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Distance Fibonacci numbers, their interpretations
and matrix generators

Abstract. In this paper we define a distance Fibonacci numbers, also for negative
integers, which generalize the classical Fibonacci numbers and Padovan numbers,
simultaneously. We give different interpretations of these numbers with respect to
special partitions and compositions, also in graphs. We show a construction of the
sequence of distance Fibonacci numbers using the Pascal’s triangle. Moreover, we
give matrix generators of these numbers, for negative integers, too.
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1. Introduction. In general we use the standard notation, see [1, 2]. The
nth Fibonacci number F;, is defined recursively in the following way Fy = F; =1
and F,, = F,,_1 + F,,_3 for n > 2. The nth Padovan number Pv(n) is defined by
Pv(0) = Pv(1) = Pv(2) =1 and Pv(n) = Pv(n—2) 4+ Pv(n—3), n > 3. There are
many interesting generalizations of the Fibonacci numbers, see for example [3, 4].
Some of these generalizations are directly related to studying the concept of k-
independent sets in graphs [9, 12, 13, 14]. It is worth mentioning that k-independent
sets (‘and also k-kernels in digraphs) are intensively studied by H. Galeana-Sanchez
and C. Herndndez-Cruz, see for example their last interesting papers [5, 6, 7]. In this
paper we introduce a new generalization of the Fibonacci numbers in the distance
sense, which generalize the classical Fibonacci numbers and the Padovan numbers,
simultaneously. We give a number of interesting interpretations of these numbers.
Firstly we use this generalization to the counting of special families of subsets of
the set of n integers and next we use these numbers for counting the number of
compositions of an integer n into special parts. Moreover, we give a graph interpre-
tation of these numbers with respect to the number of all { Py, P;_1 }-matching of
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the graph P, with additional restrictions. In the last section of this paper we give
matrix representations of generalized Fibonacci numbers, also for negative integers.

2. Distance Fibonacci numbers F'd(k,n) and their interpretations. Let
k > 2, n > 0 be integers. The distance Fibonacci numbers F'd(k,n) are defined
recursively in the following way

(1) Fd(k,n)=Fd(k,n—k+ 1)+ Fd(k,n — k) for n >k

and Fd(k,n) =1 for 0<n<k—1.
The Table 1 includes first words of the distance Fibonacci numbers defined in (1)
for special values of k and n.

Tab.1. The distance Fibonacci numbers Fd(k,n).

n of1]2[3]4fs5]6 [7 [8 9o [10]11 [12 [13 [ 14

F, Tl 2]3[5]8]13]21 345589144233 377|610
Fd3n) [1 1|1 ]2]2[3]4 |5 [7 |9 [12]16 [21 [28 |37
Fd4n) 1111|222 [3 [4 |4 |5 [7 |8 |9 |12
Fdsn) |11 |11 [1]2]2 [2 [2 |3 4 a4 |5 |7
Fd6n) |11 |11 [1[1]2 [2 |2 [2 [2 [3 [4 |4 |4

It is easy to see that F(2,n) = F, for n > 0 are the well-known Fibonacci
numbers. Moreover for k¥ = 3 and n > 0 we obtain that Fd(3,n) = Puv(n) are
the well-known Padovan numbers. Among others F, and Pwv(n) have the graph
interpretation also with respect to the number of independent sets in graphs.

In [10] Prodinger and Tichy studied the graph parameter NI(G) defined as the
number of all independent sets in a graph. They shoved that NI(P,) = F,41. The
parameter N1(G) has many applications in combinatorial chemistry and it is named
for the historical reasons as the Merrifield-Simmons index. It is study intensively in
the last years, see the survey [8] and its references.

Let NMIL(G) be the total number of maximal independent sets in a graph G
including the set of leaves. It was proved, see [11], that for an arbitrary n-vertex
tree T, holds NM I (T,) < Pv(n —3).

A special generalization of the Padovan numbers having a graph interpretation
with respect to the number of the maximal k-independent sets has been obtained
recently, see [13].

Now we give a combinatorial representations of the distance Fibonacci numbers
Fd(k,n).

At the beginning we show that for n > k — 1 the distance Fibonacci numbers
Fd(k,n) can be applied for counting of special families of subsets of n-element set
of integers.

