
COMMENTATIONES MATHEMATICAE Vol. 53, No. 1 (2013), 35-46

Urszula Bednarz, Andrzej Włoch, Małgorzata Wołowiec-Musiał

Distance Fibonacci numbers, their interpretations
and matrix generators

Abstract. In this paper we define a distance Fibonacci numbers, also for negative
integers, which generalize the classical Fibonacci numbers and Padovan numbers,
simultaneously. We give different interpretations of these numbers with respect to
special partitions and compositions, also in graphs. We show a construction of the
sequence of distance Fibonacci numbers using the Pascal’s triangle. Moreover, we
give matrix generators of these numbers, for negative integers, too.
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1. Introduction. In general we use the standard notation, see [1, 2]. The
nth Fibonacci number Fn is defined recursively in the following way F0 = F1 = 1
and Fn = Fn−1 + Fn−2 for n ­ 2. The nth Padovan number Pv(n) is defined by
Pv(0) = Pv(1) = Pv(2) = 1 and Pv(n) = Pv(n− 2) +Pv(n− 3), n ­ 3. There are
many interesting generalizations of the Fibonacci numbers, see for example [3, 4].
Some of these generalizations are directly related to studying the concept of k-
independent sets in graphs [9, 12, 13, 14]. It is worth mentioning that k-independent
sets ( and also k-kernels in digraphs) are intensively studied by H. Galeana-Sánchez
and C. Hernández-Cruz, see for example their last interesting papers [5, 6, 7]. In this
paper we introduce a new generalization of the Fibonacci numbers in the distance
sense, which generalize the classical Fibonacci numbers and the Padovan numbers,
simultaneously. We give a number of interesting interpretations of these numbers.
Firstly we use this generalization to the counting of special families of subsets of
the set of n integers and next we use these numbers for counting the number of
compositions of an integer n into special parts. Moreover, we give a graph interpre-
tation of these numbers with respect to the number of all {Pk, Pk−1}-matching of
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the graph Pn with additional restrictions. In the last section of this paper we give
matrix representations of generalized Fibonacci numbers, also for negative integers.

2. Distance Fibonacci numbers Fd(k, n) and their interpretations. Let
k ­ 2, n ­ 0 be integers. The distance Fibonacci numbers Fd(k, n) are defined
recursively in the following way

Fd(k, n) = Fd(k, n− k + 1) + Fd(k, n− k) for n ­ k(1)

and Fd(k, n) = 1 for 0 ¬ n ¬ k − 1.
The Table 1 includes first words of the distance Fibonacci numbers defined in (1)
for special values of k and n.

Tab.1. The distance Fibonacci numbers Fd(k, n).

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Fn 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

Fd(3, n) 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37
Fd(4, n) 1 1 1 1 2 2 2 3 4 4 5 7 8 9 12
Fd(5, n) 1 1 1 1 1 2 2 2 2 3 4 4 4 5 7
Fd(6, n) 1 1 1 1 1 1 2 2 2 2 2 3 4 4 4

It is easy to see that F (2, n) = Fn for n ­ 0 are the well-known Fibonacci
numbers. Moreover for k = 3 and n ­ 0 we obtain that Fd(3, n) = Pv(n) are
the well-known Padovan numbers. Among others Fn and Pv(n) have the graph
interpretation also with respect to the number of independent sets in graphs.
In [10] Prodinger and Tichy studied the graph parameter NI(G) defined as the
number of all independent sets in a graph. They shoved that NI(Pn) = Fn+1. The
parameter NI(G) has many applications in combinatorial chemistry and it is named
for the historical reasons as the Merrifield-Simmons index. It is study intensively in
the last years, see the survey [8] and its references.
Let NMIL(G) be the total number of maximal independent sets in a graph G
including the set of leaves. It was proved, see [11], that for an arbitrary n-vertex
tree Tn holds NMIL(Tn) ¬ Pv(n− 3).
A special generalization of the Padovan numbers having a graph interpretation
with respect to the number of the maximal k-independent sets has been obtained
recently, see [13].

