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Brown’s theorem for cohomology theories 
on categories of chain complexes

Introduction. Let E — {En, hn} be a spectrum; that is a sequence of 
topological spaces En with base point and base points preserving maps 
hn: En->QEn+1. A spectrum E  is called an Q-spectrum if hn are homotopy 
equivalences. From Brown’s results in [1] and [2] it follows that

1. I f  E  =  {En, hn) is an Q-spectrum, then there exists a generalized 
cohomology theory H% defined on the category C of pairs of CW-complexes 
such that

Щ ( Х , 0 )  =  [ X u p ,E n] (p i X )
for albn. {[XKJp, En] is the set of homotopy classes of maps from Xup to En.

2. For any generalized cohomology theory H* on C satisfying certain 
conditions one can find an Q-spectrum E such that H* and II*E are naturally 
equivalent.

In this paper the notion of spectrum is defined in the category of 
complexes of modules and it is shown that Brown’s results hold for 
cohomology theories on some subcategories of this category.

1. Normal sequences. Let В be a fixed ring with identity and let rM 
be the category of all left -В-modulus. Denote by К  (K  ) the category of 
all (left) chain complexes over RM and recall that complex maps / ,  g: 
X -+Y  are called homotopic ( f  ~  g) if there exist module homomorphisms 
sn: X n^ Y n+l such that f n — gn =  dn+1sn+  The cone and suspension
functors are defined as follows:

(@X)n X n(J)X n_ j , dn(xn, xn_f) (dxn ffin—l? ^n—i*̂ n—i)>
ds x ^ - d x .

If f :  X  >1’ is a complex map, then (Gf)n = /„© /„_ !, (Sf)n = /„_ i-  
GX is a contractible complex (i.e. l cx  ~  0) and /  ~  0: X ->Y  if and only 
if /  can be factored through the natural complex map j :  X->GX.

D e fin it io n . An exact sequence of complexes
X:  0 - > 1 'Д 1 - ^ Г А 0
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is said to be normal if the sequence
o-> x ;-> xn->x"->o

splits for all neZ.  A complex map / :  X->Y is called a normal mono- 
morphism iî Y-> Coker (/)->0 is the normal sequence.

In what follows dealing with a normal sequence X  we assume that 
X n — X'n@X'n and that i, p are the natural injections and projections 
respectively.

If X  is a normal sequence, then it is easy to see that the maps 6nt 
X!f->X'n_x given by the equality

=  (6» ( » » ) ,<  (®»)1
define a complex map 0(X): X"->8X\  Moreover, for any commutative 
diagram with normal rows:

\r j /  j/"
0->Y'-> Y > ¥"-> 0

the diagram
X " ^ S X '
[ 1" jssr 
Y " ^ l 8 Y '

is homotopy commutative.
(1.1) L emma (Homotopy Extension Property). I f

0 ^ X '- ix 4 -X " -> 0  
/

is a commutative diagram with the normal row and g' r ,  then there exists 
a complex map g: X~> Y such that gi — g' and g ~ f .

Proof. Since g’ then
(*) 9 n  f n  ^ n + l^ n  Y  ^n—l^ n

for some module homomorphisms sn: X'n->Yn+1. Put

9n (xn i xn ) f n (0, xn ) ~f- gn (xn) -p sn_16n (xn ).
A straightforward computation shows that the maps gn: X n-+Yn 

define a complex map g: X~>Y such that gi — g'. Furthermore setting 
æn) =  s'n(x'n) (sn: X n-+Yn+1) and using equality (*) we have

î n+î n Ysn—idn)(̂ xnj xn) dn+iSn(Xn) YSn—ifânXn Y @n{xn) j dnxnj
9 n ( X n ) f n  ( X n )  S n - _ \ d n ( X n )  p  S n _ x d n ( x n )  p i  @n(.Xn  )

(Яп fn ) ( X n i  Xn ) .
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Therefore g and the lemma is proved.
Similarly as Lemma 1.1 one can prove the following
(1.2) L e m m a  (Homotopy Lifting Property). I f

T\ f,

o - * r 4 - i 4 i " ^ o

is a commutative diagram with the normal row and f  ~  g', then there is 
a complex map g : T ->X such that pg =  g' and f  ~  g.

(1.3) Co r o l l a r y . I f  ( f , f , f " ) :  X -+ Y  is a map of normal sequences 
and f' ~ g', then there exists a map of normal sequences (g', g, g"): X ->Y  
such that f  ~  g and f "  =  g".

