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On oscillation behavior of solutions of differential equations
generated by delays

It is well known that the delayed arguments have an important
influence on the oscillatory properties of solutions of differential equa-
tions. In essence, the simple example due to Bielecki [1] demonstrate,
that the ordinary differential equation

(B,) 2’ (t)—ax(t) =0, O0< a = const,

has only a non-oscillatory solutions of the form z(f) = O e®+C,e~%,
however, on the other hand, the delay differential equation
(E,) a2 (t)—aw(t—m) =0
has an oscillatory solutions of the form z(t) = O, sina(t—C,), where C,
and O, are constants. It is clearly, that this difference in the oscillation
behaviour of solutions of equations (E,;) and (B,) is generated by the
delay term 7.

The purpose of the present paper is to study the oscillatory behaviour
of solutions of non-linear delay differential equation

(L) a™(@) ’f‘("l)an(i’ w(go(t)), @’ (gl(t))7 cony (gn—l(t))) =0, n=>2,
generated by the delayed arguments g¢,(f) (k¥ =0,1,...,2—1). The
theorems of this paper do not hold in the particular case g,(t) =1
(k=0,1,...,2—1) of ordinary differential equations.

In the following we shall always suppose that the functions g,:
{ty, 00)>R (k =0,1,...,n—1) and f: {f, o) XR"—>R arc continuous
and satisfy the assumptions:

(2) g <t and limg () = o0 (k=0,1,...,n—1),

t—o00
(3) Bof(ty Boy Byyoeey By_y) >0  for @y # 0,
(4) (2, @oy oeny @ )| IS Yoy ooy Yua)l TOT ] <14

(k=0,1,...,n=1), 2y, > 0,
(5) lf(tya(t)‘”oa ---7“(t)xn—1)|>A(a’(t)} If(t, oy oy Bpy)|  Tor @ £ 0
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(k =0,1,...,2—1), where the funections a: (0, c0)—>(0, M) and A:
(0, BM)—>(0, oo0) are continuous, and M is a positive constant.

We restrict the attention to non-trivial solutions of (1) which exist
on a positive half-line. Such a solution we call oscillatory, if it has an
infinite sequence of zeros tending to infinity. Otherwise, we call it non-
oscillatory.

For g() <t (kK =0,1,...,n—1) we denote

mi =g ()
Qx () = Tl

Levma 1. If u® () (B =0, 1,...,n—1) are absolutely continuous and
of constant sign on the interval {t,, oo), and

0<ES m.

(6) (-1 *u)u® (@) =0 (k=0,1,...,n)
for t>=1t,, then
(M) [u® (g(0))] = @2 () WD) (B =0,1,...,n-1)

Jor t = g, (1) = t,, where g, satisfies (2).
Proof. From (6) it follows that the functions |u® ()| (x =0,1,...
.., »—1) are non-increasing for ¢ > {,. Thus, in view of (6), we obtain
for t=28>=t,
WD) > V@)1,
¢
[ (8)] > 1 (8)] — WP (8)] = [ 1+ ) dr
&
4
t n—-2—k t—s n—1-k
{ L lu‘”‘”(t)ldf’ i
(n—2—kF) (n—1—Fk)!
(b =0,1,...,2—2).
Therefore from the above inequalities for > g,(t) >, we obtain (7).
LemMA 2. If u®(t) (B = 0,1, ...,n—1) are absolutely continuous and
of constant sign on the interval {ty, oo) and u(t)u™ (1) < 0,! then there ewists
an integer 1 with 0 <1< n—1, n+1 odd, such that

[u™=1 ()|

(8) [u® (g, ()] = Q% (0 () i (g (D)) (k= 0,1,...,1),
and
9 [ (g (0))] = @2 (1) ™ V(@) (B =1,141,..., n—1)

Jor 1> g.(t) = gi.(9:(2) = to, where g, satisfies (2)
Proof. From Lemma 1 of Kiguradze [3] it follows that there exists
an integer I (0 <1< n—1), n+1 odd, such that for t > ¢, we have

w(t)u® () (k=0,1,...,1),

>0
(10) (=1 eu@)uB @) =0 (k =1+11,...,n).
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Since [w®(t)| is non-increasing and |u®(#)] (k =0,1,...,1—1) are
non-decreasing, so for t>> s> ¢, there hold inequalities

[u® (8)] = [ (1)1,
4

P (2)] > 1 ()] — [P ()] = [ [0 ) ar

é (r—s)—1-k 1 (8)) dr — (t—s)—*

U] — _

>
S

Therefore from the above inequalities for ¢> g,(¢) > g, (gk(t)) =1, we
obtain (8).

