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Brown’s theorem for cohomology theories
on categories of chain complexes

Introduction. Let E = {E,, h,} be a spectrum; that is a sequence of
topological spaces F, with base point and base points preserving maps
hy,: B,~>QF, . A spectrum F is called an Q-spectrum if h,, are homotopy
equivalences. From Brown’s results in {1] and [2] it follows that

1. If B ={&,, h,} is an Q-spectrum, then there exists a generalized
cohomology theory Hy, defined on the category C of pairs of CW-complewes
such that

H%(X,0) = [Xup, E,] (p¢X)
for all.n. ([ XUp, E, ]| is the set of homotopy classes of maps from XUp to B, .

2. For any generalized cohomology theory H™ on C satisfying certain
conditions one can find an Q-spectrum E such that H* and Hy, are naturally
equivalent.

In this paper the notion of spectrum is defined in the category of
complexes of modules and it is shown that Brown’s results hold for
cohomology theories on some subecategories of this category.

1. Normal sequences. Let B be a fixed ring with identity and let zM
be the category of all left R-modulus. Denote by K (K~) the category of
all (left) chain complexes over M and recall that complex maps f, g:
X—Y are called homotopic (f ~ ¢) if there exist module homomorphisms
8yt X, Y, such that f, —g, = d,.,8, +9,_,d,. The cone and suspension
functors are defined as follows:

(CX)n = < n@X —1 dn(mny mn—-l) = (dxn—wn-—h _'dn—-lwn—l)7
(8X), = X,_,, #Fx = —a¥.

It f: XY is a complex map, then (Cf), = fu®@fu_1, (8f)y =fazs-
OX is a contractible complex (i.e. 15x ~0) and f ~0: XY if and only
if f can be factored through the natural complex map j: X—->CX.

DEFINITION. An exact sequence of complexes
X: 0-X'5X5X">50
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is said to be normal if the sequence

0-X,>X,—~X, >0
splits for all neZ. A complex map f: X—Y is called a normal mono-
morphism if 0—>X Ly Coker(f)— 0 is the normal sequence.

In what follows dealing with a normal sequence X we assume that
X, = X, ®X, and that ¢, p are the natural injections and projections

respectively.
If X is a normal sequence, then it is easy to see that the maps 0,:

X, —-X,_, given by the equality
@, (0, @) = (On (@), dy (27,))
define a complex map 6(X): X’'-8X’. Moreover, for any commutative
diagram with normal rows:
0-X'>X>X">0
Vo
0>Y' ->¥Y—-Y"—>0
the diagram
x" D yx
\qu isf'
YaLTTY
is homotopy commutative.
(1.1) LEMma (Homotopy Extension Property). If
0->X'-5>X2 X750
V'
Y/

is a commutative diagram with the normal row and g’ ~ f', then there exists
a complex map g: X~ Y such that gi = g’ and g ~ f.

Proof. Since ¢’ ~f then
(%) In—Fn = G118+ 8p_16n
for some module homomorphisms s,: X,~Y,,;. Put

In(@ny @) = Fu(0, #) + g0 (@) + 81 O (@7,) -

A straightforward computation shows that the maps g¢,: X,—Y,
define a complex map ¢g: XY such that gi = ¢’. Furthermore setting
85 @y @) = 8),(7) (8,0 X,—~Y,,,) and using equality (*) we have

(d{+18n +8p10) (@, @) = d11:+1'9;z(w;z) +8n—l(d;1,m';l. + 6, () 5 @

= G0 (@) = Fn (@) =Sy (@) + $u_1 B (2) 81 O ()

= (gn _fn) (w;u m;z,)'
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Therefore ¢ ~ f and the lemma is proved.
Similarly as Lemma 1.1 one can prove the following

(1.2) LeMMA (Homotopy Lifting Property). If

AN
N

0>X' 5> XBX"50

is a commulative diagram with the normal row and f' ~ g’, then there is
a complex map g: Y—X such that pg = g’ and [ ~g.

(1.3) CoroLLARY. If (f', f,f"): X—Y is o map of normal sequences
and f' ~¢’, then there exists a map of normal sequences (9',49,9"'): X—->Y
such that f ~g and f'' = g".

