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A note on integrals of distributions

1. Introduction. The notion of a definite integral of a distribution
over the n-dimengional space was introduced by L. Schwartz in [5] and
[6]. Let © = (24, ..., ®,) be a point of the n-dimensional Euclidean space
R, and let us write

01’1+...+Z’n

= 0Pl 0aPn’

where p = (p,,...,p,) and p; are non-negative integers. L. Schwartz
denotes by # the B,-space of all infinitely differentiable funections ¢
such that all derivatives of ¢ are bounded, with pseudonorms

el = sup | D% (@),

zeRy,
“and by 2 the subspace of all e such that DPp(z) — 0 as |2| — oo for

every p ([4], Chap. VI, § 8). Now, denoting by 271 the strong dual of %,
it is proved ([5], § 21, Prop. 1) that & is the strong dual of Z71.In particular,
the function ¢(x) = 1 defines a linear functional <7',1)> continuous over
D71, and this functional is called the integral of the distribution 7 over R,;
distributions belonging to 271 are called summable. The concept of in-
tegrating distributions was developed by J. Mikusiriski and R. Sikorski
for one-dimensional intervals ([1], 19.1) and by R. Sikorski for many-
dimensional intervals ([7], § 2); the starting-point of their investigations
is the formula for differentiation of indefinite integrals.

The purpose of this note is to define the integral of a distribution
Te2' as a set function f T,dx whose values are distributions, where £

is a bounded mea,sura,ble set in R,, and the integrals f Tdx and f |T,| da
run over the whole space R,. It is proved that [[T,| dw exists if a,nd only
Ry

if T is summable in Schwartz’s sense; in the case when T ¢ 271, Schwartz’s
integral coincides with f T,dz. On the other hand, 2.3 shows that, in the

case of a one- dlmensmnal interval, the definition of f T.dx given here
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coincides with the definition of J. Mikusiniski and R. Sikorski, given in
[1], 19.1, formula (1). The definition of R. Sikorski [7] may also be shown
to be equivalent to that given here in the case of integration over R,;
hence, the integrals of Schwartz and those of Sikorski over R, are also

equivalent.

2. Integral over a bounded measurable set. Denote by y,(x)
the characteristic function of a bounded measurable set 2 C R, and let

25 () = go(—a).
Let T be any distribution. Then there exists a convolution T'xyy

([4], Chap. VI, Theorem 1).
DeriNiTION 1. For an arbitrary distribution 7, the distribution

[ Todw = Ty,
2

is called the integral of the distribution T over the set Q. If £ is an n-dimen-
sional interval & < x < n, we write

fnmzfnm.
21. Let TeD' and (p:@. Then 5
(J2:t0) (@) = T, foty—o)do) = [Tyfpty—
Proof. We have |

([ [ Tada)(@) = (Te13) (@) = Ty |23 @@+ v))|
= Tyleale(y—2)| = T, (fqp *m)dw)

However, Ty(p(y—)) is an infinitely differentiable function of , whence

(/ Tod2) (@) = (D) (9) = 23 [Ty lp(2+ )

Q

= ze|Tulo(v—a))| = [ T\lep(y—w)de.

Q

Remark. In particular, it follows from 2.1 that, if 7' is a locaﬂy in-
tegrable funetion 7'(x), then the distribution f T,dx is a function
0

Hl‘dm) = [T

0 Q4+
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where Q- x means the set of vectors of the form ¢+ x with te 2. Moreover,
(fodw)(O) = fT(w)da: (in the one-dimensional case, c¢f. [1], 19.1, for-
2 2
mula (3), where the authors define an integral of 7T over the interval

n
(&, ) as the value of the distribution [7,dz at the point 0).
2.2, Writing p = (P1y ---y Pu)y 1P| = P1+... 4 Du, we have
([ D"Tada)(g) = (1) |{ [ Tedz)(DPp)]
Q2 Q

for every pe 9.

In 2.3 and 2.4 we restrict ourselves to the case of a one-dimensional
interval. This restriction is essential in 2.3; in 2.4 it is made for the. sake of
brevity.

23, Let Te2', 8 = T. Write (t3,0)(x) = p(x—h), (1:1)(p) = T(t_pp)
for we2. Then )

7
([ 7242) (9) = (.8 —7_8) (@)
Proof. Take a pye 2 with [ @,(z)dw = 1. Then

S(p) = iT(go)—T] [ (9= Apo) (t)it],

00
where /. = [ p(x)de. We huve

(r_,8—1_ ) (@) = Sxlop(@—n)—pl@—§)].

However,

[ lo(@--n)—p(z— &)ldz =0,

whence

x

(t_y8—1_:8)(g) = —T} [ [p(t—n)—g(t—&)dt}
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24. If TeD' and geD, then

2l )] = 2ifoa—m, 2 1([ ras)or] = ey,
: : ' ot |

Proof. For instance, the first of the above formulae follows from
the formula

n+h

*iiz[(f wa)w’ (fT'dw) »| —Tupty— n)}

s

n+h

f Tﬂ[tp(y—w);qﬁ(y—*ﬂ)]dw ,

n

1
[p(y—2)—@(y—mn)] with 0 <2 <k

since the set of functions v, .(y) = 7

and 0 < h <1 is bounded in 2.

