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On oscillation behavior oî solutions oî differential equations
generated by delays

I t  is well known th a t the delayed arguments have an im portant 
influence on the oscillatory properties of solutions of differential equa­
tions. In  essence, the simple example due to Bielecki [1] demonstrate, 
th a t the ordinary differential equation
(Ex) x"(t) — a2x(t) = 0, 0 < « = e o n s t ,
has only a non-oscillatory solutions of the form x(t) =  Gxeai-\-C2e~at, 
however, on the other hand, the delay differential equation

(E2) x"{t) — a2x(t — n) =  0
has an oscillatory solutions of the form x(t) =  Gxsma(t —C2), where Gx 
and C2 are constants. I t  is clearly, th a t this difference in the oscillation 
behaviour of solutions of equations (Ej) and (E2) is generated by the 
delay term  n.

The purpose of the present paper is to study the oscillatory behaviour 
of solutions of non-linear delay differential equation

(1) *w (() +  ( - i ) “+7(*,*(s'oW),*'(ÿIW)> = o ,  » > 2 ,
generated by the delayed arguments gk{t) (Jc =  0 , 1 ,  . . . ,  n — 1). The 
theorems of this paper do not hold in the particular case gk(t) ^  t 
{7c =  0 , 1 ,  . . . ,  n — 1) of ordinary differential equations.

In  the following we shall always suppose th a t the functions gk : 
<#0, oo)->R (Je = 0 , 1 ,  . . . ,  n — 1) and / :  (t0, oo)xRn->R are continuous 
and satisfy the assumptions:

(2) </*(<)<< and lim £*(«) =  oo {7c =  0 , 1 , . . . , n — 1 ),
1-+0O

(3) oc0f{t,  x0, xx, . . . ,  xn_x) >  0 for xQ Ф 0,

(^ ) ! / ( b  ^0 7 • • • i ^  l / ( b  Уо 1 • • • ? Уп— l)I \^k\  ^  \Ук\

{7c = 0 , 1 ,  . . . , n - 1 ) ,  X 0y 0 > 0,

(5) \f(t,  a(t)x0, a{t)xn_x) \ ^  A(a{t))\f(t, x0, xn_x)\ for xk Ф 0
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(к =  0 , 1 , . . . ,  п — 1 ), where the functions а: (0 , оо)->(0 , М) and Л:  
(О, М) -> (0 , оо) are continuous, and М  is a positive constant.

We restrict the attention to non-trivial solutions of (1) which exist 
on a positive half-line. Such a solution we call oscillatory, if it has an 
infinite sequence of zeros tending to infinity. Otherwise, we call it non- 
oscillatory.

For gk(t) <  t (k =  0 , 1 , . . . ,  n  —1 ) we denote

L em m a  1. I f  u^( t )  (k =  0 , 1 , . . . ,  n —1 ) are absolutely continuous and 
of constant sign on the interval <Z0, oo), and

(6) { - l ) ku{t )u№{t )^0 {k =  0 , 1 , . . . ,» )  
for t ^  Z0, then

(7) |»w f e w ) l > e r I(<)i»,n- 1,wi <* =
for t >  gk(t) >  t0, where gk satisfies (2 ).

Proof.  From (6) it follows tha t the functions |м(Л)(£)| (к = 0 , 1 , . . .  
. . . f n — 1 ) are non-increasing for Z>Z0. Thus, in view of (6), we obtain 
for t >  s >  t0

\û n 1}($)| >  Iû n (̂<)|,
t

\u{k){s)\^ (w(fc)(s)| — |w(fc)(Z)| =  J  |w(A:+1)(r)[dr

r (t - r ) n~2- k 
! (n — 2 — k) !

s

\uSn~l\t)\dr
( t - s ) n —l —k

( n - l - k ) l |«(ft- 1}(Z)|

(k = 0 , 1 , . . . ,  n — 2).
Therefore from the above inequalities for t >  gk(t) >  t0 we obtain (7).

