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On generalized modular spaces |

Abstract. The present paper proceeds in 10 sections. Section 1 introduces a concept
of a modular space; central cores of it are modular bages and a comparision relation
of these bases. Section 2 shows that the theory of linear-topological spaces is a special
cage of the theory of modular spaces. In Section 3 an upper linear-topological space
and in Section 4 a lower linear-topological space is defined for a given modular space.
Section 5 deals with the convergence of Moore-Smith sequences in modular spaces.
Section 6 introduces separations axioms for modular spaces. Section 7 concerns bounded
sets in modular spaces. In Section 8 locally bounded modular spaces and in Section
9 locally convex modular spaces are investigated. Finally, in Section 10 the concept
of a locally convex modular space generated by a given modular space is investigated.

Introduction. The central core of the contemporary functional analysis
is a concept called a linear-topological space ([2], [3], [16], [17]). This
concept cannot, however, deal with such spaces investigated in the fune-
tional analysis as modular spaces ([11], [12], [13], [14]) and in particular
as Orlicz spaces ([15], [4], [9], [10], [6], [7], [8], [1], [5]). The purpose
of this paper is a construction of such a model which could contain both
theories of modular and linear-topological spaces.

I. GENERALIZED MODULAR SPACES

1.1. Let X Dbe a real or complex linear space. A non-void family B
of subsets of X will be called a modular base in X if the two following
conditions are satisfied:

(M1) for every two sets U,, U,e B there ewists a set Use B such that
(U, < U,NnU,,

(M2) every set Ue B is absorbent in X.

In the above conditions for a given set U =« X by I'(U) we denoted
& set of all vectors ze X representable in the form 2z = aw + fy, where

Z,ye U and a, § are numbers such that |o] +[8] < 1. Aset U = X is absor-
bent in X if for every vector xe X there is a number a = 0 such that axe U.
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1.2. Let B, and B, be two modular bases in X. We shall say that
a base B, is non-weaker than a base B,, written B;-3 B,, if there exists
a number a # 0 such that for every set U,e B, there is a set U,¢ B,
satisfying aU, = U,;.

Here, for a given number a and a given set U <« X by aU we denote
as usual, a set of all these vectors y¢ X representable in the form y = awx,
where x¢ U.

It is easy to see that the relation -3 is reflexive and transitive in the class
of all modular bases in X. Therefore the equivalence of modular bases
means the following:

We say that modular bases B, and B, in X are equivalent, written
henceforth as B; ~ B,, if simultaneously B, 3 B, and B, 3 B,.

In the sequel B~ will denote a class of all modular bases equivalent
to a modular base B. In accordance with this we shall write B, = B,
if By~ B, and B, < B, whenever B, 3 B,.

1.3. Let U be a subset of X. By bal. U we denote the set of all vectors
Yy e X which could be written in the form ¥ = ax, where #¢ U and a is such
a number that |a] < 1. Whenever it occurs that U = bal.U we shall
call U, in accordance with already widely used terminology, a balanced
sel. Again, let B be a family of subsets of X. By bal.B we denote the family
of all sets U = X such that U’ = bal.U, where Ue B.

We shall show that

For every modular base B in X the family bal.B is also a modular base
in X and bal.B ~ B,

Proof. Let B be a modular base in X. Clearly, the family bal.B sat-
isfies condition (M2). Let U; and U, be any two sets in bal.B. Then there
exists sets U,, Uye B such that U, = bal.U, and U, = bal.U,. By virtue
of (M1) for B it follows that there is a set Use B such that I'(U,;) « Uyn
NU,. Observe that

UinU, 5 U,nU, > I'(U,) = I'(bal.T,).

The set bal.U, is an element of bal.B. This means that the family

. bal.B satisfies (M1), hence it is a modular base in X. It remains to prove

that bal.B ~ B. From the inclusion U < bal.U it clearly follows that

bal.B 3 B. Let now U be an arbitrary set in B. By (M1) for B we get

that there exists a set U,e¢ B such that U o> I'(U,) o bal.U,. Hence
the required relation B -3 bal.B follows.

1.4. A generalized modular space is said to be the pair [X, B" ], where
X denotes a linear space and B a modular base in X.

Occurring in this definition sign ~ over B is essential; B~ denotes
the whole class of modular bases in X equivalent to B. Instead of gen-
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eralized modular space [X, B” ] we shall also say modular space [X, B" ]
or modular space X with respect to the class of modular bases B™ .