The proof is left to the reader.

(1.4) CorOLLARY. If X: 0>X'5>X5X">0 is a normal sequence,
then the map i is a homotopy equivalence if and only if the complex X'’ is
contractible. Analogously p is a homotopy equivalence if and only if X'
is contractible.

Proof. Suppose i: X'—X is a homotopy equivalence. Then I’ ~ 1.,
il' ~1x for some complex map !': X—X'. Using now Lemma 1.1 to
' =1iand ¢ =1 we get a complex map I: XX’ such that I = 1 and
I ~1. Hence we deduce that the sequence X splits. In particular there
exists a complex map k: X''—X such that pk = 1x.. Since il ~il' ~1,
we have il—1 ~ 0 and consequently 0 ~p(il —1)k = —1x.. Thus we
have shown X" is contractible. Conversely, if X'’ is contractible, then
applying Lemma 1.2 to f = 0%, f' = 0 and ¢’ = 1 we obtain a complex
map k: X'—X such that pk =1and k¥ ~0. Hence Ii =1 and 15 = ¢l +
+kp for some complex map I: X—X'. It follows 1 —4¢l ~ 0 i.e. the map
1 is a homotopy equivalence. The proof of the second part of the corollary
is similar.

(1.5) Remark. Corollary 1.4 is a completion of [3], 2.18.

(1.6) LEMMA. If F: XY is a complex map, then F = gi, where i is
a normal monomorphism and ¢ is a homotopy equivalence.

Proof. F = (X>0X®Y->Y), where i(z) = (2, 0, f(#)) and g is the
natural projection.

2. Brown’s Theorem. A complex X is called projeciive it X, is a pro-
Jjective module for all neZ (in general it is not a projective object in K).
Throughout this seetion £ will denote one of the following full subcatego-
ries of the category K. ’

(A) The category of all left projective complexes.
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(B) The category of all projective complexes X such that X, = 0 for
sufficiently small ».

(C) The category of all projective complexes. In this case we assume
that R is the ring of the finite left global dimension.

Moreover, let #Y denote the quotient category #/~ and let [P, P]
= Homgg (P, P). If f: X—Y is a complex map, then we write [f] for
the homotopy class of f.

(2.1) DEFINITION. A cohomology theory on # is a sequence of con-
travariant, homotopy preserving functors H": #—-Ab("), ne Z, satisfying
the following conditions:

(i) for any normal sequence X: 0—X'5> X% X" 50 there are homo-
morphisms d,(X): H*(X')—>H"*' (X"} such that the sequence,

.. .—>-H"’(X”)—1—3;Hn(X)i;Hn(X')di(A—X))HTH-I(X”)—> .

is exact,

(i) if (f', f,f""): X—Y is a map of normal sequences in &, then the
diagram below is commutative:

HMX) "D (x)
I W
H?L(YI)__>H7L+1(Y)

If T: zM-—>A4b is a contravariant functor of finite type, then by [4],
Theorem 6.10, the functors {D?T},., restricted to the category & form a co-
homology theory on P.

To give a typical example of cohomology theory on # we need the
following definitions:

(2.2) DEFINITION. A spectrum in the category K is a sequence of com-
plexes B, , ne Z, together with complex maps ¢,: SE,~ E, ;.

(2.3) DEFINITION. A spectrum {F,, ¢,} is called an S-spectrum if the
group homomorphisms

(eg)e
) [SP, SE,1[8P, E,,,]

are isomorphisms for any Pe 0bZ and all ge Z.
(2.4) ExXAMPLE. Suppose F = {E,, ¢} is an S-spectrum in £ and
define:
‘ a4-,EB) =[-, B,}: P—-Ab
for qe Z. We shall show (HY(-, B), qe Z) is a cohomology theory on Z.
For this purpose we define natural equivalences of functors
ot HO(-, B)S—~H(-, B)

(!) Ab denotes the category of Abelian groups.
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as follows:

(sp)a!

A(P) = (8P, Byy,] = [SP,8E,] ~[P, B,).