Lemma 2. I f  u(k){t) {к =  0 , 1 , . . .  , n — 1 ) are absolutely continuous and 
of constant sign on the interval <Z0, oo) and u{t)u^n)(t) <  0,J then there exists 
an integer l with 0 < Z < № — 1 , n + l odd, such that

(8) |«w (»*№)| >  Q U sM )К 'Ы « » | (* =  о , l , i ) ,
and
о» |*№)(л « ) ) |> e r 1«)i*(- 1>(*)i № =  h i + i , . . . . » - d _
for t > g k(t) >  gk{gk(t)) > t„, where gk satisfies (2 ).

Proof.  From Lemma 1 of Kiguradze [3] it follows that there exists 
an integer l (0 <  Z <  w — 1), w +  Z odd, such tha t for t >  Z0 we have

u(t)u{k)(t) ^  0 (& =  0 , 1 , . . . ,  Z),
( - l ) z+few(Z)w<fe)(Z )>0  (fc = Z + l, . . . ,w ) .

( 1 0 )
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Since |^(Z)(£)| is non-increasing and |w(A:)(i)| (fc =  0 , 1 , . . . ,  Z—l) are 
non-decreasing, so for £ >  s ^ t 0 there hold inequalities

\u{l){s)\ >  \û l)(t)\,
t

\u(k){t) \^\u(k)(t)\-\uW{s)\ = j  \û k+l)(r)\dr

( r - s ) l - l - k

( l - l - h ) l
(t — s)l~k 
(l — Tc)l l«'n(«)l (ft =  0 , 1 , . . . ,  г - 1 ).

Therefore from the above inequalities for t ^  gk(t) ^  gk[gk(t)) ^  t0 we 
obtain (8).

From (10) it follows that ( —l) l+ku^(t )u^{t )  > 0  (к = l, Z-f-1, n) 
for t ^  tÿ. Now applying Lemma 1  we obtain (9).

Lemma 3. I f  u{k)(t) (1c — 0 , 1 , n — 1 ) are absolutely continuous
and of constant sign on the interval (tQ, oo) and u(t)u^{t)  ^  0 , then either

(11) \u[k)(gk{t))\> G[gk{t)fl- l~k {Tc =  0 , 1 , n - 1 ) ,  0 <  G =  const

for t ^  gk(t) ^  /q , there exъsts an integer l (0 ^  l ^  n —-2 ), n ~}~1 even, 
such that inequalities (8) and (9) hold, where gk is the same as in Lemma 2. 

Proof .  From Lemma 2 of Kiguradze [3] it follows that either

(12 ) u(t)u^k)( t ) ^  0 (k = 0 , 1 , n) for t >  <0,

or there exists an integer l (0 —2 , n + l even), so that

u(t)u{k)(t) >  0 {Тс = 0 , 1 , . . . ,  1),

{ - 1  )l+ku (t) é k) (t) >  0 {Tc = l + 1 , . • •, n ) ,

for t ^  tjQ. From (12) follows inequality (11). In the latter case the proof 
is analogous to the proof of Lemma 2.

Th eo rem  1. I f

4  dr
(13) J Т м <  00 f M' M > 0 ’

0 ' '
and

OO

(14) j  | / ( г , т « - 1(г) ,<гг1(г), =  oo, » » « = i ,

then every bounded solution of equation (1 ) is oscillatory.
Proof .  Suppose, there exists non-oscillatory bounded solution o?(i) 

of (1 ) and let x(t) Ф 0 for t >  tQ. Since lim g0{t) =  oo, there exists a point
t—> c o

tx^ t 0 such that x(g0) Ф0  for t ^ t x. Then from (1) and (3) we have
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( —l)no?(t)æ^(t) >  O for t ^  tx. Since doit} is foonndedj there exists n point 
to >  tx such that

(16) ( — l )koc(t)a>(k)(t) >  0 (h =  0 , 1, . . . , n)  for t >  tz.

Choose T ^ t z so large that gk{t) >  t2 for t ^ T .  Then from Lemma 1 
for t ^  T  we have

(16) l*(W( f e ) l > « r 1№l*(”~‘)№l (fc = o , i ........»» - i) .