The proof is left to the reader.
(1.4) Co r o l l a r y . I f  X : 0-+X'-^X-?+X"->0 is a normal sequence, 

then the map i is a homotopy equivalence if and only if the complex X "  is 
contractible. Analogously p is a homotopy equivalence if and only if  X ' 
is contractible.

Proof. Suppose i: X '^ X  is a homotopy equivalence. Then Vi ~  l x., 
iV ~  l x  for some complex map V: X->X'. Using now Lemma 1.1 to 
/ '  =  Vi and gf =  1 we get a complex map l: X -^ X ’ such that li =  1 and 
2 -—' Z'. Hence we deduce that the sequence X  splits. In particular there 
exists a complex map k: X "-> X  such that pk — l x ». Since il %V 1, 
we have i l—1 ~  0 and consequently 0 ~ p ( U — l)k  =  — l x „. Thus we 
have shown X "  is contractible. Conversely, if X "  is contractible, then 
applying Lemma 1.2 to /  =  0X" , f  = 0  and g’ — 1 we obtain a complex 
map k: X "-> X  such that pk — 1 and к ~  0. Hence li — 1 and 1^ =  il +  
+  kp for some complex map l : X->X'. It follows 1 — il ^ 0  i.e. the map 
i is a homotopy equivalence. The proof of the second part of the corollary 
is similar.

(1.5) Remark. Corollary 1.4 is a completion of [3], 2.18.
(1.6) L e m m a . I f  F : X -> Y  is a complex map, then F  =  gi, where i is 

a normal monomorphism and g is a homotopy equivalence.
Proof. F  =  (X->(7X©Y-^> Y), where i(x) =  (x , 0,/(#)) and g is the 

natural projection.

2. Brown’s Theorem. A complex X  is called projective if X n is a pro­
jective module for all n eZ  (in general it is not a projective object in A). 
Throughout this section 0* will denote one of the following full subcatego­
ries of the category K.

(A) The category of all left projective complexes.
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(B) The category of all projective complexes X  such that X n =  0 for 
sufficiently small n.

(C) The category of all projective complexes. In this case we assume 
that В is the ring of the finite left global dimension.

Moreover, let 0 U denote the quotient category and let [P ',P ]
=  Hom^n(P', P). If f :  X ^ Y  is a complex map, then we write [/] for 
the homotopy class of /.

(2.1) D e f in it io n . A cohomology theory on 0> is a sequence of con- 
travariant, homotopy preserving functors Hn: 3̂->A6(1), ne Z, satisfying 
the following conditions:

(i) for any normal sequence X : O^X' ̂ >X^>X"- -̂0 there are homo­
morphisme dn(X ): Hn(X')-*Hn+1(X")  such that the sequence.

. . . ->En( X " ) ^ H n( X ) ^ H n(X ,)d̂ H n+1( X " ) ^ . . .
is exact,

(ii) if ( / ' , / , / " ) :  X-+Y  is a map of normal sequences in 0 , then the 
diagram below is commutative:

Hn{X')d- ™ H n+1(X")  
ir* X /"*dn(Y) , ,

Hn( Y ' ) ^ H n+1(Y)
If T : RM->Ab is a contravariant functor of finite type, then by [4], 

Theorem 6.10, the functors {Dq T}qeZ restricted to the category 0  form a co­
homology theory on P.

To give a typical example of cohomology theory on 0  we need the 
following definitions:

(2.2) D e f in it io n . A spectrum in the category A  is a sequence of com­
plexes En, ne Z, together with complex maps sn: 8En-+ En+1.

(2.3) D e f in it io n . A spectrum {En, sn} is called an 8-spectrum if the 
group homomorphisms

[8P, S u J ’̂ lS P , Ba+l] 
are isomorphisms for any Pe 6b0  and all qeZ.

(2.4) E x a m p l e . Suppose E  =  {En, en} is an $-spectrum in 0  and 
define :

Я *(-,Р ) 0-+Ab
for qeZ. We shall show (Hq( ' ,E ) ,  qe Z) is a cohomology theory on 0.  
For this purpose we define natural equivalences of functors

oq: Hq+1( - ,E ) S ^ H q(- ,E)

(l) Ab denotes the category of Abelian groups.
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as follows:

ацр)  =  д ер , p fl+1] (*~ [я р , яр3] -  [ Р ,а д .