Assume that k > 2, n > k — 1 are integers. Let X = {1,2,...,n} be the set
of n integers. Let Y = {V4;¢ € T} be the family of subsets of the set X such that
subsets ); contain consecutive integers and satisfy the following conditions
(i) Vel e{k—1,k} forteT,

(i) ViNYs =0 for t,s € T and t # s,
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(iii) 0 < |X\ U M| <k —2,
teT

€
(iv) for each m € (X\ |J Vi) either m =norm+1¢€ (X\ U W).
teT teT
Such a family Y will be called a quasi k-decomposition of the set X. Clearly, if

X\ U Y =0, then a quasi k-decomposition of the set X is its decomposition into
teT
subsets of cardinality & or k — 1. We can observe that for £k = 2 each quasi 2-

decomposition of the set X is decomposition of X into one-element or two-element
subsets.

THEOREM 2.1 Let k > 2, n > k — 1 be integers. Then the number of all quasi
k-decompositions of the set X is equal to Fd(k,n).

PROOF Let k > 2,n > k—1 be integers and X = {1,2,...,n}. Denote by ¢(k,n) the
number of all quasi k-decomposition of the set X. If n = k—1, then {{1,2,...,k—1}}
is the unique quasi k-decomposition of the set X. Hence, q(k,k—1) =1 = Fd(k,k—
1). Assume now that n > k and suppose that the equality q(k,n) = Fd(k,n) is true
for an arbitrary n. Let gx_1(k,n+1) be the number of all quasi k-decompositions )
of the set X = {1,2,...,n+1} such that {1,2,...,k—1} € Y and let g;(k,n+1) be
the number of all quasi k-decompositions Y of the set X such that {1,2,...,k} € ).
It is clear that g(k,n+1) = qx—1(k,n+1) + gx(k,n+1). Moreover gx_1(k,n+1) =
q(k,n+1—(k—1)), because |[X\{1,2,...,k—1}| =n+1—(k—1) and gx(k,k+1) =
q(k,n+1—k) because | X\{1,2,...,k}| = n+ 1 — k. Using induction’s hypothesis
and recurrence relation (1) we obtain ¢(k,n+1) = q(k,n—k+2)+q(k,n—k+1) =
Fd(k,n—k+2)+ Fd(k,n—k+1) = Fd(k,n+1).

Thus the theorem is proved. n

Instead of quasi k-decompositions of n-element set of integers we may consider
a special ordered quasi-compositions of an integer n into parts k£ — 1 and k. We say

that a sum > ny + n,. is an ordered quasi k-composition of an integer n into parts
teT
k—1 and k if

(v)ni€{k—1,k}forteT,
(vi)0<n,. <k —2,
(vil) > ny + n,. =n and n, is always the last part of the quasi k-composition.

teT
For example for n = 8, £k = 3 ordered quasi 3-compositions 3 + 2 + 2 4+ 1 and

2434241 are different. Since the cardinality of X equals n, so every Y, € Y, t € T

corresponds to a summand n; of the sum > n; of an ordered quasi k-composition.
teT
This immediately gives

THEOREM 2.2 Let k > 2, n > k — 1 be integers. The number of all ordered quasi
k-compositions of the integer n into parts k — 1 and k is equal to Fd(k,n).

Note that the ordered quasi k-composition corresponds to a p-tuple
(w1,22,...,2p), where p > |7] such that x; € {k — 1,k} and for i = 2,...,p
we have possibilities:
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i—1
(viii) if >° x; <n —k, then x; € {k — 1,k},
j=1

i—1
(ix)if Y- xj=n—(k—1), thenz; =k —1,
j=1

i-1
(x) if > z; > n— (k—2), then z; =0.
j=1

From the above we obtain

THEOREM 2.3 Let k > 2, n > k — 1 be integers and p > |3]. The number of all
p-tuples (z1,x2,...,xp) satisfying conditions (viii), (iz), (z) is equal to Fd(k,n).