Since lim |æ(w_1)(ï!)| =  0, so from (1), (3) and (16) we obtain
t-¥OQ

00

(17) |a?(n~1)(T)| >  |a?(n" 1)(<)| =  J  \f(s,æ{g0), • a>(ra~ % n- i) ) |^  =  a(J)
t

for t ^ T .  Therefore (16), (17) give

1̂ (&)Ы 1 >  <*>{t)QTl {t) (& =  0 , 1 , . . . , n - l ) .
From this and in view of (4) and (6) we have

| /(*? x(go), я ' Ш ,  • • • , ^n~1)(gn- 1))|

>  If (t ,  < » (W _1(*) signa? (0O), a ( W x(*h • • •, a{t)QZZ\{t))\
>  A  (a{t)) I f ( t ,  Qo~4t)signa?(̂ o), Qi~l(<)» • • •, Q l~\(0) | •

Dividing both sides of the above inequality by A(a{t)) and integrating 
the resulting inequality from T  to o o  we obtain

oo
j  I f ( h  Q r 1 (t)signa? (gr0) QnZl{t))Idt
T

r* —a'(t)dt a(P  dr
ÿ ^  («(<)) j  A ( r ) < 0 ° ’

which contradicts assumption (14).
Th eo r em  2. Let the assumptions of Theorem 1 be satisfied. In  addition, 

suppose that
я

OO

(18) /  If ( t , m Q l ( g a) Q r l ( t ) , Q\ (9Ù Q r 4 t ) , - ,  й Ш О Г Ч * ) ,  W+.’W, •••
•••> Qlz\(t))\üt =  oo for l =  1 , 2 , 1 ; т г =  1 .

Then
(i) for n odd, every solution of equation (1 ) is oscillatory,

(ii) for n even, every solution of equation (1 ) is either oscillatory or 
tends monotonically to infinity as £ - > o o  together with all its derivatives of order 
up to {n— 1 ) inclusive.



Differential equations generated by delays 4 8 9

Proof. Suppose, that equation (1) has a non-oscillatory solution
x(t) # 0  for t >  tQ. Since lim g0(t) =  o o , there exists a point tx >  t0 such

<->00
that x(g0) =£ 0 for t ^ t x. Then from (1) we have ( — l )nx(t)x{n)(t) >  0 
for t ^ t x.

(i) Let n be odd. Then x(t)x{n)(t) <  0 for t ^ t x. From Lemma 2
it follows tha t there exists an even integer l 1) such that
for sufficiently large T >  tx we have

№к)Ш \  >  (ft =  o , ' i , . . . .  i),
\dk)(gk)\ > Q r ' W l®(" -1)(<)l (ft =  Ï , . . . .  » - l ) .

From Theorem 1 it follows tha t the case l = 0 is impossible. We shall 
prove that the case 2 <  l <  n — 1 is also impossible. From (19) for 2 <  Z 
<  n —1 we obtain

Wm (gk) l > Q ’M Q r 4 t ) \ ^ n- l4t)\ (ft = o , i , . . г>,

1*(% * ) 1> е Г 1№ 1*(“- 1)(«)1 (ft =  z + i ,  . . . , » - i ) .

Since |a/n-1)($)| is non-increasing for T, by Lemma 2, so from equa­
tion (1) we have

00
\dn~l){t ) \^ f  \ f ( s , x (g0), . . . ,  ®(ft“1)(^n_1))|d[s 

<
for t >  T. Now applying the same method of proof as in Theorem 1 we 
obtain contradiction to assumption (18).

(ii) Let n  be even. Then x(t)x^(t )  >  0 for tx. From Lemma 3 
it follows tha t either

(20) \ d kH g k ) \ >  0 { g k m n~ x~ k (fc =  o , i , . . . , n - i ) ,  g >  o,
or there exists an even integer l (0 <  l <  n — 2) such that condition (19) 
holds, for sufficiently large / >  T ^ t x. In the former case we shall prove 
that lim |ж(&)(<)| =  o o  (к = 0 ,1 , . . . ,  n — 1). From (l)-(6) and (20) we

(-КЙ
obtain

t
l®(n~1)(<)l =  \x(n~1}(T)\+ f \ f ( 8 Jæ{g0)1. . . } x{-n- 1)(gn_1))\ds

T
t

> MO) J | / ( e ,  g1S~l{s)mgnx(g0), gi~2(s), . . . , &»_2(e), l) [<fe
T

t
> MO) J |  f(s, Qo_1 Ы signx{g0), Q^1 (gx), . . . ,  Qlz\ {gn-i)) | ds.