Now we give a combinatorial representations of the distance Fibonacci numbers
Fd(k, n).

At the beginning we show that for n ­ k − 1 the distance Fibonacci numbers
Fd(k, n) can be applied for counting of special families of subsets of n-element set
of integers.

Assume that k ­ 2, n ­ k − 1 are integers. Let X = {1, 2, . . . , n} be the set
of n integers. Let Y = {Yt; t ∈ T} be the family of subsets of the set X such that
subsets Yt contain consecutive integers and satisfy the following conditions
(i) |Yt| ∈ {k − 1, k} for t ∈ T ,
(ii) Yt ∩ Ys = ∅ for t, s ∈ T and t 6= s,
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(iii) 0 ¬ |X\ ⋃
t∈T
Yt| ¬ k − 2,

(iv) for each m ∈ (X\ ⋃
t∈T
Yt) either m = n or m+ 1 ∈ (X\ ⋃

t∈T
Yt).

Such a family Y will be called a quasi k-decomposition of the set X. Clearly, if
X\ ⋃

t∈T
Yt = ∅, then a quasi k-decomposition of the set X is its decomposition into

subsets of cardinality k or k − 1. We can observe that for k = 2 each quasi 2-
decomposition of the set X is decomposition of X into one-element or two-element
subsets.

Theorem 2.1 Let k ­ 2, n ­ k − 1 be integers. Then the number of all quasi
k-decompositions of the set X is equal to Fd(k, n).

Proof Let k ­ 2, n ­ k−1 be integers and X = {1, 2, . . . , n}. Denote by q(k, n) the
number of all quasi k-decomposition of the setX. If n = k−1, then {{1, 2, . . . , k−1}}
is the unique quasi k-decomposition of the set X. Hence, q(k, k−1) = 1 = Fd(k, k−
1). Assume now that n ­ k and suppose that the equality q(k, n) = Fd(k, n) is true
for an arbitrary n. Let qk−1(k, n+1) be the number of all quasi k-decompositions Y
of the set X = {1, 2, . . . , n+1} such that {1, 2, . . . , k−1} ∈ Y and let qk(k, n+1) be
the number of all quasi k-decompositions Y of the set X such that {1, 2, . . . , k} ∈ Y.
It is clear that q(k, n+ 1) = qk−1(k, n+ 1) + qk(k, n+ 1). Moreover qk−1(k, n+ 1) =
q(k, n+1−(k−1)), because |X\{1, 2, . . . , k−1}| = n+1−(k−1) and qk(k, k+1) =
q(k, n+ 1− k) because |X\{1, 2, . . . , k}| = n+ 1− k. Using induction’s hypothesis
and recurrence relation (1) we obtain q(k, n+1) = q(k, n−k+2)+q(k, n−k+1) =
Fd(k, n− k + 2) + Fd(k, n− k + 1) = Fd(k, n+ 1).
Thus the theorem is proved. �

Instead of quasi k-decompositions of n-element set of integers we may consider
a special ordered quasi-compositions of an integer n into parts k− 1 and k. We say
that a sum

∑
t∈T

nt + nr is an ordered quasi k-composition of an integer n into parts

k − 1 and k if
(v) nt ∈ {k − 1, k} for t ∈ T ,
(vi) 0 ¬ nr ¬ k − 2,
(vii)

∑
t∈T

nt + nr = n and nr is always the last part of the quasi k-composition.

For example for n = 8, k = 3 ordered quasi 3-compositions 3 + 2 + 2 + 1 and
2+3+2+1 are different. Since the cardinality of X equals n, so every Yt ∈ Y, t ∈ T
corresponds to a summand nt of the sum

∑
t∈T

nt of an ordered quasi k-composition.

