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Cauchy Multiplication of Euler Summable Series in
Ultrametric Fields

Abstract. Euler summability method in a complete, non-trivially valued, ultrame-
tric field of the characteristic zero was introduced by Natarajan in [7]. Some proper-
ties of the Euler summability method in such fields were studied in [2] and [7]. The
purpose of the present note is to continue the study and to prove a pair of theorems
on the Cauchy product of Euler summable sequences and series.
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1. Introduction and Preliminaries. In this note, K is a complete, non-
trivially valued, ultrametric field of characteristic zero (Qp, the p-adic field for a
prime p, is one such field). Infinite matrices, sequences and series have entries in
K. To make the paper self contained, we recall the following. For a given infinite
matrix A = (ank), ank ∈ K, n, k = 0, 1, 2, . . . and a sequence x = {xk}, xk ∈ K, k =
0, 1, 2, . . . , by the A-transform of x = {xk}, we mean the sequence Ax = {(Ax)n},

(Ax)n =
∞∑

k=0

ankxk, n = 0, 1, 2, . . . ,

where we suppose that the series on the right converge. If {(Ax)n} converges to s, we
say that x = {xk} is summable A or A-summable to s. If lim

n→∞
(Ax)n = s whenever

lim
k→∞

xk = s, we say that A is regular. The following theorem, which gives necessary

and sufficient conditions for A = (ank) to be regular in terms of the entries of the
matrix A, is well-known (see [4] for a proof using the Banach-Steinhaus theorem
and [6] for a proof using the ‘Sliding hump method’).
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Theorem 1.1 A = (ank) is regular if and only if
(i) sup

n,k
|ank| <∞;

(ii) lim
n→∞

ank = 0, k = 0, 1, 2, . . . ;

and

(iii) lim
n→∞

∞∑

k=0

ank = 1.

An infinite series
∞∑

k=0

xk, xk ∈ K, k = 0, 1, 2, . . . is said to be A-summable to s

if {sn} is A-summable to s, where sn =
n∑

k=0

xk, n = 0, 1, 2, . . . .

General references for the study of summability methods in the classical case
are [3, 8]. For analysis in ultrametric fields, see [1].

The Euler method of summability in complete, non-trivially valued, ultrametric
fields of characteristic zero was earlier introduced by Natarajan in [7] and a good
number of properties of the Euler method were studied in [2, 7]. The purpoe of
the present note is to continue the study of the Euler method and prove a pair of
theorems on the Cauchy product of Euler summable sequences and series.

Definition 1.2 Let r ∈ K such that |1− r| < 1. The Euler method of order r or
the (E, r) method is given by the infinite matrix (e(r)

nk ), which is defined as follows:
If r 6= 1,

e
(r)
nk =

{
nCkr

k(1− r)n−k, k ¬ n;
0, k > n,

where nCk = n!
k!(n−k)! , k ¬ n;

If r = 1,

e
(1)
nk =

{
1, k = n;
0, k 6= n.

(e(r)
nk ) is called the (E, r) matrix.

Remark 1.3 Note that r 6= 0, since |1− r| < 1.

Theorem 1.4 ([7, Theorem 1.2]) The (E, r) method is regular.

Theorem 1.5 ([7, Corollary 1.4]) The (E, r) matrix is invertible and its in-
verse is the (E, 1

r ) matrix.
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2. Main Results.

Theorem 2.1 If xk = o(1), k → ∞, i.e., xk → 0, k → ∞ and {yk} is (E, r)
summable to σ, then {zk} is (E, r) summable to

σ

[
x0 +

∞∑

k=1

xkr
k−1

]
,

where zn =
n∑

k=0

xkyn−k, n = 0, 1, 2, . . . .

Proof Let {σn} be the (E, r) transform {yk}. Then,

(1) σn =
n∑

k=0

nCkr
k(1− r)n−kyk, n = 0, 1, 2, . . . .

By hypothesis, lim
n→∞

σn = σ. Let {τn} be the (E, r) transform of {zk} so that

τn =
n∑

k=0

nCkr
k(1− r)n−kzk

= (1− r)nz0 + nC1r(1− r)n−1z1 + nC2r
2(1− r)n−2z2 + · · ·+ rnzn

= (1− r)n(x0y0) + nC1r(1− r)n−1(x0y1 + x1y0)

+ nC2r
2(1− r)n−2(x0y2 + x1y1 + x2y0) + · · ·

+ rn(x0yn + x1yn−1 + · · ·+ xny0)

= x0[(1− r)ny0 + nC1r(1− r)n−1y1 + nC2r
2(1− r)n−2y2 + · · ·+ rnyn]

+ x1[ nC1r(1− r)n−1y0 + nC2r
2(1− r)n−2y1 + · · ·+ rnyn−1]

+ x2[ nC2r
2(1− r)n−2y0 + nC3r

3(1− r)n−3y1 + · · ·+ rnyn−2]

+ · · ·+ xnr
ny0

= x0

[
n∑

k=0

nCkr
k(1− r)n−kyk

]
+ x1

[
n∑

k=1

nCkr
k(1− r)n−kyk−1

]

+ x2

[
n∑

k=2

nCkr
k(1− r)n−kyk−2

]
+ · · ·+ xnr

ny0

= x0σn + x1

[
n∑

k=1

nCkr
k(1− r)n−kyk−1

]

+ x2

[
n∑

k=2

nCkr
k(1− r)n−kyk−2

]
+ · · ·+ xnr

nσ0.(2)
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Now,

n∑

k=1

nCkr
k(1− r)n−kyk−1

=
n−1∑

j=0

nCj+1r
j+1(1− r)n−j−1yj

=
n−1∑

j=0

[
nCj+1r

j+1(1− r)n−j−1

×
{

j∑

k=0

jCk

(
1
r

)k (
1− 1

r

)j−k
σk

}]

using Theorem 1.5 and (1)

=
n−1∑

k=0


r(1− r)n−k−1σk




n−1∑

j=k

(−1)j−k nCj+1
jCk






 ,(3)

interchanging the order of summation.