Let [X, B; ] and [X, B, ] be two modular spaces over the same linear
space X. We shall write [X, B; ] < [X, B, ] whenever B; < B; .

The pair [X, B], where X is a linear space and B a modular base in
X, we shall call the representative of a modular space or a free modular
space. Let [X, B,] and [X, B,] be two free modular spaces. The space
[X, B,] is said to be non-weaker than the space [X, B,], denoted [X, B,]
3 [X, B,],if B; 3 B,. Whenever B, ~ B, then we call the spaces [ X, B,]
and [X, B,] equivalent and we denote [X, B;] ~ [X, B,]. According to
this we have [X,B" ] =[X, B] .

2.1. A linear-topological space is the pair [X, T'], where X is a linear
space and T a topology in X such that the algebraic operations in X are
continuous in this topology. This topology 7 is called a linear topology
in X ([2], [3], [16], [17]).

The two following well-known theorems from the theory of linear-
topological spaces are crucial for our considerations:

L. In every linear-topological space [ X, T'] the family B of all neighbour-
hoods of the origin satisfies the following conditions:

(LT1) for every set U,e B there ewists U,e B with U,+ U, = U,,

(LT2) for every set U,e B there ewists Uye B with bal. U, Uy,

(LT3) for each two sets U,, Uye B there emists Use B such that Uy, = Uyn
NnU,, .

(LT4) every set Ue B is absorbent in X.

For any two sets U,, U, ¢ X by U, { U, we denote, as usual, the set
of all e X representable in the form ©» = «, +w,, where #;¢ U, and x,¢U,.

II. For every non-void family B of sets in the linear space X, satisfying
(LT1) through (L'T4), there is a unique topology T in X satisfying the fol-
lowing conditions:

1° [X, T} is a linear-topological space,

2° for every neighbourkood of the origin V in T there is a set Ue B such
that U< V,

3° for every Ue B there is a neighbourhood of the origin V in T such
that V < U.

 In this topology T the closure of any set 7 < X is

Z = N (Z+T).

UeB

2.2. Hereafter any non-void family B of sets in X satisfying (LT1)-
(L'T4) shall be called a linear-topological base or shortly an LT-base in X.
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Let U be an arbitrary set in X. By A(U) we denotc the set of all vectors
ze X representable in the form 2 = ax + fy, where 2, ye¢ U and «a, 8 are
numbers such that sup {]al, |[f]} < 1. Note that using this notation, instead
of four conditions for an LT-base (LT1)—~(LT4) only two suffice:

(LITL*) for any two sets U,, Uye B there is Uye B such that A(U;) = Uyn
nU,,

(LT*2) = (M2).

Moreover, note that for any set U < X always holds I'(U) < A(U).
Hence -

Every LT-base B in X is a modular base in X.

2.3. For any modular base B in X the three following conditions are
equivalent:

(A% for every a # 0 and for every U,e B there is a set Uye B such that
alU, <= Uy,

(A,) for every U,e B there is Uye B such that 2U, = U,,

(A*) there exists a with |a| > 1 such that for every U,e B there is a set
U,e B such that aU, = U,.

Proof. Clearly, (A% implies (A,), and (A,) implies (A*). Thus le$ & mo-
dular base B fulfils (A*) and let § be any number different from 0 and U,
any set in B. Then we find a positive integer n such that |a® > |8]. By
(A*) there is U,e B such that aU, = U,. Repeating this n times we see
that there exists a set U, ,,¢ B such that «U, ., = U,. In view of condi-
tion (M1) for B there is U, ,,e B such that balU, ., < U,,,. Hence

Uy2alU,2ae*Us>...0d" U, 2 a*ballU, ,> pU,.,.
This shows that (A*) implies (A°).
2.4, A modular base B in X is an LT-base if and only if it satisfies one
of the three equivalent conditions of 2.3, e.g. (A,).
Proof. Let B be an LT-base in X. For every U < X always holds
2U < A(U). This and (LTL1*) imply that B satisfies (A,). Conversely,
let B be a modular base in X satisfying (A,). For every set U <« X always

holds A(U) « 21°(U). Hence conditions (A,) and (M1) ensure that B sat-
isfies (L/T1%*). This means that B is an LT-base in X. -

2.5. Let B, and B, be two modular bases in X. If B, ~ B, and B, is
an LT-base, then B, is also an LT-base.

Proof. B; ~ B, means that there are numbers a,, a, 7% 0 such that
for every U,e¢ B, there is U,e¢ B, such that o, U, = U,, and for every
U, e B, there exists U;e B, such that a,U; = U,. Let U, be an arbitrary
member of the base B,. Then there is Uje B, such that «,U; = U,. B,
is an LT-base, hence it satisfies (A°). It means that there cxists a set
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U,e B, with 2a7%a; ' U, = U;. Then we can find U,e B, such that «, U,
< U,. Assembling these inclusion we get

U, > a, Uy 2 05207 ey Uy = 2a7 U, 2 2U,.