This immediately gives

Theorem 2.2 Let k ­ 2, n ­ k − 1 be integers. The number of all ordered quasi
k-compositions of the integer n into parts k − 1 and k is equal to Fd(k, n).

Note that the ordered quasi k-composition corresponds to a p-tuple
(x1, x2, . . . , xp), where p ­ bnk c such that x1 ∈ {k − 1, k} and for i = 2, . . . , p
we have possibilities:
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(viii) if
i−1∑
j=1

xj ¬ n− k, then xi ∈ {k − 1, k},

(ix) if
i−1∑
j=1

xj = n− (k − 1), then xi = k − 1,

(x) if
i−1∑
j=1

xj ­ n− (k − 2), then xi = 0.

From the above we obtain

Theorem 2.3 Let k ­ 2, n ­ k − 1 be integers and p ­ bnk c. The number of all
p-tuples (x1, x2, . . . , xp) satisfying conditions (viii), (ix), (x) is equal to Fd(k, n).

Using the above considerations we give the graph interpretation of the number
Fd(k, n).
Let H = {H1, . . . ,Hm}, m ­ 1 be a collection of m graphs such that each graph Hi

from H is connected. A subgraph M ⊆ G is an H-matching of G if each connected
component of M is isomorphic to some Hi, 1 ¬ i ¬ m. If an H-matching M meets
every vertex of a graph G, then M is a perfect H-matching.
Clearly if Hi = H for all i = 1, . . . ,m, then we obtain the well-known definition of
an H-matching. In particular if H = K2, then we have the classical definition of a
matching. Among H-matchings seems to be the most interesting to study the case
when Hi, i = 1, . . . ,m belong to the same class of graphs.
If G \M = ∅ or no graph Hi, i = 1, ...,m, is a subgraph of the graph G \M , then
we say that M is a quasi perfect H-matching of the graph G. Clearly if G \M = ∅,
then we obtain a perfect H-matching of a graph G. The Figure 1 gives an example
of a {K3,K2}-matching of a graph G.

Fig.1. {K3,K2}-matching of the graph G

Using this terminology we have that if the set X corresponds to the vertex set
of the graph Pn, n ­ k−1, then each Yt, t ∈ T corresponds to a subgraph Pl, where
l ∈ {k, k − 1}. Then the quasi k-decomposition Y corresponds to a quasi perfect
{Pk, Pk−1}-matching of the graph Pn i.e. at most a subgraph Pr, 1 ¬ r ¬ k−2 such
that xn ∈ V (Pr) do not belong to a {Pk, Pk−1}-matching of the graph G.

Now we give a method generating all quasi k-decompositions of the set X =
{1, ..., n}, quasi k-compositions of an integer n and consequently all quasi perfect
{Pk, Pk−1}-matchings of Pn.

By αm we denote a binary m-tuple. For m-tuples we define a procedure
ADD1(αm).

Procedure ADD1
d := 1, u := 1,
while d = 1 and u ¬ m do
if αm(u) = 0 then αm(u) := 1, d := 0 else αm(u) := 0, u := u+ 1.
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For example if α5 = (1, 1, 0, 0, 0), then ADD1(α5) = (0, 0, 1, 0, 0).

Algorithm All quasi k-compositions
Input: n, k
Output: all binary m-tuples corresponding to all quasi k-compositions of n,
the number of all quasi k-compositions of n
p := b n

k−1c, r := bnk c, # := 1,
for z := r to p step 1 do

αz := (0, 0, . . . , 0), t := 0,
while t < z do

ADD1(αz), t =
z∑
i=1

αz(i),

x := tk + (z − t)(k − 1),
if n− k + 2 ¬ x ¬ n then

return αz, # := # + 1,
return #.