Using the above considerations we give the graph interpretation of the number
Fd(k,n).
Let H={Hy,...,Hy,}, m > 1Dbe a collection of m graphs such that each graph H;
from H is connected. A subgraph M C G is an H-matching of G if each connected
component of M is isomorphic to some H;, 1 < i < m. If an H-matching M meets
every vertex of a graph G, then M is a perfect H-matching.
Clearly if H; = H for all = 1,...,m, then we obtain the well-known definition of
an H-matching. In particular if H = K5, then we have the classical definition of a
matching. Among H-matchings seems to be the most interesting to study the case
when H;,i =1,...,m belong to the same class of graphs.
If G\ M = 0 or no graph H;, i = 1,...,m, is a subgraph of the graph G \ M, then
we say that M is a quasi perfect H-matching of the graph G. Clearly if G\ M = 0,
then we obtain a perfect H-matching of a graph G. The Figure 1 gives an example
of a {K3, Ko }-matching of a graph G.

1 ’ N 1
.,
1 ’ ’ N 1
1 1
l’ ‘ \\
® ‘ °
® L]

Fig.1. {K3, K5 }-matching of the graph G

Using this terminology we have that if the set X corresponds to the vertex set
of the graph P,,n > k—1, then each );,t € T corresponds to a subgraph P;, where
l € {k,k — 1}. Then the quasi k-decomposition ) corresponds to a quasi perfect
{Pg, Py—1 }-matching of the graph P, i.e. at most a subgraph P,,1 < r < k—2 such
that z,, € V(P,) do not belong to a { Py, P;_1 }-matching of the graph G.

Now we give a method generating all quasi k-decompositions of the set X =
{1,...,n}, quasi k-compositions of an integer n and consequently all quasi perfect
{Px, Pi—1 }-matchings of P,.

By «,, we denote a binary m-tuple. For m-tuples we define a procedure
ADD1(ay,).

PROCEDURE ADD1

d:=1,u:=1,

while d =1 and v < m do

if ap(u) =0 then a,,(u) =1, d =0 else oy, (u) :=0, u:=u+ 1.
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For example if a5 = (1,1,0,0,0), then ADD1(as) = (0,0,1,0,0).

ALGORITHM ALL QUASI k-COMPOSITIONS
Input: n, k
Output: all binary m-tuples corresponding to all quasi k-compositions of n,
the number of all quasi k-compositions of n
b= LﬁJa = L%Jv #:=1,
for z :=r to p step 1 do
a, :=(0,0,...,0), t:=0,
while ¢t < z do

z

ADDI1(ay), t =Y a,(i),
i=1
x:=tk+ (z—t)(k—1),
if n—k+2<x<nthen
return «,, # = # + 1,
return #.

On the output we obtain the set of all binary m-tuples which determine all
quasi k-decompositions of integer n and all quasi k-compositions of the set X =
{1, ...,n}. For example for given n, k a 5-tuple (0,1, 1,0, 1) corresponds to the quasi
k-composition (k — 1) + k+ k + (k — 1) + k 4+ r. Having the quasi k-composition
we obtain quasi k-decomposition of the set X = {1,...,n} on the form {1,...,k —
1} {k,...,2k =1}, {2k, ...,3k — 1}, {3k, ..., 4k — 2}, {4k — 1, ...,5k — 2}, {bk — 1, ..., n}.
If » = 0, then the last set in this decomposition is empty. Defined subsets directly
give the quasi perfect { Py, P;_1}-matching of the graph P,, with the numbering of
V(P,) with the natural fashion.

The above algorithm choose only m-tuples which give quasi k-compositions.
Clearly the number of all m-tuples is 2™. If we subtract the number of all m-tuples
which do not give quasi k-compositions and quasi k-decompositions, then we obtain
a direct formula for distance Fibonacci numbers Fd(k,n). Based on this idea we
can prove:

THEOREM 2.4 Letn > 2,k > 2 be integers. Then

l#21) (t+1)k—n—2

2) Fakm)y= S 3 C)