This means that B, satisfies (A,), hence it is an LT-base.

2.6. Let B, and B, be two LT-bases in X. The relation B, -3 B, holds
if and only if for every U,e B, there is Uye B, such that U, = U,.

Proof. If for every U,e B, there i3 U,¢ B, such that U, < U,, then
clearly B; 3 B,. Conversely, let us assume that B, 3 B,. Then there
is @ = 0 such that for any U, B, there is®U,e B, with aU; < U,. B,is
an LT-base and hence it satisfies (A?). It means that there is U, B, such
that «~ ' U, c U,. It follows that U, < «U, c U,.

2.7. Let X be a fixed linear space. By £, we denote the set of all linear
topologies 7 on X and by £, the set of all classes B~ in X including as
a member an LT-base. Taking into account 2.1. I and 2.2 we define a map-
ping F: 2,—9,, as follows: to a linear topology T e £, there corresponds
a class F(T) = B~, where B is a family of all neighbourhoods of the origin
in T. In view of 2.1. TI, 2.5 and 2.6 we can verify that this is a one-to-one
mapping of £, onto £2,. Hence

There ewists a one-to-one correspondence between the set 2, of all linear
topologies T' on X and the set 2, of all classes B™ containing as a member
an LT-base. This correspondence establishes the above defined mapping F.

This together with 2.1.1 imply

If T, and T, are two linear topologies on X, and B, , B, their correspond-
ing by F classes of modular bases, then T, < T, holds if and only if B,
< B, holds.

In the sequel this correspondence we shall simply regard as an identity,
i.e. the topological-linear space [X, T] will be identified with the modular
space[X,B" ], where B~ = F(T), and conversely the modular space[X, B™]
such that B~ contains as a member an LT-base will be identified with the
linear-topological space [X, T] such that F(T) = B™. This identification
ig in fact nothing else but a formal equivalence of the two different methods
of defining a linear-topological space: one in which the linear topology
T for a linear space is explicitly given and the other in which the class B~
of equivalent LT-bases is given. -In this way the theory of linear-topo-
logical spaces becomes a part of the theory of modular spaces.

The theory of modular spaces is more general than the theory of
linear-topological spaces. This can'be-showed on a simple example. The
pair [C, B" ], where C is a complex number system and B the family con-
sisting of only one set U = {ac C: |a| < 1}, is a modular space but not
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a linear topological space. In this case the modular base B does not sat-
isfy condition (A,); for the set U in B there is no set U’ e« B such that
2U < U.

3.1. Let B be a modular base in X. By B~ we denote a family of all
subsets V — X representable in the form V = aU, where Ue B and «
is a number different from 0.

‘We shall show that

For any modular base B in X the family B~ is an LT-base in X.

Proof. Let V, and V, be any two sets in B”. Then there exist U,, U,
e B and a,, a; # 0 such that V; = o, U, and V, = a, U,. By virtue of
(M1) for B there is a set [%¢ B such that I'(U;) €« U,nU,. Then for a
= inf{|a,|, |a,]} we have

Vi = o, Uy 2 o, I'(Uy) = |a,| I'(Us) 2 al'(Uy) = 20I'(3aU3) > A(4al,)

and similarly V, > 4(}aU;). Hence VNV, A(3aU,). The set 1al,
belongs to B . It follows that B~ satisfies (LT1*). Obviously, B~ also
satisfies (LT2*). Therefore B~ is an LT-base in X.

3.2. Let B, and B, be two modular bases in X. The relation B 3 B,
holds if and only if for every set U,e B, there are a set Ujye B, and a number
a % 0 such that aU, < U;.