Furthermore, if P =  (0->Р 'Л рЛ р''->0) is a normal sequence in ^  
and 0(P): P"->$P' is the complex map defined in Section 1, then the 
connecting homomorphism

dQ(P): W{P',E)-+H*+l(P " ,E )
is a composition

E Q(P' , E ) ^ ^ E a+1(8P', Р ) ^ Э я « +1(Р", P).
In virtue of [4], Theorem 2.12, to prove that the functors Я 3(-,Р ) 

together with dq described above form a cohomology theory on 0> it is 
sufficient to show that the sequences of Abelian groups

[ P ^ P j £ [ P , P j £ [ P ' , P e]
is exact for any normal sequence 0-*P'-VP-^P"->0 in 0  and q*Z. 
Clearly, Im p* cz Кегг*. Let [/]« [P, Eq] and let — [ft] =  0. Hence
ft ~  0 and we have the following commutative diagram with normal rows

О ^ р 'Л р Д р '^ о  ~
\ n / t
к

Using the Homotopy Extension Property (Lemma 1.1) we get a com­
plex map g : P->Eq such that f  ~  g and gi =  0. Then g =  g"p  for some 
g": P"->Eq because (P4-P") =  Сокегг. Consequently, [/] =  [g] 
=  p*([g"])elmp*  and we see Кегг* =  Imp*. Thus we have shown that 
{Eq( - ,E ) }qeZ is a cohomology theory.

In what follows it will be proved, by the use of the results of E. Brown’s 
paper [2], that any cohomology theory {E q}qeZ on 0* satisfying condi­
tion E q ( ©P^ Цв°(Р<) is isomorphic with the cohomology theory

% i
E)}qeZ for some ^-spectrum E  in 0>.

We start with
(2.5) D e f i n i t i o n  [2]. A pair (G, G0), where CQ is a subcategory of 

a category G, is called a homotopy category, if it satisfies the following 
conditions

1° G0 is a small and full subcategory of 0;
2° <70 bas finite sums, G has arbitrary sums;
3° if f { : = 1 ,2 ,  are in G, then there are maps g{: P{ ->Z

in G such that gq/j =  g2f 2 and such that, if g\ : P{ Z' satisfy g'1f 1 =  g'2f t , 
then g\ — hgi for some h: Z ->Z ’ (h is not necessarily unique);
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4° if f n: P n->Pn+1, n =  1, 2, ..., are in G, then there are Peob<7 
and maps gr” : PW-»P such that

(i) Lim(grw)*: L im [£,Pre] [Z, P] for all ZeobC0, where [P,P'J
/I —>•П

is a set of morphisms from P to P' and (gfw)* is given by (gn)*{h) =
(ii) Lim(gfn)*: [P, Z]->Lim[Pw, Z] is an epimorphism for all ZeobG,

П
where (gn)*(h) =  %n.

(2.6) Remark. If 0 is an additive category, then it follows from Lemma 
2.10 in [2] that condition 3° is equivalent to condition 3':

3' I f / :  A-+P  is in (7, then there is g: P-+Z in G such that gf =  0 
and if g': P-+Z' satisfies g f  =  0, then g — hg for some h: Z-+Z'.

Any map g satisfying 3' (for a given / )  is called an equalizer of the maps 
/ ,  0: A->P.

Let $ be the category of sets.
(2.7) D e f i n i t i o n  [2]. If (G, G0) is a homotopy category and H: G-^S 

is a contravariant functor, then PL is called a homotopy functor, if it satis­
fies the following conditions :

(a) The natural injections Р{-+@ Р{ induce an isomorphism
i

2T(P,).
г i

(b) If/»: А ->Рг- and gr*: P ^ Z  are as in 3° of Definition 2.5 and u{ 
e ЩР{) satisfy H  (/j)%  =  В  ( /2) u2, then there is ve H(Z) such that B(g{)v 
=\и{ for i =  1, 2 .

Let P0 be the full subcategory of & whose objects are complexes P such 
that Pm is a finitely generated module for any n and but a finite number 
of Pn are zero.

(2.8) P r o p o s i t i o n . The pair D, 0^) is a homotopy category.
Proof. Evidently conditions 1° and 2° of Definition 2.5 are satisfied.

