an annihilator
algebra, being by [4: p. 659, C7] regular annihilator and hence (Corollary 3.5) a
Q′-algebra. Theorem 3.14 implies that I is a Krull algebra, as well.

ii) By [12: p. 160, Corollary 4.10], I is a semisimple annihilator algebra. For the
Q′-property, see the proof of i) above. �

Remark 4.4 It follows from Theorem 3.14 that an algebra E as in Proposition 4.3
is, in fact, a (D)Q′-algebra with dense socle. Thus the ideal I shares the same
properties with E. Furthermore, by [12: p. 161, Theorem 4.12] (see also Theorem
3.14 ) a semisimple annihilator Q ′l (or a Q′r)−algebra is the topological direct sum
of its minimal closed 2-sided ideals which are semisimple topologically simple (reg-
ular) annihilator Krull (D)Q ′-algebras with dense socle. On the other hand, if a
preannihilator topological algebra E is the topological sum of a given family of closed
2-sided ideals, which are annihilator algebras, then E is an annihilator algebra, as
well. This result is stated in [24: p. 106, Theorem 2.8.29], for semisimple Banach
algebras, but the proof is still valid in the more general case as above.

5. The Krull property in tensor product topological algebras. Our
intention, in this section, is to give conditions under which the Krull property of a
topological tensor product algebra is inherited to its tensor factors. In particular,
for certain X and E the algebra-valued function topological algebra Cc(X,E), is a
Krull algebra.

Let E, F be topological algebras and E ⊗
τ
F the resulted tensor product topo-

logical algebra with respect to a compatible topology τ (see [22: p. 382, Definition
4.1]). Consider the spectrum M(E); namely the set of all non-zero continuous mul-
tiplicative linear functionals on E. Under this notation, we have the next.
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Proposition 5.1 Let E be a unital topological algebra with spectrum M(E) and F
a Q′−algebra. Suppose that E ⊗

τ
F is a Krull algebra. Then F is a Krull algebra.

Proof Let f be an element in M(E). Consider the continuous algebra homomor-
phism

(7) θf : E ⊗
τ
F → F, θf (z) =

∑n

i=1
f(xi)yi, with z =

∑n

i=1
xi⊗yi

(see [22: p. 361, Lemma 1.4, p. 441, Lemma 4.1 and the comments preceding it]).
If 1E is the unit element in E, then for y ∈ F , 1E⊗y 7→ θf (1E⊗y) = y. Namely, θf

is finally, an epimorphism. The assertion now follows from [15 : p. 197, Proposition
1.2, (ii)]. �

Notice that if E and F are unital Q′-algebras, then they are Krull (see Examples
2.2, 3)). So, if E ⊗

τ
F is a Q′-algebra, then it is a Krull algebra.

An analogous result to Proposition 5.1 can also be considered for the completion
E⊗̂

τ
F of E ⊗

τ
F , by taking locally convex algebras E and F with continuous mul-

tiplication. E⊗̂
τ
F is actually, a (complete) locally convex algebra with continuous

multiplication, as well. By [22: p. 447, Lemma 5.1] for f ∈ M(E), we consider the
continuous homomorphism θ̄f : E⊗̂

τ
F → F̂ , (the extension of θf ; see (7)), which is

onto, if E is unital. Thus, we get the next.

Proposition 5.2 Let E be a unital locally convex algebra with continuous multi-
plication and spectrum M(E) and F a locally convex Q′-algebra with continuous
multiplication. Then F̂ is a Krull algebra, if E⊗̂

τ
F is so. Thus, F is Krull if, in

particular, it is complete.

Let X be a topological space and (E, (pα)α∈A) a locally m-convex *-algebra.
Consider the locally m-convex *-algebra Cc(X,E) of all E-valued continuous func-
tions on X (pointwise defined operations, involution given by f∗(x) = f(x)∗, f ∈
Cc(X,E), x ∈ X and the topology “c” of compact convergence in X, defined by the
seminorms

(8) qα,K(f) := sup
x∈K

{pα(f(x))}, f ∈ C(X,E), α ∈ A,K ⊂ X compact

see also [22: p. 387]).
We give now conditions under which Cc(X,E) is a Krull algebra. Moreover, we

see when E inherits the Krull property from Cc(X,E).

Proposition 5.3 Let X be a completely regular k-space.
1) If (E, (pα)α∈A) is a locally C∗−algebra, then Cc(X,E) is Krull.
2) If (E, (pα)α∈A) is a complete locally m-convex Q′-algebra and the algebra

Cc(X,E) is Krull, then E is Krull.
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Proof 1) By Theorem 1.1 in [22: p. 391], Cc(X,E) is a complete locally m-convex
algebra. Besides, for any f ∈ C(X,E), α∈A and K ⊂ X compact, we get (see also
(8))

qα,K(f∗f) = sup
x∈K

{pα(f∗f)(x)} = sup
x∈K

{pα(f(x))2} = qα,K(f)2.

Namely, Cc(X,E) is a locally C∗-algebra and hence a Krull one (see Examples 2.2,
4)).
2) Cc(X,E) = Cc(X)⊗̂

ε
E within an isomorphism of topological algebras (here ε

denotes the biprojective tensor product topology; see, for instance [22: p. 371,
Definition 2.3 and p. 391, Theorem 1.1]). By assumption and Corollary 1.3 in
[15: p. 197], Cc(X)⊗̂

ε
E is a Krull algebra. Since Cc(X) is a unital commutative

complete locally m-convex algebra (see Examples 2.2), M(Cc(X)) is non-empty (ac-
tually, M(Cc(X)) = X, within a homeomorphism of topological spaces; see [22: p.
223, Theorem 1.2]). Thus, the assertion follows from Proposition 5.2. �

We consider now similar statements as in 2) of the previous proposition, for two
more algebra-valued function topological algebras:

i) Let X be a C∞-manifold, U an open subset of X and E a complete locally
convex Q′-algebra. Consider the complete locally convex algebra C∞c (U,E) of all
E-valued C∞-maps on U , with respect to the topology of compact convergence of
the functions and all of their derivatives. Then

C∞c (U,E) = C∞c (U)⊗̂
ε
E(= C∞c (U)⊗̂

π
E)

within a topological algebra isomorphism (: π denotes the projective tensorial topol-
ogy ; see [22: p. 366 and p. 394, Theorem 2.1]). Besides, C∞c (U) is the unital com-
mutative complete locally m-convex algebra of all complex C∞-functions on U [ibid.
p. 129, 4(2)]. Thus, if C∞c (U,E) is a Krull algebra, then E is a Krull algebra, as well.

ii) Let G be an abelian discrete locally compact group and E a complete locally
m-convex Q′-algebra. Consider the generalized group algebra L1(G,E) being in par-
ticular, a (commutative) complete locally m-convex algebra [ibid. p. 405, Theorem
5.1]. Suppose L1(G,E) is a Krull algebra. Since

L1(G,E) = L1(G)⊗̂
π
E

within an isomorphism of topological algebras [ibid. p. 406], we get that E is a
Krull algebra. Notice that L1(G), as a commutative unital Banach algebra, has a
non-empty spectrum and it is a Krull algebra (see Examples 2.2).

Relative to the above study, the following questions came to light:
1. Is the tensor product E ⊗

τ
F of Krull algebras a Krull algebra?

2. Is the completion of a Krull algebra, Krull?
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3. Under what conditions the aforementioned algebra-valued function topological
algebras are Krull? An instance is given in Proposition 5.3.

4. Is the tensor product of Q′-algebras a Q′-algebra?
Other results concerning the Krull property in tensor product topological alge-

bras hope to be given elsewhere.
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