Proof. Let B, 3 B, and let U, be a set in B;. U, is in B, since B,
< B, . In view of 2.6 from B, -3 B, we deduce that there is a set Ve B,
such that V, « U,. Hence for every set U, ¢ B, there are a set U,e B,
and a number a = 0 such that aU, <« U,. On the other hand let for every
U,e B, there exist Uy,e B, and a # 0 such that aU, = U,, and let V,
belong to B,. Then V, is of the form V, = q, U,, where U,e¢ B, and «,
# 0. According to the hypotheses for a set U, we can find U, B, and
a # 0 satisfying aUU, = U,. This means that V, > a a; U,. The set aa, U,
is clearly in B, . Hence B, 3 B,.

3.3. Let B, and B, be two modular bases in X. If B, 3 B,, then also B]
3 B, . Hence if By ~ B,, then also B, ~ B, . .

This is immediate from 3.2.

3.4. For any modular base B in X the following hold:

1° B 3B, ‘

2° if B, is an LT-base in X such that B 3 B, then B~ 3 B,.

Proof. B 3B is & simple consequence of B < B’ . It remains to
prove 2°. Let then B; be an LT-base in X such that B -3 B;. Let V be
a set in B . This V can be written as V = aU, where Ue¢ B and a = 0.
B 3 B, implies that there arc a, # 0 and Uje B, such that o, U, 3 U.
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As an LT-base B, satisfies condition (A® and so there is a set U,e B,
with e 'e' U, = U;. Hence we get U, < aq, Uy = V. Thus the proof
that B~ -3 B, is accomplished.

3.5. For any modular base B in X the relation B ~ B holds if and
only if B is an LT-base.

Proof. If B ~ B, then by 3.1 and 2.5 we get that B is an LT-base.
Conversely, let B an LT-base. Then from 3.4.2¢ and the obvious relation
B 3 B it follows that B° 3 B. Then 3.4.1° implies that B 3 B~ and
s0o B ~B .

3.6. From 3.1 and 3:3 follows that for a modular space [X, B” ] the
pair [X, B "] uniquely determines the linear-topological space. The
result of 3.4 says that [X, B "] is the linear-topological space best for
a given modular space [X, B"] with respect on the right-hand side of
the relation <. In the sequel- the space [X, B~ ] will be called the upper
linear-topological space generated by the modular space [X, B™ ]

4.1. Let B be a modular base in X. By B" we denote the family of
all sets W < X which can be represented as

W= U (U, 4+ Uyt .. +U,) = lim(U;+ Uyt ...+ T,),

1 n—>00

iCs

where {U,} is an (infinite) sequence of sets in B.
We shall demonstrate that

For any modular base B in X the family B™ is an LT-base in X.

Proof. Let W, and W, be arbitrary sets in B". Then there exist
sequences {U,} and {U,} of sets in B such that

W, = J(Ui+ ... 40, and W, + U (U] + ... +UL).
Ne=] n=1

By virtue of (ML) for B we see that for m = 1,2,... there exist
sets U,,e B such that

bal.U,,  T(Un) & U1 N Usi i VU 0 Ui s
The set

W =U(Ui+... +T,)

1

iCs

clearly belongs to B" . We shall show that A(W) < W,nW,. Let 2 be
an arbitrary member in A(W). Then, according to the definition, 2 = ax +
+ By, where #,ye W and a, § are numbers such that sup{lal, |8} < 1.
We observe that there is a positive integer n such that z, ye (U + ... +
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- U,). Hence

z2=ar+pyeal,+ ... +alU,+BU,+ ... +8U,
< bal. U, +bal. U;+bal. U, +bal. Uy + ... +bal.U,+bal.U,
S (TnU))+H(TUnTy) + oo +(Uge1 0D Ugp ) + (U3 U3y

Thus we get

te Ui+ Up+ ... + Uy 1+ Uy = W,
and  2e U+ Uy + ... +Up 4+ Uy W,

It means that ze W,nW,. Therefore B~ satisfies (LT1%).

Now, let W be an arbitrary set in B . Then there exists a sequence
{U,} of sets in B such that W is the above given form. We see that U, =« W.
Now, by virtue of (M2) for B it follows that the set W is absorbent in X.
Thus, B~ satisfies also (LT2%), and so it is an LT-base in X.

4.2. For any modular base B in X the following hold:

1° B 3B,

2° if B, is an LT-base in X such that B, 3 B, then B, 3 B".

Proof. A quick look at that part of the proof of 4.1 in which we have
proven that for B" holds (1'T2*) reveals that for every set We B~ there
is a set U,e B with U, c W. Hence B" -3 B.