On the output we obtain the set of all binary m-tuples which determine all
quasi k-decompositions of integer n and all quasi k-compositions of the set X =
{1, ..., n}. For example for given n, k a 5-tuple (0, 1, 1, 0, 1) corresponds to the quasi
k-composition (k − 1) + k + k + (k − 1) + k + r. Having the quasi k-composition
we obtain quasi k-decomposition of the set X = {1, ..., n} on the form {1, ..., k −
1}, {k, ..., 2k−1}, {2k, ..., 3k−1}, {3k, ..., 4k−2}, {4k−1, ..., 5k−2}, {5k−1, ..., n}.
If r = 0, then the last set in this decomposition is empty. Defined subsets directly
give the quasi perfect {Pk, Pk−1}-matching of the graph Pn with the numbering of
V (Pn) with the natural fashion.

The above algorithm choose only m-tuples which give quasi k-compositions.
Clearly the number of all m-tuples is 2m. If we subtract the number of all m-tuples
which do not give quasi k-compositions and quasi k-decompositions, then we obtain
a direct formula for distance Fibonacci numbers Fd(k, n). Based on this idea we
can prove:

Theorem 2.4 Let n ­ 2, k ­ 2 be integers. Then

(2) Fd(k, n) =

b n
k−1 c∑

t=bnk c

(t+1)k−n−2∑

i=tk−n

(
t

i

)
.

Proof Consider a quasi k-composition of the integer n. Clearly it satisfies condi-
tions (v), (vi), (vii) so n = n1 + ... + nt + nr. Instead of n1 + ... + nt + nr we can
equivalently consider a t-tuple (n1, ..., nt), because the last part of this sum is uniqu-
ely determined by the previous parts. Then bnk c ¬ t ¬ b n

k−1c and each word of this
t-tuple is equal to k or k− 1. Evidently we have 2t such t-tuples. Let a t-tuple has i
words k−1 and t−i words k. Then

∑t
i=0 ni = i(k−1)+(t−i)k = tk−i. If tk−i > n or

tk− i < n− (k− 2), then the t-tuple does not correspond to quasi k-composition of
the integer n. Consequently we have 2t −∑tk−n−1

i=0

(
t
i

)
−∑t

i=(t+1)k−n−1

(
t
i

)
such

t-tuples which determine quasi k-compositions. Because bnk c ¬ t ¬ b n
k−1c, so
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Fd(k, n) =
b n
k−1 c∑

t=bnk c

(
2t −

tk−n−1∑
i=0

(
t
i

)
−

t∑
i=(t+1)k−n−1

(
t
i

)
)

. By simple reformulation we

obtain Fd(k, n) =
b n
k−1 c∑

t=bnk c

(t+1)k−n−2∑
i=tk−n

(
t
i

)
.

Thus the theorem is proved. �

For k = 2 the formula (2) gives identity Fn =
n∑

t=bn2 c

(
t

2t−n
)

which is equivalent

to known Fn =
bn2 c∑
i=0

(
n−i
i

)
.

Now we give an another form of the direct formula for the distance Fibonacci
numbers Fd(k, n).

Theorem 2.5 Let n ­ 2, k ­ 2 be integers. Then

(3) Fd(k, n) =
bnk c∑

j=0

(
j + bn−jkk−1 c

j

)
.

Proof Let X = {1, 2, . . . , n}. If n ¬ k − 1, then bnk c = 0 and
bnk c∑
j=0

(j+bn−jkk−1 c
j

)
=

1 = Fd(k, n). Suppose that n ­ k. By Theorem 2.1 the number of all quasi k-
decompositions of the set X is equal to Fd(k, n). Each quasi k-decomposition of
the set X consists of i sets of cardinality k − 1 and j sets of cardinality k, where
0 ¬ i ¬ b n

k−1c, 0 ¬ j ¬ bnk c. Moreover for fixed j we have i = bn−jkk−1 c. Thus the
number of all quasi k-decompositions of X with j sets having k-element is equal to
(
j+i
j

)
=
(j+bn−jkk−1 c

j

)
and Fd(k, n) =

bnk c∑
j=0

(j+bn−jkk−1 c
j

)
.