t=|3#] i=tk-n

PRrROOF Consider a quasi k-composition of the integer n. Clearly it satisfies condi-
tions (v), (vi), (vii) so n = ny + ... + ny + n,. Instead of ny + ... + ny + n, we can
equivalently consider a t-tuple (n1, ..., ), because the last part of this sum is uniqu-
ely determined by the previous parts. Then | %] <t < |%7] and each word of this
t-tuple is equal to k or k — 1. Evidently we have 2¢ such ¢-tuples. Let a t-tuple has 4
words k—1 and t—i words k. Then 25:0 n; = i(k—1)+(t—i)k = thk—i. If tk—i > nor
tk —i < n— (k—2), then the t-tuple does not correspond to quasi k-composition of
the integer n. Consequently we have 2! — Zzignfl (f) — Z’;:(Hl)k_n_l (f) such
t-tuples which determine quasi k-compositions. Because |7] < t < [%5], so
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le21) th—n—1 t
Fd(k,n)= > <2t - > (H- > (f)) . By simple reformulation we
t=| 2| =0 i=(t+1)k—n—1
L#257] (t+1)k—n—2
obtain Fd(k,n) = . > ().
t=[%] i=th—n
Thus the theorem is proved. ™

For k = 2 the formula (2) gives identity F,, = (2;”) which is equivalent
t=1%]
B ,
to known F, = Y ("7).
i=0
Now we give an another form of the direct formula for the distance Fibonacci
numbers Fd(k,n).

THEOREM 2.5 Letn > 2,k > 2 be integers. Then

3) F(k,n) = (j + LV{CJ).

L&) - ineg
PROOF Let X = {1,2,...,n}. If n <k —1, then |[%] = 0 and )] (Jﬂ]’?*lk ) =
=0

1 = Fd(k,n). Suppose that n > k. By Theorem 2.1 the number of all quasi k-
decompositions of the set X is equal to Fd(k,n). Each quasi k-decomposition of
the set X consists of ¢ sets of cardinality £ — 1 and j sets of cardinality k, where
0<i<[],0<j<[%]. Moreover for fixed j we have i = ﬁ;jlkj. Thus the
number of all quasi k-decompositions of X with j sets having k-element is equal to

n

A . n—jk L?J . n—jk
(7;.”) = (Jﬂ;*l J) and Fd(k,n) = 3 (]ﬂ;*l J).

Thus the theorem is proved. ™

If k = 2, then the formula (3) gives well-known formula for the Fibonacci num-

n

bers F,, = 22: (”;J)
Jj=0 -

It is easy to see that from the direct formula (3) we can count the total number

(3

of all k-element sets of all quasi k-decompositions of the set X by > (J H;fm) j
j=0

and the total number of all k¥ — 1-element sets of all quasi k-decompositions of the

2] |
set X by Zo Gaanit=1)
=

The following Figures shows the rule of obtaining Fd(2,n) and Fd(3,n) using
the Pascal’s triangle, see Figures 2-4.
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Fd(2,0) —1+—
Fd(2,1) --1-"4—
Fd(2,2) —4—<-2- 4
Fd(2,3) --1--3—3 43—

Fd(2,4) DA Aty S AR |

Fd(2,5) --1-~5—"16--"10 5 1
Fd(2,6) ——"6---"15 20 15 6 1
Fd(2,7) --1---7 21 35 35 21 7 1

Fig.2. The Fibonacci numbers, F,, = Fd(2,n).
Fd(3,0) --1--
Fd(3,2) —1—/1 -
Fd(3,4) ’
Fd(3,6)

Fd(3,8)
Fd(3,10)

Fd(3,12) --1-> 1
Fd(3,14) 7 21 35 35 21 7 1
Fig.3. F'd(3,n) for even n.

Fd(3,1) --1-------
Fd(3,3) —+—1—
Fd(3,5) ’

Fd(3,7) £-3----F-
Fd(3,9) --1----4- £ t--
Fd(3,11)
Fd(3,13) --1----6-

Fd(3,15) 21 35 35 21 7 1

Fig.4. Fd(3,n) for odd n.
Using this idea we can obtain Fd(k,n) for an arbitrary k.

Analogously as the classical Fibonacci numbers the distance Fibonacci numbers
can be extended to the negative integers n. Let k > 2, n > 0 be integers. Then

(4) Fd(k,—n) = Fd(k,—n+ k) — Fd(k,—n+1) forn >0
with initial conditions Fd(k,n) =1 for 0 <n <k — 1.

The Table 2 includes first words of the distance Fibonacci numbers for negative
integers n.
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Tab. 2. The distance Fibonacci numbers for negative integers.