Now let B, be an LT-base in X such that B, -3 B and let V be any
set in B,. By (L/T1) (also (LT1*)) for B, we get the existence of a set V,¢ B,
with V o V,-+V,;. Again, by the same condition shows that there is
Vy,e By such that V, > V,4+V,. Continuing this procedure we obtain
a sequence {V,} of sets in B, such that V,, > V., +V,  for » =1,2,...
and V = V,4V,. Since B; 3 B it follows that there exists a number
a # 0 with the property that for every sequence {V,} of sets of B, there
is a sequence {U,} of sets of B such that aU, = V, for n =1, 2, ... Hence,
for every n we have

-I’YD V1+VID V1+172+V2:> - V1+V2+ "'+V71+V71
>V, +Ve+.ooo +Vu2oa(Uy+ U +... +U,)

and

Voal(U+Us+... +0,).
n=1

The set on the right-hand side of the above inclusion clearly belongs
to B~ and « is independent the of choice of V in B,. Therefore the follow-
ing holds B, 3B’.



Generalized modular spaces I 231

4.3. Let B, and By be two modular bases in X. If B, 3 B,, then also
B 3 B, . Hence if B, ~ B,, then also B, ~ B, .

Proof. Let B; 3 B,. By 4.2.1° we have B, 3 B,. This together with
our assumption yields B, 3 B,. This, in view of 4.2.20 implies that By
3B, .

4.4. For any modular base B in X the relation B ~ B holds if and
only if B is an LT-base.

Proof. If B ~ B, then by 4.1 and 2.5 we get that B is an LT-base.
Conversely, let B be an LT-base. Then by 4.2.2° and obvious relation
B 3 Bweget B 3 B". Inview of 4.2.1¢ it follows B~ 3 Band so B ~B".

4.5. Let B, and B, be two modular bases in X. The relation B, 3 B,
holds if and only if for every a == 0 and every Uye B, there ewvists U,e B,
such that alU, c U,.

Proof. Let B, -3 B, . Then by 3.4.1° we get B, -3 B, . This means
that there is a number o, # 0 such that for every U,e B, there exists
Wae B, with a, W, =« U,. Since B, is an LT-base it satisfies (A?), and so,
for every a = 0 there is W;e B, with aa;'W, ¢ W,. Referring again to
the proof of 4.1 we see that then there exists U, in B, such that U, < W,.

It is an easy matter to verify that then oaU, = o, W, = U,.
) Conversely, let B; and B, be modular bases in X satisfying the con-
dition of the theorem. Let V,; be an arbitrary set in B,. Then V, = gU,,
where U,e B, and § # 0. From our hypothesis it follows that there exists
U,e B, with U, <« U, = V,. This implies that B, -3 B, and hence by
3.1 and 4.2.2° we get B, 3 B, . s

4.6. It is a consequence of 4.1 and 4.3 that for a modular space [ X, B" ]
the pair [X, B" "] determines the unique linear-topological space. The
result of 4.2 says that [X, B "] is the linear-topological space best for
a given modular space [X, B” ] with respect on the left-hand side of the
relation <. In the sequel the space [X, B" "] will be called the lower
linear-topological space generated by the modular space [X, B ].

4.7. For any modular base B in X the four following conditions are
equivalent:

1° B is an LT-base, 2° B ~B ,

3 B~B", 4° B ~B".

Therefore for a modular space [X, B™ ] the following conditions are
equivalent:

1° [X, B"] is a linear-topological space,

2° [Xan] = [Xan~]1

3° [X,B"]=[X,B "],

£ [X,B"]1=[X,B""].



232 R. Leéniewicz

This is an immediate consequence of 3.5, 4.4, 3.4.1° and 4.2.1°.

5.1. Let B be a modular base, 8 = {&,} an Moore-Smith sequence
(MS-sequence) over a directed set [X, -3 ] and @, a point in X. MS-sequence
8 is said to converge to x, with respect to the base B, written 8 imo or ml,—B; %o,
if there is 2 number a == 0 such that for every Ue B there exist oje X
such that for every oe¢ 2 with oy 3 o the following holds a(s, —a,)e U.

Notice that an MS-sequence S = {x,} converges to #x, with respect
to B if and only if the MS-sequence {x, —,} converges to 0 with respect.
to B. .