From (10) it follows that (—L1}**a®@)u®(#) >0 (k =1,1+1,..., r)
for t > 1,. Now applying Lemma 1 we obtain (9).

LeMMA 3. If wP(#) (k =0,1,...,n—1) are absolutely continuous
and of constant sign on the interval (t,, o) and u(t)u™(t) >0, then either
) |ju®(g@) = Cle®T " (k =0,1,...,n—1), 0< C = const
for t = g, (t) = t,, or there ewists an integer 1 (0 I n—2), n+l even,
such that inequalities (8) and (9) hold, where g, is the same as in Lemma 2.

Proof. From Lemma 2 of Kiguradze [3] it follows that either

(12) u@uE =0 (k= 0,1,...,n) for t = t,,
or there exists an integer I (0 <I<<n—2, n-+1 even), so that
u®u® ) =0 (k=0,1,...,1),
(=) *u@u®P@) =0 (k =1+1,...,n),

for t > t,. From (12) follows inequality (11). In the latter case the procf
is analogous to the proof of Lemma 2.

TargoreMm 1. If

M
T dr

(13) J < oo for M>0,
0

and

4) [ |f{t, m@ ), @7, s QIO dt = 0, mr =1,

then every bounded solution of equation (1) is oscillatory.

Proof. Suppose, there exists non-oscillatory bounded solution x(t)
of (1) and let 2(t) % 0 for ¢ > £,. Since lim g,(f) = oo, there exists a point

t—o00

t, > t, such that x(g,) # 0 for ¢t >1t,. Then from (1) and (3) we have
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(—1)"w(t)x™(t) > 0 for ¢ > t,. Since #(t) is bounded, there exists a point
t, > t; such that

(15) (—1*2)2® () >0 (k=0,1,...,n) for t>1,.

Choose T >=t, so large that g,(t) >, for 1> T. Then from Lemma 1
for t= T we have

(16) @ (gl = QF 7 ()™ () (B =0,1,...,n-1).
Since lim (2™~ (#)| = 0, so from (1), (3) and (15) we obtain

{—+00
o

AN D) > @) = [ £ (s, ©(go)s -5 3V (gor))|ds = a(d)
[

for ¢t > TI'. Therefore (16), (17) give
2 (ge)l = a()QRT' () (B =0,1,...,n—1).

From this and in view of (4) and (3) we have

lf(t’ 2(go)s ' (g1)5 --- m(n_l)(gn—l))l

]ft a(t)Q5* (Dsigna(gy), aMQF (), ..., a(HQNZI D)
Ala@)|f(t, Q" ()signa(ge), QT71(1), -- -, QaZ1(D)].

Dividing both sides of the above inequality by A (a,(t)) and integrating
the resulting inequality from 7 to oo we obtain

J lf(t’Qo—l(t)Signm(go)aQ?—l(t)a ceey n—i {dt

T

T et P ar

[ N A ~—— < 00,
A (a(t)) . A®)

T
which contradicts assumption (14).
THEOREM 2. Let the assumptions of Theorem 1 be satisfied. In addition,
suppose that

(18) f lf(t; mQ(Z)(go) 1), Qi (9007 @)y vy Q;(gl) “Ht), Ql+1 ), ..
@RIt = o0 for 1=1,2,...,n—1; m* =1.
Then ‘

(i) for m odd, every solution of equation (1) is oscillatory,

(ii) for n even, every solution of equation (1) is either oscillatory or
tends monotonically to infinity as t— co together with all its derivatives of order
up to (n—1) inclusive.
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Proof. Suppose, that equation (1) has a non-oscillatory solution
x(t) # 0 for t > t,. Since lim g,(¢) = oo, there exists a point ¢, > ¢, such

{—00
that ®(g,) # 0 for t>1,. Then from (1) we have (—1)"x(t)a™ () >0
for t > ¢,.

(i) Let » be odd. Then #()a™(t) <0 for ¢>1,. From Lemma 2
it follows that there exists an even integer I (0 <I<n—1) such that
for sufficiently large t > T > ¢, we have

0P (gl = Qg e® (@) (R =0,1,...,1),
2¥ (g)] = Qe () a™ V(@) (B =1,...,n—1).