[ n |[-10[-9[-8[-7T[6]5Hb]4][3][-2[-1]J0]1[2][3]4]5
Fy 21|85 [3[2[-1[1]0[1[1[2][3]5]8
Fd@Bn) | 2 [ -1 o111 JoJo[1]of1[1[1][2]2]3
Fdan) | 6 |43 2211 Jo[1]of1[1[1]1]2]2
Fds,n) | 2 ] 2 |-1[1]JoJoJ1Jo[1r]Jof1[1[11]1]2

THEOREM 2.6 Let k > 2,n > 0 be integers. Then
(xi) > Fd(k,—ki) = —Fd(k,—nk — 1) + 1,
i=0

(2ii)S° Fd(k,—ki+ 1) = —Fd(k, —nk) + 2

=0

PROOF (xi) For n = 0 we have Fd(k,0) = —Fd(k,—1) + 1 = 1. Assume that the
equality (xi) holds for an arbitrary n. We shall prove that it is true for integer

n+1
n+1, clearly, that Y. Fd(k,—ki) = —Fd(k,—nk—k—1)+1. Using the induction’s
i=0

assumption and the relation (4) we obtain that E Fd(k,—ki) = Z Fd(k, —ki) +

Fd(k,—nk—k) = —Fd(k, —nk—1)+1+ Fd(k, nk k) = —Fd(k, —nk; kE—1)+1.
The equality (xii) we prove analogously as (xi), which ends the proof. =

3. A matrix representation. In the last decades the theory of the Fibo-
nacci numbers and the like was complemented by the theory of matrix genera-
tors. For the classical Fibonacci numbers the matrix generator has the following

form Q = } (1) and it is well-known that Q" = Fgfl FF” ] This ge-
n n—1

nerator immediately gives the Cassini formula for the Fibonacci numbers, namely
detQ" = (—1)" = F,,,1F,_1 — F2. It is worth to mention that this identity is called
“the Cassini formula” in honour of the 17th century astronomer Giovanni Cassini
who derived this formula. The main purpose of this section is to describe the theory
of matrix generators for the distance Fibonacci numbers.

We recall that Fd(k,n) = Fd(k,n — k + 1) + Fd(k,n — k) for n > k and
Fd(k,n)=1for 0<n<k—1.

Let Qr = [¢ijlexk. For a fixed 1 < i < k an element ¢;; is equal to the coeffi-
cient of Fd(k,n — i) in the recurrence formula for the distance Fibonacci numbers.
Moreover for j > 2 we have

)1 it =i+l
% = 0 otherwise
This definition gives the following matrices for k = 2, 3,4, ..., k, respectively.
01 0 0 1 0O
1 1 0 01 0
Q2 = ) Q3 = 1 01 ) Q4 = )
1 0 10 0 1 0 0 1
1 00 0
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6010 --- 0
0 01 0
Qe= |1 1 1 "
100 --- 1
100 --- 0

The matrix @ will be named as the generator of the distance Fibonacci numbers
or the distance Fibonacci matrix. Moreover we define the matrix A of order k as
the matrix of initial conditions

Fd(k,2k —2) Fd(k,2k—-3) --- Fd(k, k) Fd(k,k—1)
Fd(k,2k —3) Fd(k,2k—4) --- Fd(k,k—1) Fd(kk—2)
Ax = s z | ' '
Fd(k, k) Fd(k,k—-1) --- Fd(k,2) Fd(k,1)
Fd(k,k—1) Fd(k,k—-2) --- Fd(k,1) Fd(k,0)
THEOREM 3.1 Let k > 2, n > 1 be integers. Then
Fd(k,n+2k—-2) --- Fd(k,n+k) Fd(k,n+k—1)
Fd(k,n+2k—-3) --- Fdlkn+k—1) Fdlk,n+k—2)
(5) AwQf = : " : :
Fd(k,n+k) Fd(k,n+2) Fd(k,n+1)
Fd(kn+k—1) - Fd(k,n+1) Fd(k,n+0)

PROOF Let k > 2 be a fixed integer. If n = 1, then by (1) and simple calculations the
result immediately follows. Assume that the formula is true for all integers 1, ..., n.
We shall show that Theorem is true for integer n + 1. Since AkQZH = (ArQ})Qk,
so by our assumption and from the recurrence form (1) we obtain that