5.2. Let B be a modular base, S; = {w.}, S, = {#.} two MS-sequen-
ces over the same divected set [X, -3 | and xy, @, two points in X. If 8, con-
verges to x, and 8, converges to x, both with respect to B, then for any numbers
a, B the MS-sequence aS,—+pS, = {ax,+ px,} converges to ax, -+ px, with
respect to B.

Proof. Let Sliml and Sz—]—’;wz. It means that there are two numbers
a;, a; = 0 such that for every U'¢ B we can find o,, op¢ X such that
a (@, —x;) e U for 0,3 oe X and a,(@, —@,)e U for ¢, 3 0e Z. Let a, f
be any numbers. Take ¢; = 0 such that |ag;] < 3a;| and |fos] < 3 a,.
In view of (M1) for B it follows that for every Ue B there is U'e« B with
I'(U') « U. Take then o,¢ X such that o, -3 o, and 6,3 o,. It is easy
to verify that for o; 3 ge X

a3(aw;+ﬂm;' —(ax; +ﬂa/‘2))e )< U.

Hence af; + ﬁSzg ax, + fx,.

5.3. Let B, and B, be two modular bases in X Relation B, % B, holds
if and only if for every MS-sequence S in X: 8 —»0 implies 8 —>0 Whence
B, ~ B, ogeurs if and only if for every MS-sequence 8 in X: S—>O if and
only if S —>0

Proof is omitted.

S54. Let B be a modular base in X. For any MS-sequence S = {x,}

the condition 820 is equivalent to: for every mumber a = 0 and every Ue B
there is a oye X such that ax,e U for oy 3 oe 2.

Proof. Assume that §2>0. Then there is a; # 0 such that for every
set Ve B there exists a oy¢ 2 satisfying a,z,¢ V for 6, 3 o< Z. For every
a # 0 and every Ue B we have aq;a™' Ue B . Hence holds the condition
of the theorem: for every number a % 0 and every set Ue B there is
a ¢ X such that ax,e U for o, -3 e 2. Conversely, let § satisfies this
condition. Every set V in B’ is of the form V = 8T, where Ue B and g+ 0.
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Then for every VeB ™ there is a o, eX with x,¢V for o, 3 o 2. This
means that §250.

5.5. For any modular base B in X the following conditions are
equivalent:

1° B is an LT-base,

2° for every MS-sequence S in X: 820 if and only if 820 ,

3° for every MS-sequence 8 in X: S Ey if and only if SB—;O,

4° for every MS-sequence S in X: 8250 if and only if SB——;O,

5° for every MS-sequence {x,} in X the condition: for every U< B there
48 o,¢ X such that x,e U for o, 3 ge X, implies: for every a # 0 and every
Ue B there is a oy¢ X such that ax,e U for 0,3 oe 2.

6° for every MS-sequence {x,} in X the condition: for every Ue B there
48 o,¢ X such that x,e¢ U for o,3 oe 2, implies: for every Ue B there is
a oy X such that 2z,¢ U for o, 3 oe X,

7° there exists a number |a| > 1 such that for every MS-sequence {®,}
in X the condition: for every Ue B there is a o,¢ 2 such that x,¢ U for ¢,
3 ge X, implies: for every Ue B there is a g,¢ X such that ax,e U for o,
Soge 2,

8° for every MS-sequence {x,} in X satisfying the condition: for every
Ue B there is a o,¢ X such that x,e U for o, 3 0e X, there exists a number
lal > 1 such that for every Ue< B there is a oy,¢ 2 such that ax,e U for o,
S o€ 2.

Proof is omitted.

5.6. A modular base B in X is an LT-base if and only if for every MS-
sequence S = {x,} in X any two out of the three following condition are equi-
valent:

1° for every number o # 0 and every Ue B there exists a o4 X such
that ax,e U for o4 3 0¢ 2,

2° for every Ue B there is a oqe X such that x,e¢ U for oy 3 0¢ 2,

3° there is @ mumber a # 0 such that for every Ue B there exists a cge X
such that ax,e U for o, 3 o€ X, i.e. sZo.

This follows from 5.5.

5.7. Let B be a modular base and § = {z,} an MS-sequence in X. §
i3 said to satisfy the Cauchy condition with respect to B if there exists
2 number a 7 0 such that for every Ue B there is a ¢,¢ 2 satisfying
(@, —,,) e U for oy -3 0y, ope Z.