In view of Bemark 2.6 we may prove 3' instead of 3°. Let then / :  J L - > P  

be any complex map in 0  and let g be the complex map from the pushout 
diagram

A ^ G A  
\ f  j  

P-^PuGA
It is easy to see that (P\jGA)h =  {Pn@GAn) j { [~ fn(a), « , 0) : « e i n| 

cü Pn0  A n_x. Consequently P и G A  e P.
Furthermore G A  is contractible so gf ~  0, i.e. [</][/] = 0 . If g'f ~  0 

for some complex map g' : P->Z' in P, then clearly g'f can be factored 
through j (A)  i.e. g'f =  lj(A) for some l: GA-+Z'. By the pushout property
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of the above diagram there is a complex map h: PuCA->Z’ such that g‘ 
— hg. Thus we have shown that [g] is an equalizer of [/] and 0. If A , P  
c ob^o, then the mentioned equality (PuCA)n =  Pn@ A n_x implies PuCA  
e ob^0.

It remains to prove condition 4°. Take for this purpose complex maps 
f n: Pn->Pn+1, n = 1 ,2 , . . . ,  and observe that in view of Lemma 1.6 
and the fact that CX @ Y e  ob 3̂ provided X , Y e ob^ we may assume that f n 
are normal monomorphisms. Let gn: P n~>P be a direct limit in K ( RM) 
of the direct system (Pw, f n,m}n>mezi where f n,m: P n- > P m is / w-1* ...-/n 
forw C m  and f n,n = 1 . At first we show that Pe ob^ , i.e. P{ =  
Lim {P™, f i ,m} is a projective module for any i. Since f n are normal mono-

П
morphisms, the sequences

jn,m
0-^Pf— -P f-> P r/Im /^ m-> 0

split for n <  m. Thus P f  /Im /”,TO are projective modules and the conclu­
sion follows.

Now we prove that [</n]: P n-*P satisfy (i) and (ii) of condition 4°. 
To prove (i), consider the homomorphism

g* =  Lim fa»),: ÏAm[Z, Pn]-+[Z, P]

for Ze ob^0. If [/]e [.Z , P ], then Ze ob^ 0 and P =  UImgrn imply Im f
71=1

c  Im</n for some n. On the other hand, gn: Pre-> lmgn is an isomorphism 
since Ker gn =  U  Kerf n,m =  0.

m /
Consequently, /  =  gnf  for some Z->Pn and hence g4 tables the 

class [ / ']  in Lim [Z, Pn] into [/]. Thus g4 is an epimorphism. Now suppose

g+(a) = 0  for ae Lim[Z, P n]. If [h ]e [Z ,P n] is a representative of a,
n

then clearly gnTi ~  0. Let s: Z->P be a chain homotopy joining gnh with 0. 
Then, similarly as above, s — gms for m ^ n  and s': Z ->Pm. It is easy 
to verify that s' is a chain homotopy joining f n,mh with 0. Consequently, 
a =  [Ti] =  [ fn,mh] =  0 and we see that gM is a 'monomorphism. This 
completes the proof of (i).

Now we prove (ii). Let {[&”]} e Lim[Pw, Z], Then we have the homotopy 
commutative diagrams n

0->Pn? lp n+1-+Pn+1IImfn-> 0
\̂ П / Д7Н-1

0 -> Z '
with normal rows. If n = 1, then by the Homotopy Extension Property 
there is a complex map Z2 P 2->Z such that Z2/ 1 =  Л1. Since 7i3/ 2
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~  h2 ~  l2, then the same arguments show that l2 =  Isf 2 for some Is ~  h3. 
Continuing this procedure we get a sequence of complex maps ln: P n->Z 
such that in+lf n =  Г and ln ~  hn for all n. Obviously {ln} induces 
a complex map h: P  =  LimPn->Y for which Lim(<jfn)*([&]) =  {[/&”]}.

n n
The proposition is proved.

(2.9) Lemma. If f* :  [У, P ]->[Y , P '] is an isomorphism for all Ye ob^0, 
then [ /] : P~>P' in SPU is an isomorphism, too.

Proof. Suppose/: P->P'satisfy Д: [Y ,P ] & [Y, P '] for all Y eob^0. 
Then in particular / #: [Sn, P] æ [/S'71, P'1, where

0 for i Ф п,
E  for i =  n

(if & is a category of type (A) we take n >  0). Moreover, one can easily 
check that [8п, У] & Hn{Z) (naturally) for any complex Z. Consequently, 
H ( f ): H(P)^H(P')  is an isomorphism and then applying [3], 3.3, we 
get that [/]  is an isomorphism.

Let PL: ^°-^Ab  be a contra variant functor satisfying the following 
conditions :

(I) . The natural injections Pf->©Pi induce an isomorphism Р (@ Р г)
*>ПВ(Р<). '  г

i

(II) . If 0->P'->P->P"-> 0 is a normal sequence in 0>, then II(P")->H(P) 
->P(P') is an exact sequence of Abelian groups.