T

From this and in view of (18) we conclude that lim |ж(Аг)(<)| =  o o
<->00

(fc =  0 ,1 , . . . ,  n —1). In  the latter case the proof is identical as in case (i).
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Th eo r em  3. Let the assumptions of Theorem 1 be satisfied. I f  there 
exists a constant ft > 1 such that ftn~1~kgjc(t) <  Z {7c — 1, 2, . . . ,  n — 2) and

00

(21) f  \ f ( t ,mgS-1(t),g?-2( t ) , . . . , gn_s(t), l)ldi  -  oo, m2 = 1 ,
t

then conclusion of Theorem 2 holds.
P roof. Suppose tha t equation (1) has non-oseillatory solution x{t) Ф 0 

for t ^ t 0. Then, like in the proof of Theorem 2, we obtain ( —1 )nx(t)x^(t)  
>  0 for t > t ^  t0.

(i) Let n  be odd. Then from Lemma 1 of Riguradze [3] it follows 
tha t there exists an even integer l (0 <  Z ^  n —1) such that

x{t)x^k){t) >  0 {7c =  0 ,1 , . . . .  1),
(22) . ...

( - l ) kx(t)x{k)( t ) ^ 0  {7c =  l + l ,  . . . ,  n),

for sufficiently large t ^ t z ^ t x. The case Z =  0 has been treated in 
Theorem 1. Suppose now that 2 ф l ф n —1. From Lemma 2 of [4] it 
follows tha t there exist a positive constants D and T  such that

w r } ,)| > « , r i r - | («)l,
[*№,(&)l > D-gl - l~k \dn~1)(t)\ (k =  1 ,2 ,  . . . , n - l )

for Z > T > Z 2. Since ft > 1 and |a?(Z)| is non-decreasing and |a/w-1)(Z)| 
is non-increasing, then for t ^  T  we have

(24-) 00
Ix {n ' l)  (t)I >  /  I f ( s , V (do), • • • ,  x [n~ l ) ( O n - J ))  ! ds •

Now using an argument to the one used in Theorem 2 we obtain a con­
tradiction to assumption (21).

(ii) Let n  be even. Then from Lemma 2 of Kiguradze [3] it follows 
tha t either

(25) x{ t )ék){ t ) ^  0 {7c =  0 ,1 , . . . .  n)

or there exists an even integer l (0 <  l <  n — 2) such tha t (22) holds for 
sufficiently large Z >  T ^ t x. In  the former case, similarly as in the proof 
of (ii) of Theorem 2, we obtain lim \x^{t)\ — x> {7c =  0 ,1 , . . . ,  n — 1).

f-M»
Now, we shall prove th a t the latter case is impossible. From Theorem 1 
it follows th a t the case l =  0 is impossible. If 2 <  l <  n  — 2, then in view 
of Lemma 4 of [4], we obtain inequalities (24). Then from (24), similarly 
as in case (i), we obtain contradiction to assumption (21).



Differential equations generated by delays 491

Th eorem  4. I f  gQ(t) is non-deereasing for t >  t0 and

v
(26) lim —  =  L <  oo, L  =  const,

V-+0+ A(v)

/* Гу*_ Q ^
(27) limsup — -—^—r;----■ \f(r, m,  0, Q)\dr

^  ood) ( }-
L , when L  Ф 0,
e >  0, when L  =  0,

m % = 1,

then every bounded solution of equation (1) is oscillatory.
Proof. Suppose, that equation (1) has bounded non-oscillatory 

solution x(t) Ф 0 for t ^ t 0. Like in the proof of Theorem 1 we obtain 
condition (15), which implies

n — 1  [

*(28) И » )|-И « )1  =  +  J ( r s ) П—1

(л -1 )!
|æ(n) (г) I dr

for t ^  s >  T. Choose T x^  T  such that g0(t) >  T  for t ^ T x. Since \x(t)\ 
is non-increasing and g0(t) is non-decreasing for t >  T, then for t ^ r ^  T x 
we have \x(g0(r))\ >  |a> '(ÿo(0)| >  И(^о(0)|- I®(01 =  b(t) and lim b(t) = 0. 
Therefore, from (1)—(5) and (28) we obtain for t Ф T x <_>0°

b(t)> (
Ood)

t r - g M Y - 1
( n - 1)! \f(r,v(9o(r)), , x {n 1)(flr„_i(r)))|df

J [r- 9 o ( t ) T ^  
(n —1) !