Furthermore, if P = (0—~P'->P2P”—0) is a normal sequence in 2
and 6(P): P”"—8P’ is the complex map defined in Section 1, then the
connecting homomorphism

apy: HY(P', B)~H(P", E)

is a composition
o2(P’)—1

1
P, B ger (s, )y ) geryp, ).
In virtue of [4], Theorem 2.12, to prove that the functors HY(-, E)

together with d? described above form a cohomology theory on £ it is
sufficient to show that the sequences of Abelian groups

[P, B15 [P, B~ [P, B,)
is exact for any normal sequence 0P 5PAP’50 in # and qge Z.

Clearly, Im p* = Keri*. Let [fle [P, E,] and let ¢*([f]) = [fi] = 0. Hence
fi ~ 0 and we have the following commutative diagram with normal rows -

0P 5PE P50
iff(/f
Eq

Using the Homotopy Extension Property (Lemma 1.1) we get a com-
plex map g: P—E, such that f ~¢ and gi = 0. Then g = ¢g"’p for some
g'’: P"—HE, because (PE Py = Cokeri. Consequently, [f] = lg]
= p*([¢"'])e Imp* and we see Keri* = Imp*. Thus we have shown that
{H(-, E)}4z 18 a cohomology theory.

In what follows it will be proved, by the use of the results of E. Brown’s
paper [2], that any cohomology theory {H%,; on & satisfying condi-
tion HY(®P;) ~ [[H?(P;) is isomorphic with the cohomology theory

i i
{H%(+, E)}4ez for some S-spectrum ¥ in £.

We start with )

(2.5) DEFINITION [2]. A pair (C, C,), where C, is a subcategory of
a category C, is called a homotopy category, if it satisfies the following
conditions

1° C, is a small and full subeategory of C;

2° (C, has finite sums, ¢ has arbitrary sums;

3% it f;: A—>P; i =1,2, are in C, then there are maps ¢;: P;—~Z
in C such that g,f, = ¢»f, and such that, if ¢;: P;—Z’ satisfy g,f, = gsfe,
then ¢; = hg; for some h: Z —Z’' (h is not necessarily unique);

-



290 D. Simson and A. Tye

4° if f*: P*—>pP*+*! n =1, 2,..., are in O, then there are Peob(
and maps g*: P"—P such that
(i) Lim(g").: Lim[Z, P*] ~ [Z, P] for all ZcobC,, where [P,P']
n —_

is & set of morphisr;;s from P to P’ and (g}« is given by (¢™)«(h) = ¢"h.

(ii) L(i_m(g")*: (P, Z]—>Li<in [P*, Z] is an epimorphism for all Zeob(,
where (g’?)*(h) = hg". !

(2.6) Remark. If C is an additive category, then it follows from Lemma
2.10 in [2] that condition 3° is equivalent to condition 3':

3'If f: A—P is in C, then there is g: P—Z in C such that gf =0
and if g': P—Z' satisfies ¢'f = 0, then ¢' = hg for some h: Z—>Z'.

Any map g satisfying 3’ (for a given f) is called an equalizer of the maps
f,0: A>P.

Let § be the category of sets.

(2.7) DEFINITION [2]. If (C, C)) is a homotopy ecategory and H: C—8
is a contravariant functor, then H is called a homotopy functor, if it satis-
fies the following conditions: .

(a) The natural injections P;—~@P; induce an isomorphism

?

H(@Pi) NHH(Pi).

(b) If f;: A—P;and g;: P;—~Z are as in 3° of Definition 2.5 and wu;
e H(P,) satisty H(f,)u, = H(f;)u,, then there is ve H(Z) such that H(g;)v
=u; for i =1, 2.

Let P, be the full subcategory of & whose objects are complexes P such
that P, is a finitely generated module for any » and but a finite number
of P, are zero.-

(2.8) PROPOSITION. The pair (P8, #T) is a homotopy category.

Proof. Evidently conditions 1° and 2° of Definition 2.5 are satisfied.
In view of Remark 2.6 we may prove 3’ instead of 3°. Let then f: 4P
be any complex map in £ and let g be the complex map from the pushout
diagram

4% 0a
oo
P5puc4

It is easy to see that (PUCA), = (P,®CA,)/{{—f.(a), a,0): ac A,}
~P,®A,_,. Consequently PUCA ¢ P.