1

g = _

Fd(k,n+2k—2) Fd(k,n+2k—3) --- Fd(kn+k—1) 0 1 0 0
Fd(k,n+2k—3) Fd(kn+2k—4) - Fdlkn+k—2) 0 0 1 0
Fd(k,n+k) Fd(k,n+k—-1) --- Fd(k,n+1) 1 0 0 1

| Fd(k,n+k—1)  Fdlksn+k—2) -  Fd(k,n+0) 1 0 0 0

[ Fd(k,n+2k—1) Fd(k,n+2k—2) - Fd(k,n + k)

Fd(k,n+2k—2) Fd(k,n+2k—-3) --- Fdk,n+k—1)

Fd(kn+k+1)  Fdk,n+k) - Fd(kn+2)

L Fd(k,n+ k) Fd(k,n+k—-1) --- Fd(k,n+1)

which ends the proof. n

Using the same idea we can define the matrix generator Ry of the distance
Fibonacci numbers for negative integers.

Let Ry = [gijlexk- For a fixed 1 <4 < k an element g;; is equal to the coefficient
of Fd(k,—n 4+ i) in the recurrence formula (4). For j > 2 we have

f1oitj=i41
G = 0 otherwise
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This definition gives the following matrices for k = 2, 3,4, ..., k, respectively.
11 0 -1 1 00
-1 1 0 01 0
R2_{1 0]’R3_ (1) 85’&*— 0 00 1
1 0 00
[ -1 1.0 --- 0
0o o1 --- 0
Ry = Do B
0o 00 --- 1
1 00 -+ 0
Analogously we define the matrix By of initial conditions
Fd(k,0) Fd(k,1) -oo Fd(k,k—2) Fd(kk-1)
Fd(k,1) Fd(k,2) ceo Fd(k,k—1) Fd(k, k)
By = : : - s :
Fd(k,k—2) Fd(k,k—1) --- Fd(k,2k—4) Fd(k,2k—3)
Fd(k,k—1) Fd(k, k) <o Fd(k,2k—3) Fd(k,2k—2)

THEOREM 3.2 Let k> 2, n > 1 be integers. Then

Fd(k,—n +0) coo Fd(k,—n+k—-2) Fdk,—n+k—-1)
Fd(k,—n+1) - Fd(k,-n+k—1)  Fd(k,—n+k)
By} = z - z z
Fd(k,—n+k—2) - Fd(k,—n+2k—4) Fd(k,—n+ 2k—3)
Fd(k,—n+k—1) - Fd(k,—n+2k—3) Fd(k,—n+ 2k — 2)

THEOREM 3.3 Let k > 2 be integer. Then
(6) detQy, = detRy, = (—1)"1.

(k+1)k—2
2

(7) detAk = detBk = (—1)

The next theorem gives the generalization of the Cassini formula for distance
Fibonacci numbers.

THEOREM 3.4 Let k > 2, n > 1 be integers. Then

n n (k4 1) (kt2n) —2

(8) det(ARQp) = det(ByRY) = (—1) S5
For given k, matrices Q,;l and R,;l have the following form.

0O --- 0 0 1 0O --- 0 0 1

1 .-+ 0 0 0 1 -+ 0 0 1

Q=] .t LR = L
0 1 0 O 0 0 0

1 0
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Using the same method as in Theorem 3.1 we can prove that Q,;l and R,;l also
are matrix generators of distance Fibonacci numbers for negative and non-negative
integers, respectively.

THEOREM 3.5 Let k > 2, n > 0 be integers. Then

[ Fd(k,—n+2k—2) --- Fd(k,—n +k) Fd(k,—n+k—1)
Fd(k,—n+2k—-3) --- Fdk,—n+k—1) Fdk,—n+k—2)
A(@Q)" = : - : :
Fd(k,—n + k) Fd(k,—n + 2) Fd(k,—n+1)
| Fd(k,—m+k—-1) --- Fd(k,—n+1) Fd(k,—n +0)
[ Fd(k,n+0) <o Fd(k,n+k—2) Fd(k,n+k—1)
Fd(k,n+1) Fd(k,n+k—1) Fd(k,n+k)
Be(R;)" = : - : :
Fd(k,n+k—2) --- Fdkn+2k—4) Fd(k,n+2k—3)
| Fd(k,n+k—-1) --- Fdk,n+2k—3) Fd(k,n+2k—2)
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