Let £: Ab-^8 be the covariant functor forgetting the group structure. 
We are to prove that the composition &U-+Ab->S  is a homotopy functor 
in the sense of Definition 2.7 First observe that PL is an additive functor 
by (I). !Next we prove

(2.10) Lemma. I f  H : Ab is a contravariant functor satisfying
condition (II) and g' :P->Z is an equalizer of f ,  0: A->P, then the sequence

H { Z ) - ^ H  (P)--^ H(A)
is exact.

9

Proof. We begin by proving that the lemma holds for the equalizer 
g : P->Pu(7A o f/, 0 : A->P  constructed in the proof of Proposition 2.8. Since 
(A\jCA)n =  (Pn@CAn)lNn, where Nn =  { ( - f n{a),(a, 0)); ae A n) ; then we 
have following homotopy commutative diagram:

A - U p —P^PuO A
jl_  j* j i

0 -4 P ®CA 4*P uCA -> 0

with f n{a) =  ( —/»(«),(<*> 0))> in(œ) — (x , 0) and p the natural projection.
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Notice that the bottom row is a normal sequence of complexes and 
i is a homotopy equivalence. It results that the sequence

H (P uCA)^Qh  (P)-^Ih  (A)
is exact.

If g' : P-+Z is an arbitrary equalizer of f  and 0, then clearly there is 
a commutative diagram

v A - i  P-^PuCA
W  /  h 
Z S

Hence we get the commutative diagram
H ( P u C A ) ^ H { P ) ^ H ( A )

\ h (Z)
with exact row, by the first part of the proof. This implies KerH(/) 
c  ImH(g'). Moreover, by the additivity of H, E{ f )H(g ')  — H(0) =  0, 
i.e. ImZ(g') с  КегЯ(/). Thus КетП(д') =  ImH(f)  and the proof is 
completed.

(2.11) P r o p o sitio n . I f  К  : &u-^Ab is a contravariant functor satisfying 
conditions (I) and (II), then ÇHi 0>a->S is a homotopy functor.

Proof. We need to prove only condition (b) of Definition 2.7. If f { : 
A-+Pi and g{: P ^ Z ,  i = 1 ,2 ,  are as in 3° of 2.5 and uie E { P i) satisfy 
S(f i)  ux =  H (f2)u2, then one can easily check that the map g: P X@ P 2-+Z 
given by g{x,y)  =  gx{x) + д 2(у) is an equalizer of 0 , / :  A->PX@ P 2, where 
f(a) =  (/i(a), — / 2(a)). Consider the following commutative diagram

H ( Z ) ^ H { P X ® P 2) ^ H  (A)A  jz /
*  Л(РХ)@Н(Р2) *

with <p(z) =  (H(gx)z, H(g2)z), l{y) =  (H(ix) y ,H { i 2)y), y{xx, x 2) =  H (fx)osx 
+Я  ( —f 2)x2 and exact row by Lemma 2.10. Moreover, l is an isomorphism, 
then

B(Z)- i -B{P1)®S(P , )^ .H (A)
is an exact sequence. Consequently, the equality H (fx)ux =  S (h )  u2 
implies {ux, u2)e Ker^ =  Imç>. Hence щ — 3 ( g {)v for some veH(Z)  
and the proposition follows.

Let denote the collection of all Pe ob&> such that a map / :  P->P' 
is an isomorphism, if /* : [T ,P ] яа [P', T] for all Y eob^ 0.

Now we can prove the main result of this section.
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(2.12) T h e o r e m . I f  E : 0 и^АЪ is a contravariant functor satisfying 
conditions (I) and (II), then there is a complex Ен е 6b0  and a natural equi­
valence of functors

7 : ['? EH]->E.

Proof. By Proposition 2.11 ^ E : 0 n-^S is a homotopy functor. Hence 
applying Theorem 2.8 in [2] we get a complex Ен е оЬ0 and a natural 
transformation of functors y: [•, ]->£!? such that Ен е Фй implies
EH is unique up to an equivalence and у is a natural equivalence. In virtue 
of Lemma 2.9 =  ob0* and thus it is sufficient to show that у (P) : [P , EH]

(P) =  E  (P) is an isomorphism of Abelian groups (not only under­
lying sets). It follows from the proof of Theorem 2.8 in [2] that there is 
u e E ( E H) such that y{P){f)  =  E { f )u .  Since E  is an additive functor, 
we have y (P ) ( f—g) =  E [ f —g)(u) =  E  {f)u — E  (g) u, i.e. у (P) is a homo­
morphism of groups. The theorem is proved.