Using the identity

n−1∑

k=0



n−1∑

j=k

(−1)j−k nCj+1
jCk


 zk =

n−1∑

k=0

zk,

we have,

(4)
n−1∑

j=k

(−1)j−k nCj+1
jCk = 1, 0 ¬ k ¬ n− 1.

Thus, using (3), (4), we have,

(5)
n∑

k=1

nCkr
k(1− r)n−kyk−1 =

n−1∑

k=0

r(1− r)n−k−1σk.
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Using (5) and similar results, (2) can now be written as

τn = x0σn + x1

(
n−1∑

k=0

r(1− r)n−k−1σk

)

+ x2

(
n−2∑

k=0

r2(1− r)n−k−2σk

)
+ · · ·+ xnr

nσ0

= x0(σn − σ) + x1

{
n−1∑

k=0

r(1− r)n−k−1(σk − σ)

}

+ x2

{
n−2∑

k=0

r2(1− r)n−k−2(σk − σ)

}
+ · · ·+ xnr

n(σ0 − σ)

+ σ

[
x0 + x1

{
n−1∑

k=0

r(1− r)n−k−1

}

+ x2

{
n−2∑

k=0

r2(1− r)n−k−2

}
+ · · ·+ xnr

n

]

= x0(σn − σ) + x1

{
n−1∑

k=0

r(1− r)n−k−1(σk − σ)

}

+ x2

{
n−2∑

k=0

r2(1− r)n−k−2(σk − σ)

}
+ · · ·+ xnr

n(σ0 − σ)

+ σ

[
x0 + x1r

{
1− (1− r)n
1− (1− r)

}
+ x2r

2
{

1− (1− r)n−1

1− (1− r)

}
+ · · ·+ xnr

n

]

= x0(σn − σ) + x1

{
n−1∑

k=0

r(1− r)n−k−1(σk − σ)

}

+ x2

{
n−2∑

k=0

r2(1− r)n−k−2(σk − σ)

}
+ · · ·+ xnr

n(σ0 − σ)

+ σ
[
x0 + x1{1− (1− r)n}+ x2r{1− (1− r)n−1}

+ · · ·+ xnr
n−1{1− (1− r)}

]

= x0(σn − σ) + x1r

{
n−1∑

k=0

(1− r)n−k−1(σk − σ)

}

+ x2r
2

{
n−2∑

k=0

(1− r)n−k−2(σk − σ)

}
+ · · ·+ xnr

n(σ0 − σ)

+ σ
[
(x0 + x1 + x2r + · · ·+ xnr

n−1)

−
{
x1(1− r)n + x2r(1− r)n−1 + · · ·+ xnr

n−1(1− r)
}]
.(6)

Now,
|xnrn−1| = |xn|, since |r| = 1
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→ 0, n→∞
and

|(1− r)n| = |1− r|n → 0, since |1− r| < 1.

Thus {xnrn−1} and {(1− r)n} are null sequences.
Note that the sequence

{x1(1− r)n + x2r(1− r)n−1 + · · ·+ xnr
n−1(1− r)}

is the Cauchy product of {xnrn−1} and {(1− r)n}.
In view of Theorem 1 of [5],

lim
n→∞

{x1(1− r)n + x2r(1− r)n−1 + · · ·+ xnr
n−1(1− r)} = 0.

Let αn = xnr
n. Note that {αn} is a null sequence since |r| = 1 and xn → 0,

n→∞. Let

βn =
n−1∑

k=0

(1− r)n−k−1(σk − σ).

Now, {βn} is the Cauchy product of the null sequences {(1− r)n} and {σn−σ}. In
view of Theorem 1 of [5], βn → 0, n→∞. We now note that

lim
n→∞

[
x1r

{
n−1∑

k=0

(1− r)n−k−1(σk − σ)

}
+ x2r

2

{
n−2∑

k=0

(1− r)n−k−2(σk − σ)

}

+ · · ·+ xnr
n(σ0 − σ)

]
= 0,

since lim
n→∞

αn = 0 = lim
n→∞

βn, again appealing to Theorem 1 of [5]. Thus, taking

limit as n→∞ in (6), we have,

lim
n→∞

τn = σ

[
x0 +

∞∑

k=1

xkr
k−1

]
,

noting that the series on the right converges since |r| = 1 and xk → 0, k → ∞. In
other words, {zk} is (E, r) summable to

σ

[
x0 +

∞∑

k=1

xkr
k−1

]
,

completing the proof of the theorem. �

The following result can be proved in a similar fashion.

Theorem 2.2 If
∞∑

k=0

xk converges and
∞∑

k=0

yk is (E, r) summable to σ,then
∞∑

k=0

zk

is (E, r) summable to σ

[
x0 +

∞∑

k=1

xkr
k−1

]
.
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