Thus the theorem is proved. �

If k = 2, then the formula (3) gives well-known formula for the Fibonacci num-

bers Fn =
bn2 c∑
j=0

(
n−j
j

)
.

It is easy to see that from the direct formula (3) we can count the total number

of all k-element sets of all quasi k-decompositions of the set X by
bnk c∑
j=0

(j+bn−jkk−1 c
j

)
j

and the total number of all k − 1-element sets of all quasi k-decompositions of the

set X by
bnk c∑
j=0

(j+bn−jkk−1 c
j

)
bn−jkk−1 c.

The following Figures shows the rule of obtaining Fd(2, n) and Fd(3, n) using
the Pascal’s triangle, see Figures 2-4.
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1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Fd(2, 0)
Fd(2, 1)

Fd(2, 2)
Fd(2, 3)

Fd(2, 4)
Fd(2, 5)

Fd(2, 6)
Fd(2, 7)

Fig.2. The Fibonacci numbers, Fn = Fd(2, n).

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Fd(3, 0)
Fd(3, 2)

Fd(3, 4)
Fd(3, 6)

Fd(3, 8)
Fd(3, 10)

Fd(3, 12)
Fd(3, 14)

Fig.3. Fd(3, n) for even n.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Fd(3, 1)
Fd(3, 3)

Fd(3, 5)
Fd(3, 7)

Fd(3, 9)
Fd(3, 11)

Fd(3, 13)
Fd(3, 15)

Fig.4. Fd(3, n) for odd n.

Using this idea we can obtain Fd(k, n) for an arbitrary k.
Analogously as the classical Fibonacci numbers the distance Fibonacci numbers

can be extended to the negative integers n. Let k ­ 2, n ­ 0 be integers. Then

(4) Fd(k,−n) = Fd(k,−n+ k)− Fd(k,−n+ 1) for n ­ 0

with initial conditions Fd(k, n) = 1 for 0 ¬ n ¬ k − 1.
The Table 2 includes first words of the distance Fibonacci numbers for negative

integers n.
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Tab. 2. The distance Fibonacci numbers for negative integers.

n -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
Fn 34 -21 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8

Fd(3, n) 2 -1 0 1 -1 1 0 0 1 0 1 1 1 2 2 3
Fd(4, n) 6 -4 3 -2 2 -1 1 0 1 0 1 1 1 1 2 2
Fd(5, n) -2 2 -1 1 0 0 1 0 1 0 1 1 1 1 1 2

Theorem 2.6 Let k ­ 2, n ­ 0 be integers. Then

(xi)
n∑
i=0

Fd(k,−ki) = −Fd(k,−nk − 1) + 1,

(xii)
n∑
i=0

Fd(k,−ki+ 1) = −Fd(k,−nk) + 2.

Proof (xi) For n = 0 we have Fd(k, 0) = −Fd(k,−1) + 1 = 1. Assume that the
equality (xi) holds for an arbitrary n. We shall prove that it is true for integer

n+1, clearly, that
n+1∑
i=0

Fd(k,−ki) = −Fd(k,−nk−k−1)+1. Using the induction’s

assumption and the relation (4) we obtain that
n+1∑
i=0

Fd(k,−ki) =
n∑
i=0

Fd(k,−ki) +

Fd(k,−nk−k) = −Fd(k,−nk−1)+1+Fd(k,−nk−k) = −Fd(k,−nk−k−1)+1.
The equality (xii) we prove analogously as (xi), which ends the proof. �

3. A matrix representation. In the last decades the theory of the Fibo-
nacci numbers and the like was complemented by the theory of matrix genera-
tors. For the classical Fibonacci numbers the matrix generator has the following

form Q =
[

1 1
1 0

]
and it is well-known that Qn =

[
Fn+1 Fn
Fn Fn−1

]
. This ge-

nerator immediately gives the Cassini formula for the Fibonacci numbers, namely
detQn = (−1)n = Fn+1Fn−1−F 2

n . It is worth to mention that this identity is called
“the Cassini formula” in honour of the 17th century astronomer Giovanni Cassini
who derived this formula. The main purpose of this section is to describe the theory
of matrix generators for the distance Fibonacci numbers.