As a consequence we get an analogue of Theorem II in [1].
(2.13) T h e o r e m . I f  {E9}qeZ: &->Ab is a cohomology theory on 0  with 

E 9 satisfying condition (I), then there is an 8-spectrum E =  {Eq, eq}qeZ i>w> 
0  such that {E9}qtZ is isomorphic with the cohomology theory {EQ( - , E)}qeZ 
described in example 2.4.

For the proof we need the following
(2.14) L e m m a . I f  {E9}qeZ: 0->Ab is a cohomology theory on 0  and 

P — (0-»P,->P-^P,/->0) is a normal sequence of complexes in 0 , then 
the connecting homomorphism d9: E 9(P')->E9+1(P") is the composition

E q (Pf) — ]'^E 9+1 (8P'f a+1{- - l)E 9+1 (P "),

where o9: E 9+18 ~+E9 is a natural equivalence of functors and в(Р): P "  
->SP' is the complex map from Section 1.

Proof of the lemma. Since E 9 are й-functors, then the normal 
sequence 0->P'-> GP'-> SP'-> 0 with the contractible complex CP' induces 
an exact sequence

...->E Q{CP')-+E9( P ' ) ^ E 9+1(8P')->E9+1(CP')->.'.

with E 9(CP') =  E 9+1(CPr) = 0. Hence d9(P') are isomorphisms and it 
is easy to check using the connectedness of {E9} that d9{P')~l determine 
a natural equivalences of functors a9: E 9+18 ->E9. Furthermore, a simple 
computation shows that the diagram

0 ->P'-*P— *P"-> 0
jl |в(Р)«0

0^P'-^CP'->,SP'->0
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with normal rows and the complex map h given by hn(p', p")  =  (p', 
0n(p")), is commutative. It follows that the diagram

H9(P')—
fl |Я2+1(0(Р))

H9( P ' ) ^ ^ ^ H 9+l{8P')

is commutative and the lemma is proved.
Proof of the theorem. It is clear that the functor E 9 (for a fixed 

q) satisfies the assumptions of Theorem 2.12. Hence E 9 ъ  [•, Eq] for some 
Eqe 6b0. Moreover, the natural equivalence a9: E 9+18->E9 from Lemma 
2.14 yields a natural equivalence a9: [$( • ), Eq+1]->[•, Eq]. If we put 
€g =  o9(Eq)~1(lB )j then ^ ’(P)-1 is the composition

[P, Д,]Л.[Я(Р), SEJ^tmP), -E3+.]-
It follows that (eg)jft are isomorphisms, i.e. E  =  {Eq, £q}qeZ is an ^-spec­

trum and that the diagram

E 9( P ' ) ^ E 9+1{P")
* -* î

[P1, Eq] ^ [ P " , Eq+1]

with d9 — Е 9+1[в(Р)){о9(Р,))~1 is commutative. This completes the proof.
We stated before that if T : RM -+RM  is a contravariant functor of 

the finite type and 0  is the category of type (A), then the functors 
DfP: K~->R>M restricted to the category 0  form a cohomology theory. 
Moreover, if the functors D9T satisfy condition (I), then by the above 
Theorem we have the following

(2.15) Co r o l l a r y . There exists a spectrum E in 0  such that the co­
homology theory {D9T} is isomorphic with the cohomology theory {H9 ( •, E)} 
from Example 2.4.

(2.16) Co r o l l a r y  ([3], 5.5). I f  by definition H9(X, A) =  £Tff(Hom(X, A)) 
for Xe  6b0 , Ae 6b RM and 0  is the Category of type (B) or (C), then

H9(P ,A )  =  [P ,K (A ,q ) ]
for all Pe ob 0  and some projective complex К  (A, q) with E qK (A ,  q) =  A, 
H iK (A , q) =  0, i =£q.

Proof. Since E 9( - ,A ) :0 ->A b  satisfies the assumptions of Theorem 
2.12, H9(-j A)  =  [•, К  (A, q)] for some K (A ,  q)e 6b0. Hence

Н,К(А,  q) =  [8\ К  (A,  ff)] =  E 9(8{, A) =

where 8i (i e Z ) are the complexes defined on p. 292.

I A  if i =  q,
[0 if i Ф q,
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