If(r,  b(t)ügnx{g0),x'{gx), >«(n 'Ч д п - ф г

>A{b(t))  J '
o0(()

ï r - 9 o ( t ) f - 1 
( n - 1)!

\f(r, signx(g0), 0, . . . ,  0)|dr,

from where

J Ir-goW]"-1
(л-1)!

If(r,  Agnx(g0), 0 , , 0)]dr < b(t)
A(b(t))'

This gives a contradiction as t-^oc. Therefore, x(t) is oscillatory.
R em ark . From Theorem 4 in the case /  =  p(t) (<70(t))Ja, p(t) > 0, 

0 <  a <  1, n even, we obtain some results of Gustafson [2].

17 — Roczniki PTM Prace Mat. XX.2
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T h e o r e m  6. Let the assumptions of Theorem 4 be satisfied. In  addition, 
suppose that there exists a non-decreasing function g(t) such that gk(t) 

(7c =  0 ,1 , . . . , n - 1) for I ^  t0 and

/ [r — a(t)VFl~l~*
—------— —  |/( r ,  mQi(flr0), . . . ,Q li(gi), 0, . . . ,  0)\dr

(n—1 — 1)1640
\ L ,  L  Ф 0,

'  > \\ e >  0, L — 0,
l =  1, 2, .. . ,  n —1, тг = 1.

Then
(i) for n odd, every solution of equation (1) is oscillatory,

(ii) for n even, every solution x(t) — o(tfn-1) (t->oo) of (1) is oscillatory. 
P roof. Suppose, tha t equation (1) has non-oscillatory solution x(t) ф 0 

for t ^ t 0. Then, like in the proof of Theorem 2, we obtain ( —l)nx(t)x(n)(t) 
>  0 for t >  tx >  t0.

(i) Let n be odd. Then, by Lemma 2, there exists an even integer 
l (0 <  l <  n — 1) such that

x(t)x{k)(t] >  0 (1c =  0, X, .. . ,  1),

(30) ( - l ) l+kx l t )xW(t ) ^Q (Jc =  l + l ,  . . . ,  n)
and

(3i) \^к)(д ЛЩ>Як( яЛЩ^( дЛЩ  (£ = o , i  , . . . , i ) f
for sufficiently large £ >  T  ^ t x. Prom (30) we have for # >  $ >  T

(32) j&(?)(s)| — \X{ m  = 2
1

(t~8)  
Id

k—l l
H(fc)(i)| +  j

n —l —l(r — s)
( n - 1 ^ 1 ) 1

\x^(r)\dr.

Since \x^(t)\ is non-increasing for t >  T, then from (30) we get for i >  r >  T  

(33) \xv){gk(r)) \>\é,){g(r)) \^\é,){g(t))\

> K , (ÿ№ )|-I*w№l =b,(t) =

and limfy(£) = 0 .  Therefore, from (l)-(5) and (31)-(33) we obtain
/-*-oo

bi(t)> f  _  d ~  H r>œ Ы г>)
m  [ ’ ’

>  ИГ> M<)$(0o(»*))signa>(0o), . . .
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• • •, h{t)Q\ (9i (*•)), X{l+l) (gl+1 (r)j, . . . ,  x(n~V (дп_г (r))j| dr

r _  aU)~\n ~ l~ l
> A ( b M )  J -Jn _ 1 _ l)T  \f(r ,Qlo(9o)tignx(g0),Q[(gi), ...

№ '
0, 0)1 dr.

From this we obtain a contradiction to assumption (29).
(ii) Let n be even. Then from Lemma 3 it follows that either (20) 

holds or there exists an even integer l ( 0 < Z < w  — 2) such that con­
ditions (30) and (31) hold. The former case is impossible, since x(t) =  o{tn~x) 
( t ^oo). In  the latter case the proof is identical as in case (i).
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