From Theorem 1 it follows that the ease ! = 0 is impossible. We shall
prove that the case 2 <<l< n—1 i3 also impossible. From (19) for 2 <1
< n—1 we obtain

15 (g)| = Qi (gR) Q71 (@) ™D (@) (R =0,1,...,1),
19 ()| = Q7 (1) |a~ 1 (1)) (k =141, ...,n—1).

Since [2™~V(#)| is non-increasing for ¢ > T, by Lemma 2, so from equa-
tion (1) we have

"= (£)] > f L fs, #(g0)s ..., ™ V(g,_1)) |ds
i

(19)

for ¢t > 1. Now applying the same method of proof as in Theorem 1 we
obtain contradiction to assumption (18).

(ii) Let » be even. Then o (t)&™(t) > 0 for ¢>1,. From Lemma 3
it follows that either

(20) (g = OlgIF (B =0,1,...,2=1), 0O>0,

or there exists an even integer 1 (0 <! < n —2) such that condition (19)
holds, for sufficiently large ¢ > T > t,. In the former case we shall prove
that lim |2®(¢)] = oo (k =0,1,...,n—1). From (1)-(5) and (20) we

obtailtl_>00 t
=D (1)} = Iw("“’(T)IJrTfIf(s, B(go)y +v -y BV (gpmr)) | ds
flf , go~1(8)signa(go), 6173(8), o+ -y Gusls), 1) [ds
0) Tf |85 Q5" (g0)signa(ge), Q1 g2); -5 @Zi(0n-1)) | ds.
From this and in view of (18) we conclude that zlf;: 8@ ()] = oo

(k =0,1,...,n—1). In the latter case the proof is identical as in case (i).
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THEOREM 3. Let the assumptions of Theorern 1 be satisfied. If there
ewists a constant B> 1 such that f" ' Fg ()<t (k =1,2,...,7n—2) and

(21) f |f(t1 mgy = (t), g?_z(t)’ --wgn—‘.z(t)’l”di = 00, m?=1,
14

then conclusion of Theorem 2 holds.

Proof. Suppose that equation (1) has non-oscillatory solution x(t) = 0
for ¢ > t,. Then, like in the proof of Theoremn 2, we ohtain (—1)"@(t) 2" (¢)
>0 for t =t = 1,.

(i) Let n be odd. Then from Lemma 1 of Kiguradze [3] it follows
that there exists an even integer I (0 <l << n—1) such that

zt)a®) =0 (k=0,1,...,1),
0

) >
=) (—1fz)a® () =0 (& =1+1,...,n),

for sufficiently large ¢>1¢,>1%,. The case 1 =90 has been treated in
Theorem. 1. Suppose now that 2 <l<n—1. From Lemma 2 of [4] it
follows that there exist a positive constants D and T such that

B (B "go)| = D-gp~t ™D (1)},

23 ’
23) [w(k)(gk)l = D'!IZ“H‘ |-77(n—1)(t)' k=1,2,...,n-1)

for t>T>1, Since f>1 and [z(¢)] is non-Gecreaging and [|a™~(t)|
is non-increasing, then for ¢> 7' we have

l2®(g,)| = D-gi D) (B =0,1....,n—1),

24 2
24 21 (1)] > f lf('s'a #(go)s -5 m(n—])<g7;—z)) ids-
11

Now using an argument to the one used in Theorein 2 we obtain a con-
tradiction to assumption (21).

(ii) Let » be even. Then from Lemma 2 of Kiguradze [3] it follows
that either

(25) )@ () =0 (B=0,1,...,n)

or there exists an even integer I (0 <1< #—2) such that (22) holds for
sufficiently large ¢ > T > {,. In the former case, similarly as in the proof
of (ii) of Theorem 2, we obtain lim [#®(#)] = ~ (k =0,1,...,n—1).