Furthermore CA is contractible so gf ~ 0, i.e. [g][f] =0. If ¢'f ~0
for some complex map g': P—Z' in P, then clearly ¢'f can be factored
through j(4) i.e. g'f = lj(4) for some I: CA—Z'. By the pushout property



Brown’s theorem 291
]
of the above diagram there is a complex map h: PUCA—Z" such that ¢’
= hg. Thus we have shown that [g] is an equa,lizer of [fland 0. If 4,P
¢ 0b#,, then the mentioned equality (PUCA4), DA, _, implies PUCA
€ 0bZ,.

It remains to prove condition 4°. Take for this purpose complex maps
f* P*"—~P*" n =1,2,..., and observe that in view of Lemma 1.6
and the fact that CX DY ¢ ob? provided X, Y ¢ ob# we may assume that f*
are normal monomorphisms. Let g": P"—~>P be a direct limit in K (,M)
of the direct system {P",f™™}, ., Where f»™: P"—>P™ jg f™ '. . -f*
for n<m and f™" =1. At first we show that Peob?, ie. P, =

Lim {P}, f7"™} is a projective module for any ¢. Since f* are normal mono-
n
morphisms, the sequences
n,m

b
0—>P}—-P—P7[Imf™>0

split for » < m. Thus P7*/Imf}™ are projective modules and the conclu-
sion follows.
Now we prove that [¢"]: P"—P satisfy (i) and (ii) of condition 4°.
To prove (i), consider the homomorphism
¢« = Lim(g™): Lim[Z, P*"]-{Z, P]
n n

for Z¢ ob%?,. If [fle [Z, P], then ZeobZ?, and P = {JImg" imply Imf

n=1
< Img™ for some n. On the other hand, ¢": P"—> Img" is an isomorphism
since Ker g U Kerf™™ = 0.

Consequently, f=4¢"f for some f': Z—>P” and hence g, takes the
class [f']in Lim[Z, P*] into [f]. Thus g, 1s an epimorphism. Now suppose

n
g,(a) =0 for ae EII}[Z,P”]. If [h]e [Z, P"] is a representative of a,

n
then clearly g"h ~ 0. Let s: Z—P be a chain homotopy joining ¢g"h with 0.
Then, similarly as above, s = g™s" for m > n and s': Z—P™ It is easy
to verify that s’ is a chain homotopy joining f™™h with 0. Consequently,
a =[h] =[f""h] =0 and we see that g, is a ‘monomorphism. This
completes the proof of (i).
Now we prove (ii). Let {[A"]}e L1m [P", Z]. Then we have the homotopy

commutative diagrams
0-> P L5 prti_, prt T o s

ihn /hn+l

0272~

with normal rows. If » = 1, then by the Homotopy Extension Property
there is a complex map 2 ~ h%: P3?—»Z such that {3ft = hl. Since h3f2
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L3
~ h%* ~ 1%, then the same arguments show that I2 = [3f2 for some 13 ~ k3.
Continuing this procedure we get a sequence of complex maps I": P"—Z
such that I"*'f* =1" and I" ~&" for all n. Obviously {I"} induces
a complex map h: P = leP”—>Z for which le( " ([R]) = {[A"]}.

n
The proposition is proved.

(2.9) LEMMA. If fy: [Y, P]—[Y, P']is an isomorphism for all Y e obZ,,
then [f1: P—P’ in #5 is an isomorphism, too.
Proof. Suppose f: PP’ satisty f,: [Y, P] ~ [Y, P']Jfor all Ye obZ,,
Then in particular f, : [8", P]~ [8", P'], where
(5, — 0 for 9, # N,
R for i =mn
(if & is a category of type (A) we take » = 0). Moreover, one can easily
check that [S", Z] ~ H,(Z) (naturally) for any complex Z. Consequently,
H(f): H(P)—>H(P') is an isomorphism and then applying [3], 3.3, we
get that [f]is an isomorphism.
Let H: #Y—-Ab be a contravariant functor satisfying the following
conditions:
(I). The natural injections P; »G—)P induce an isomorphism H ((—BP)

~ [JHP

( I). If 0—~P'—=P—>P''— 0 is a normal sequence in &, then H(P'')—H (P)
—~H (P’') is an exact sequence of Abelian groups.