We recall that Fd(k, n) = Fd(k, n − k + 1) + Fd(k, n − k) for n ­ k and
Fd(k, n) = 1 for 0 ¬ n ¬ k − 1.

Let Qk = [qij ]k×k. For a fixed 1 ¬ i ¬ k an element qi1 is equal to the coeffi-
cient of Fd(k, n− i) in the recurrence formula for the distance Fibonacci numbers.
Moreover for j ­ 2 we have

qij =

{
1 if j = i+ 1
0 otherwise

.

This definition gives the following matrices for k = 2, 3, 4, ..., k, respectively.

Q2 =
[

1 1
1 0

]
, Q3 =




0 1 0
1 0 1
1 0 0


, Q4 =




0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0


, ...
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Qk =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1
1 0 0 · · · 0



.

The matrix Qk will be named as the generator of the distance Fibonacci numbers
or the distance Fibonacci matrix. Moreover we define the matrix Ak of order k as
the matrix of initial conditions

Ak =




Fd(k, 2k − 2) Fd(k, 2k − 3) · · · Fd(k, k) Fd(k, k − 1)
Fd(k, 2k − 3) Fd(k, 2k − 4) · · · Fd(k, k − 1) Fd(k, k − 2)

...
...

. . .
...

...
Fd(k, k) Fd(k, k − 1) · · · Fd(k, 2) Fd(k, 1)

Fd(k, k − 1) Fd(k, k − 2) · · · Fd(k, 1) Fd(k, 0)




.

Theorem 3.1 Let k ­ 2, n ­ 1 be integers. Then

(5) AkQ
n
k =




Fd(k, n+ 2k − 2) · · · Fd(k, n+ k) Fd(k, n+ k − 1)
Fd(k, n+ 2k − 3) · · · Fd(k, n+ k − 1) Fd(k, n+ k − 2)

...
. . .

...
...

Fd(k, n+ k) · · · Fd(k, n+ 2) Fd(k, n+ 1)
Fd(k, n+ k − 1) · · · Fd(k, n+ 1) Fd(k, n+ 0)



.

Proof Let k ­ 2 be a fixed integer. If n = 1, then by (1) and simple calculations the
result immediately follows. Assume that the formula is true for all integers 1, ..., n.
We shall show that Theorem is true for integer n+ 1. Since AkQn+1

k = (AkQnk )Qk,
so by our assumption and from the recurrence form (1) we obtain that

AkQ
n+1
k =



Fd(k, n+ 2k − 2) Fd(k, n+ 2k − 3) · · · Fd(k, n+ k − 1)
Fd(k, n+ 2k − 3) Fd(k, n+ 2k − 4) · · · Fd(k, n+ k − 2)

...
...

. . .
...

Fd(k, n+ k) Fd(k, n+ k − 1) · · · Fd(k, n+ 1)
Fd(k, n+ k − 1) Fd(k, n+ k − 2) · · · Fd(k, n+ 0)







0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1
1 0 0 · · · 0


 =




Fd(k, n+ 2k − 1) Fd(k, n+ 2k − 2) · · · Fd(k, n+ k)
Fd(k, n+ 2k − 2) Fd(k, n+ 2k − 3) · · · Fd(k, n+ k − 1)

...
...

. . .
...

Fd(k, n+ k + 1) Fd(k, n+ k) · · · Fd(k, n+ 2)
Fd(k, n+ k) Fd(k, n+ k − 1) · · · Fd(k, n+ 1)


 ,

which ends the proof. �

Using the same idea we can define the matrix generator Rk of the distance
Fibonacci numbers for negative integers.