{00

Now, we shall prove that the latter ease is impossible. From Theorem 1
it follows that the case I = 0 is impossible. If 2 < 1< n—2, then in view
of Lemma 4 of [4], we obtain inequalities (24). Then from (24), similarly
as in ecase (i), we obtain contradiction to assumption (21).
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THEOREM 4. If g¢,(t) s non-decreasing for t>1t, and

P
(26) 11101'-); ':‘1‘(—)— == .L< 00, L = Const,
e —got)*
27)  limsup _‘?&%ﬁ_ if(r, m, 0, ..., 0)|dr
t—o0 90(‘) . .
L, when L 0,

e>0, when L =0,

m? =1,

then every bounded solution of equation (1) is oscillatory.
Proof. Suppose, that equation (1) has bounded non-oscillatory

solution x(t) = ¢ for ¢ >=t,. Like in the proof of Theorem 1 we obtain
condition (15), which implies

nl

28) |m(s)l~1w(t>f:2( o 1+f" o )l dr

k=1

for 1> s> T. Choose T, > T such that ¢,(t) > T for t > T,. Since [©(t)]
is non-increasing and g,(t) is non-decreasing for t > T, then for t > r > T,
we have [w(go(r))] > [€(g6(1))] = |# (g6(1))] — lw(@)] = b(t) and lim b(?) = 0.
Therefore, from (1)-(5) and (28) we obtain for t > T, t=>co

0> [T i)t

1 (t)

f ﬂ-»}g"iﬂi £l BO)SIENE(G0), ' (g3), -+ -y 3D (g, )| dr

n—1)!
00(’)

I —ge()?

> A(b(t) (%_1)'

|f(r, signa(go), 0, ..., O)jdr, -

volt)
from where

[ n—1
J %]f(T;Signﬁ(go)7oa"'70)ldr<
!lo(t) '

This gives a contradiction as t—>oc. Therefore, #(t) is oscillatory. -

Remark. From Theorem 4 in the case f = p(t)[x(g,()}]*, p(t) >0
0< u<1, n even, we obtain some results of Gustafson [2].

17 — Roezniki PTM Prace Mat. XX.2
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THEOREM 5. Let the assumptions of Theorem 4 be satisfied. In addition,
suppose that there ewists a anon-decreasing function ¢(t) such that g,(t)
<gO) <t (K =0,1,...,0-1) for t =1, and ‘

! n—1-1
(29) limsup f’[“(—g(_tll—‘— lf(" mQi(90), Q1(91), -, Qi{91), 0, ---yO)Idr

{00 n—1
a(®)
L, L #£0,
ex>0, L=0,
l=12,...,n—1, m? =1.

-

Then
(i) for n odd, every solution of equation (1) is oscillatory,
(ii) for n even, every solution z(t) = o(t"" ') (t-—>o00) of (1) i8 oscillatory.
Proof. Suppose, that equation (1) has non-oscillatory solution x (¢} +# 0
for t > 1,. Then, like in the proof of Theorem 2, we obtain ( —1)"z(#)x™ (¢)
=20fort=t, >=1,.
. (i) Let # be odd. Then, by Lemma 2, there exists an even integer
I (0 <l n—1) such that

z)a®@) =0 (F=0,1,...,1),
(50) (=) *aft)a® () >0 (K =1-+1,...,m0)
and _ v
(31) [0 (9:.(0)] = QL (9 V)] 2P (g )] (B =0,1,...,1),

for sufficiently large ¢t > 7 >t,. From (30) we have for t > s> T

n—1

n-1-1
82 WOi— 0 = 3 j‘ .

k=I+1 (‘n )

Since [#¥(#)| is non-increasing for ¢ > T, then from (30) we get for ¢ > > T

33) |2 {gen)[ > [P (g ()] > [ (g(0)
> [ (g ()| — PO = b(t) (B =0,1,...,1)
and lim by(f) = 0. Therefore, from (1)-(5) and (31)—(33) we obtain
{00

F[r—g(t

(n—1—1)! ‘f(”’”(go(f‘)), . 'v(n 1) )”d?

bi(t) =

olt)

4 n—1-
> [E-gt ;

ooy [ 0@ {go(n)signaign), b(HQ (1), .-

o(?)
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ceny bl(t)Qf (gl(”'))y D (gl+1(7'))7 ceny 2= (gn—l(r))”dr

t

—alt n—1-1
= A (bz(t)) f [r('n,—i(l)}—l)—’ 'f(ra Q% (90) signz(g,), Qi (91)5 -+
G )

oy @19, 0, .., O)MT-

From this we obtain a contradiction to assumption (29).

(ii) Let n be even. Then from Lemma 3 it follows that ecither (20)

holds or there exists an even integer ! (0 <I<<n~—2) such that con-
ditions (30) and (31) hold. The former case is impossible, since z(f) = o (")
(t—o0). In the latter case the proof is identical as in case (i).

[1]
[2]
[3]
[4]

-
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