Let {: Ab—8 be the covariant functor forgetting the group structure.
‘We are to prove that the composition 295 4p 5 8 is a homotopy functor
in the sense of Definition 2.7 First observe that H is an additive functor
by (I). Next we prove

(2.10) LEMMA. If H:P5-—> Ab is a contravariant functor satisfying
condition (I1) and ¢’ : P—Z is an equalizer of f, 0: A—P, then the sequence

H( 2D H P2 (4)
is exact. ,
Proof. We begin by proving that the lemma holds for the equalizer
g: P—-PuCA of f, 0: A—P constructed in the proof of Proposition 2.8. Since
(AuCA), = (P,®CA,)[N,, where N, = {(—f,(a),(a, 0)}; ac 4,}; then we
have following homotopy commutative diagram:

A-Lep 9 . pucA
y1_ ¢ b1
045 POOASPUCA—O

with f(a) = (—fn(@),(a,0)), iy(x) = (x, 0) and p the natural projection.
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Notice that the bottom row is a normal sequence of complexes and
4 is a homotopy equivalence. It results that the sequenece

APucA)E2a Py 2L 1 4)
is exact.
If g': P—Z is an arbitrary equalizer of f and 0, then clearly there is
a commutative diagram
~ ALlprLPuca
Vo
z ¥
Hence we get the commutative diagram

HPueAY 2Py 20 (4)
=,

H \
) \

with exact row, by the first part of the proof. This implies KerH (f)
< ImH(g’). Moreover, by the additivity of H, H(f)H(g') = H(0) =0,
i.e. ImH(¢') « KerH(f). Thus KerH(¢') = ImH(f) and the proof is
completed.

(2.11) ProrosiTIiON. If H: PP >Ab is a contravariant funcior satisfying
conditions (I) and (IL), then (H: PT—-8 is a homotopy functor.

Proof. We need to prove only condition (b) of Definition 2.7. If f;:
A->P; and g;: P,—~Z, % =1,2, are as in 3° of 2.5 and u;e H(P;) satisty
H(f))u, = H(f,)us, then one can easily check that the map ¢g: P,®P,~»Z
given by g(«, ¥) = ¢.(#)+¢g.(y) is an equalizer of 0, f: A>P,®P,, where
f(a) = (fi(a), —fa(a)). Consider the following commutative diagram

H(Z) 79 H (P, @P, "2 H(4)
- N b1 ¥
" H(P,)QH(P,) "
with @(2) = (H(9:)2, H(92)2), Uy) = (H (i)Y, H(E)Y), p(21, 2) = H(fr)w,
+H (—f,)#, and exact row by Lemma 2.10. Moreover,  is an isomorphism,
then

H(g")

H(Z)>H(P,)DH (P,)>H (A)
is an exact sequence. Consequently, the equality H(f;)u; = H(f,)u,
implies (1%, u,)e Keryp = Ime. Hence u; = H(g,)v for some wve H(Z)
and the proposition follows.
Let é’o denote the collection of all P< ob# such that a map f: P—P’
is an isomorphism, if f*: [¥,P] ~ [P’, Y] for all Yeob#,.
Now we can prove the main result of this section.
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(2.12) TEEOREM. If H: #U—Ab is a coniravariant functor satisfying
conditions (I) and (II), then there is a complex Ege ob? and o natural equi-
valence of functors

vi [ Bgl>H.