Let B be a modular base and S = {#,, 0e X, 3} and MS-sequence
In X. We equip the cartesian product ¥ xZX with the relation -3, as
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follows: (o}, 0;) 31(0}, 0, ) whenever o; 3 ¢; and o; -3 6,. The pair
[ZxX, 3,]1s clearly a directed set. Denote % o, = &y — &g, TOT 0y, ay
e 2. Notice that S satisfies the Cauchy condition with respect to B if
and only if the MS-sequence §; = {m(,v,,z), (01, 05) e 2 XX, -3,} converges.
to 0 with respect to B. This, on account of 5.3 implies that

If B, and B, are two modular bases in X such that B, 3 B,, then every
MS-sequence S in X satisfying the Cauchy condition with respect to B,
also satisfies this condition with respect to B,. Hence, if B, and B, are such
modular bases in X that B; ~ B,, then any MS-sequence 8 in X satisfies
the Cauchy condition with respect to B, if and only if does with respect.
to B,.

5.8. Let B be a modular base in X. Hach MS-sequence 8 in X covergent
with yespect to B satisfies the Cauchy condition with respect to B.

Proof. Assume that S = {x,} converges with respect to B to some.
2q4e X. Then, according to the definition of convergence, there is & number
a # 0 such that for every set U’ ¢ B there exists a g,¢ 2 such that a(z, —z,}
e U for o, 3 0e X. Let U be any set in B. By (ML) for B there is a set.
U'e¢B with I'(U') « U. Then

Ya(@, —,) = ta(@, —) —3a(@, —z)e I(U) = U
for oy 3 04, 0,¢ 2. Hence satisfies the Cauchy econdition with respect
to B.

5.9. Let [X, B"] be a modular space, § an MS-sequence and z,¢ X.
8 is said to converge to x, in the space [X, B™1if 83 x,.
It is clear in view of 5.3 that in the above definition the phrase “8 Em,

can be replaced by “S —iwo”, where B, is any base in the class B~ . Con-
sidering conditions 2° and 3° in 5.6 we get that when [ X, B" ] is a linear-
topologieal space this definition of convergence of § to x, coincides with
that commonly used in the theory of linear-topological spaces.

Let [X, B” ] be a modular space and 8 an MS-sequence in X. Similarly
as above S is said to satisfy the Cauchy condition in [X, B" ] whenever
it does with respect to B. The remark of 5.7 says now that in this defini-
tion B can be replaced by any base B, in the class B~ . The result of 5.8
means that every MS-sequence § in X convergent in [X, B ] satisfies
the Cauchy condition in this space.

A modular base B in X is said to be complete if every MS-sequence 8§ in X'
satisfying the Cauchy condition with respect to B is convergent with
respect to it. Whenever a modular base possesses only the property that
every (countable) sequence {,} in X satisfying the Cauchy condition with
respect to B is convergent with respect to it, is called sequentially
complete.
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The space [X, B" ] is called complete if the base B is complete and
sequentially complete if B is sequentially complete. Obviously B can be
replaced by any base B, in B™.

6.1. Let B be a modular base in X. Consider the following three
eonditions imposed on B:

(T, ) for every e X, 2 # 0, there is an a # 0 and Ue B such that w¢ aU,
(T,) for every me X, # 5 0, there is a set Ue B with x¢ U,

(Ty ) for every me X, © # 0, there is a sequence {U,} of seis in B such
that

séJ (U + ... +0,).

1

Notice that if B satisfies (T, ), then it also satisfies (T;) and this in
turn implies that (T, ) holds for B. Moreover, (T, ) holds for B if and only
if (T,) holds for B~ and (T, ) holds for B if and only if (T,) holds for B".

6.2. A modular base B in X satisfies (T,) if and only if the following
condition holds: for each e X, & == 0, and for every a 7 0 there is a set
Ue¢ B with ax¢ U.

Proof. If B satisfies this above condition, then, obviously, B satisfies
(T;). Now let # be any member in X different than 0 and ¢ any number
different than 0. Then aze X and ax # 0. By (T,) for B it follows that
there is a set Ue B such that awe¢ U. Therefore the required condition
holds for B.

iCe

6.3. Let By and B, be two modular bases in X. If B, 3 B, and (T;)
(resp. (T,), (T,)) holds for B,, then (T) (resp. (T, ), (T;)) holds for B,.
Hence if B, ~ B,, then B, satisfies (T,) (resp. (T, ), (T,)) if and only if B,
does.