7
3. Integral over R,. We shall investigate the behaviour of [T,dz
&

a8 £ > —00, 7 > 00 (i.e. &, ..., by > —00, sy ...,y > o). We adopt
the following
DEFINITION 2. We shall write

(fT da)(¢) = lim [(fT da)(p)|,

E—>—00
N—>00

and call f T,dz the inteyral of the distribution T over R, if the above

limit ex1st% for all pe 2.
Remark. If [T.dx exists, it is a distribution, and the distributions

fn T.dx tend to [7T,dx as & — —oo, > co, where convergence is under-
gtood in the sensgn of strong convergence in 2’ ([4], Chap. III, Theorem 13).

34. Let n =1, Te D', and let 8' = T. The integral TTzdw exists if
and only if 8 has limits at infinity, di.e. lim (v_.S)(p) de lim(z_,S)(¢)

E—>—00 7—>00

exist for all pe 2. Moreover,

[ Todo =lim(z_,8)—lim(z_,8).
700

F—>—00
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3.2. The formula

(}de) fT (y—@))d

holds for every @< 2, the left side of the formula existing if and only if the
right side ewists.

33. If [T.dx ewists, then [D’T.dw exists also and is equal to 0.
R By,

n
Propositions 3.1, 3.2 and 3.3 are obvious consequences of 2.3, 2.1
and 2.2, respectively. .
DEFINITION 3. The integral [ |7 dxis the non-linear functional over 2
R

defined for all pe2 by the formula

( f ll’xldw) f Ty(p(y—»))|do.

3.4. The integral [|T,\dw ewists if and only if TeDys.
Rn

Proof. TePy is equivalent to Tx¢" e L'(R,) for every gpe 2, where
¢ () = @(—x) ([4], Chap. VI, Theorem 25, 2°). But
(%) (Txg") (@) = Ty(p(y—2)),
and the existence of f |1, dz follows from 3.2. Now assume that the in-
Rn
tegral [|7,|dz exists. Then, by (%), T*p” ¢L'(R,), whence TeZy.
R

In order to formulate the next theorem, let us note that by [4],
Chap. VI, Theorem 25, 1° (cf. also [2], 2.3 (d)), T belongs to 2,1 if and
only if there are functions f;e L'(R,), ¢+ = 0,1, ..., m, such that

m
(%) T =)D,
izo
where |p° =0, |p'| >0 for ¢ =1,..., m.
35. If Te271, then [T.dw is a constant distribution, and

n

J Todn = [fy(@)da,
Rj, R,

where fo is given by (%x*).
Proof. Formula 3.3 implies

[Toda = [ fodo.
Rn Rn
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However, f,(x) is integrable over R,, whence we have

E R,

n

= f(ffo ¢ (y—@)da)dy = ffo )da ftp ydy,
and we infer 3.5.
3.6. If TeD711, then the integral f T.dx is equal to the integral of T
H,

in the sense of Schwartz.

Proof. If TeL'(R,), the theorem follows from 3.5. However, L'(R,)
is dense in 271 and so it is sufficient to prove that for every T« 271 there
are T;e L*(R,), T; — T in 271, such that

medm - f.’l’xdw.

Now assume 7' to be of compact support. Then there is a sequence
of T;e 2 such that T; — T in 271 and all supports of T; and 7T are con-
tained in a compact. If 7' is of form (*#), then for every set A bounded
in # we have

T (@)@ (x)de — N f ) DY g5
J .

uniformly in A. Hence it easily follows that

(T Ydo — [ fo(a)da,

R’Il

which proves the theorem in the case of T of compact support.
Finally, let Te 271 be arbitrary. Given an & >0, choose a positive
number a such that [ |f,(z)|dw < e, f, being defined by (), and a se-

[z >a

quence of a;¢2 bounded in # and such that sup|l— e;(x)] — 0 (for the
|ri<a
construction of such a sequence, cf. e.g. [3]). Writing M = sup|a;(x)

&} 00
and choosing ¢e2 so that | ¢(x)dr =1, we have

n

| j‘(lva;)’l’xdw: < e(]VI+1+ f|f0(w)1dm)

R, Ry,

for ¢ sufficiently large. This implies

(*%) [alpde — [ Tpde.

Rn. R’Il
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However, a7 are of compact support, whence the integrals f a1 dr
R

n
are equal to integrals of o;7 in the sense of Schwartz. Now, since the
sequence {a;} is bounded in %, we have o — T in 2. Hence (**)
implies that [ T,dw is equal to the integral of 7' in the sense of Schwartz.

n
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