Let Rk = [qij ]k×k. For a fixed 1 ¬ i ¬ k an element qi1 is equal to the coefficient
of Fd(k,−n+ i) in the recurrence formula (4). For j ­ 2 we have

qij =

{
1 if j = i+ 1
0 otherwise

.
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This definition gives the following matrices for k = 2, 3, 4, ..., k, respectively.

R2 =
[
−1 1
1 0

]
, R3 =



−1 1 0
0 0 1
1 0 0


, R4 =




−1 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


, ...

Rk =




−1 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0



.

Analogously we define the matrix Bk of initial conditions

Bk =




Fd(k, 0) Fd(k, 1) · · · Fd(k, k − 2) Fd(k, k − 1)
Fd(k, 1) Fd(k, 2) · · · Fd(k, k − 1) Fd(k, k)

...
...

. . .
...

...
Fd(k, k − 2) Fd(k, k − 1) · · · Fd(k, 2k − 4) Fd(k, 2k − 3)
Fd(k, k − 1) Fd(k, k) · · · Fd(k, 2k − 3) Fd(k, 2k − 2)




.

Theorem 3.2 Let k ­ 2, n ­ 1 be integers. Then

BkR
n
k =




Fd(k,−n+ 0) · · · Fd(k,−n+ k − 2) Fd(k,−n+ k − 1)
Fd(k,−n+ 1) · · · Fd(k,−n+ k − 1) Fd(k,−n+ k)

...
. . .

...
...

Fd(k,−n+ k − 2) · · · Fd(k,−n+ 2k − 4) Fd(k,−n+ 2k − 3)
Fd(k,−n+ k − 1) · · · Fd(k,−n+ 2k − 3) Fd(k,−n+ 2k − 2)



.

Theorem 3.3 Let k ­ 2 be integer. Then

(6) detQk = detRk = (−1)k+1.

(7) detAk = detBk = (−1)
(k+1)k−2

2 .

The next theorem gives the generalization of the Cassini formula for distance
Fibonacci numbers.

Theorem 3.4 Let k ­ 2, n ­ 1 be integers. Then

(8) det(AkQnk ) = det(BkRnk ) = (−1)
(k+1)(k+2n)−2

2 .

For given k, matrices Q−1
k and R−1

k have the following form.

Q−1
k =




0 · · · 0 0 1
1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1 −1




, R−1
k =




0 · · · 0 0 1
1 · · · 0 0 1
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1 0



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Using the same method as in Theorem 3.1 we can prove that Q−1
k and R−1

k also
are matrix generators of distance Fibonacci numbers for negative and non-negative
integers, respectively.

Theorem 3.5 Let k ­ 2, n ­ 0 be integers. Then

Ak(Q−1k )
n =




Fd(k,−n+ 2k − 2) · · · Fd(k,−n+ k) Fd(k,−n+ k − 1)
Fd(k,−n+ 2k − 3) · · · Fd(k,−n+ k − 1) Fd(k,−n+ k − 2)

...
. . .

...
...

Fd(k,−n+ k) · · · Fd(k,−n+ 2) Fd(k,−n+ 1)
Fd(k,−n+ k − 1) · · · Fd(k,−n+ 1) Fd(k,−n+ 0)




Bk(R−1k )
n =




Fd(k, n+ 0) · · · Fd(k, n+ k − 2) Fd(k, n+ k − 1)
Fd(k, n+ 1) · · · Fd(k, n+ k − 1) Fd(k, n+ k)

...
. . .

...
...

Fd(k, n+ k − 2) · · · Fd(k, n+ 2k − 4) Fd(k, n+ 2k − 3)
Fd(k, n+ k − 1) · · · Fd(k, n+ 2k − 3) Fd(k, n+ 2k − 2)


 .
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