Proof. By Proposition 2.11 {H: #" 8 is a homotopy functor. Hence
applying Theorem 2.8 in [2] we get a complex Ey< ob# and a natural
transformation of functors y: [+, Byzl—(H such that EHgze P, implies
Ey is unique up to an equivalence and y is & natural equivalence. In virtue
of Lemma 2.9 #, = ob# and thus it is sufficient to show that y(P): [P, Ey]
—{H(P) = H(P) is an isomorphism of Abelian groups (not only under-
lying sets). It follows from the proof of Theorem 2.8 in [2] that there is
#e H(Eg) such that y(P)(f) = H(f)u. Since H is an additive functor,
we have y(P)(f—g) = H(f—g)(u) = H(f)u—H(g)u, i.e. y(P) is a homo-
morphism of groups. The theorem is proved.

As a consequence we get an analogue of Theorem IT in [1].

(2.13) THEOREM. If {H%,7: #—>Ab is a cohomology theory on P with
H? satisfying condition (I), then there is an S-spectrum E = {E,, &}, ™0
P such that {H% is isomorphic with the cohomology theory {H?(:, E)},z
described in example 2.4.

For the proof we need the following

(2.14) LeMMA. If {H%,z: P—>Ab is a cohomology theory on P and
P = (0P —P—~P"—0) is a normal sequence of compleves in P, then
the connecting homomorphism d%: HY(P')-~>H'(P") is the composition

7P 28V ey (g pry O oy prry
where o%: H''S—>H? is a natural equivalence of funciors and 0(P): P
—8P' is the complex map from Section 1.

Proof of the lemma. Since H? are h-functors, then the normal
sequence 0-—>P’'— CP’'— SP’— 0 with the contractible complex CP’ induces
an exact sequence

.. —>HY(CP")>HY(P') 2B o1 (§P') > HEH (OP) > . .

with HY(OP') = H?"'(CP') = 0. Hence d?(P’) are isomorphisms and it
is easy to check using the connectedness of {H% that d?(P’)~! determine
a natural equivalences of functors ¢?: H?*'§—H?. Furthermore, a simple
computation shows that the diagram

0>P >P—>P'—>0

J1r e | epy=o
0P —>CP'->8P'—0
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with normal rows and the complex map h given by h,(p’, p"') = (p’,
0,(p"")), is commutative. It follows that the diagram

_Hq (Pl) H)
tEt+lowP)
~H** (SP')

h
P2
is commutative and the lemma is proved.

Proof of the theorem. It is clear that the functor H? (for a fixed
q) satisfies the assumptions of Theorem 2.12. Hence H? ~ [-, K] for some
E e 0b#. Moreover, the natural equivalence ¢%: H**'§—H? from Lemma
2.14 yields a natural equivalence ¢?: [S(-), B, ,,1-[, E,]. If we put
= oY(E,)~ (1Eq), then o“(P)~! is the composition

[P, B15[8(P), 8,15 [S(P), B,,,].

It follows that (e,),-are isomorphisms, i.e. E = {E,, ¢,}4.z is an S-spec-
trum and that the diagram

HY(P) %S gevi(p)
L 4
(7', Eq]-*[P By,,]
with d? = H*'(6(P))(¢*(P'))~" is commutative. This completes the proof.
We stated before that if 7T: rM—zM is a contravariant functor of
the finite type and # is the category of type (A), then the functors
DIT: K~ —>p M restricted to the category & form a cohomology theory.

Moreover, if the functors Dgi’ satisfy condition (I), then by the above
Theorem we have the following

{2.15) CorOLLARY. There exists a spectrum E in &P such that the co-

homology theory {Dgf} 18 isomorphic with the cohomology theory {H?(-, E)}
Jrom Ezample 2.4.

(2.16) COROLLARY ([3], 5.5). If by definition H(X , A) = H,(Hom(X, 4))
for Xe ob?, Ac obgM and P is the calegory of type (B) or (C), then

HYP,A) =[P, K(4,q)]
Jor all P ob? and some projective compler K (A, q) with H K (A, q) =
HiK(Ay Q) = 07 1 # q.
Proof. Since H?(-, A): Z—>Ab satisfies the assumptions of Theorem
2.12, HY(-, A) =[+, K(4, q)] for some K(4, q)e ob#. Hence

A4 if i =g,
0 if ¢ #gq,
where §* (i Z) are the complexes defined on p. 292.

Hi-K(A’ q) = [Si, K(A7 9)] = Hq(‘sia 4) =
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