Proof. In view of the remark in 6.1 as well as of 3.3 and 4.3 it is clear
that it suffices to prove only for (T,).

Let B, and B, be modular bases in X such that B, 3 B, and let (T,}
holds for B,. Recall that B, -3 B, means that there is a s 0 such that
for every set U,e B, one can find a set U,e B, with oU, = U,. By virtue
of 6.2, it follows from the fact that B, satisfies (T,) that for each we X,
@ 30, there is U,e B, with az¢ U;. Thus for each xe¢ X, x s 0, there
exists a set Uye B, such that #¢ U,. This clearly means that B, satisfies (T,).

6.4. For an LT-base B in X condition (T, ), (T,) and (T, ) are equivalent.
This is immediate from 6.3 and 4.7 and the remark of 6.1.
6.5. Let B be a modular base in X. Every M S-sequence (countable sequence)

S in X convergent with respect to B has exactly one limit if and only if B sat-
isfies (T,).
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Proof. Let B be a modular base in X satisfying (T,) and 8§ = {z,} be
any MS-sequence (sequence) in X convergent with respect to B. Assume
that Sgwl and Sng, where x,, #,¢ X. Then there exists a; #% 0 such
that for every U’ e B there is a o,¢ X with the property that a,(x, —;)e U’
for o, -3 0e X, and there exists a, # 0 such that for every U'e B there
i8 a 0ye 2 with the property that a,(w, —,)e U’ for o, 3 0e . Now let
U be any set in B. By (M1) for B it follows that there is a set U'e B with
I(U') < U. Take a = }inf{|ay|, |as|} and e 2 such that o; 3 o, and
g, 3 0. We verify that

a(®y— @) = (a07") ay (@, — 1) —(aa5") ay(2y —2,) e I'(U') = U.

Hence as B satisfies (T,) we get a(x,—2,) = 0 and so x, = ;.

Conversely, let for a modular base B in X condition (T,) fails to hold.
Then there is e X, # # 0, such that xe U for every Ue B. Consider the
sequence S = {x,}, where #, =« for » = 1,2,... Observe that z,¢ U
and #,—ax = 0e U for every Ue B and n = 1,2, ... Whence 820 and

ng, where ¢ == 0.

6.6. A modular space [X, B™ ] is said to satisfy condition (T,) (resp.
(T,), (T;)) whenever B satisties (T,) (resp. ('L, ), (T} )).

Obviously in this definition B can be replaced by any B, in B™. Instead
of “the modular space [X, B™ ] satisfies (T,)-condition” we simply say
“[X, B"]1is T,-space”, and similarly for (T, ) and (T, ).

7.1. Let B be a modular base and Z a set in X. Z is said to be bounded
with respect to B if for every Ue B there is a % 0 such that oZ < U.

This definition i§ identical to that of the theory of linear-topological
spaces.

7.2. For any modular base B and any set Z in X the following condi-
tions are equivalent:

1° Z is bounded with respect to B,

2° for every sequence {x,} in Z and for every sequence of numbers {a,}
converging to 0, the sequence {a,x,} converges to 0 with respect to B,

3° every sequence {n~'w,}, where w,eZ for m =1,2,..., converges
to 0 with respect to B.

Proof. Suppose that 2° does not hold. Then there are sequences {z,}
in Z and {e,} of numbers converging to 0 such that {«,,} does not con-
verge to 0 with respect to B. Furthermore there exist a subsequence {ankmnk}
of {a,#,} and Ue B such that o, v, ¢ U for k =1,2,... By (M1) for B
we find a set U'e B with bal.U < U. For any number a # 0 let % be
such that lay, | < lal and note that then ax,, ¢ U'. Thus eZ & U for every
a # 0. This proves that 1° does not hold. Therefore 1° implies 2°.
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That 2° implies 3° is clear.

Now suppose that 1° fails to hold. Then we have Ue B such that for
any positive integer » the difference Z\n2 U is non-void. Take the sequence
{n"'w»,}, where @,¢ Z\n?U for n =1,2,... and let a be any number
different than 0. By (M1) for B there is U ¢ B with bal.U’ = U. Note
that for # > ||~ we have an~x,¢ U'. This implies that {n~'z,} does not
converge to 0 with respect to B. Therefore 3° does not hold. Thus 3°
implies 1°.

7.3. Let B, and B, be two modular bases in X. If B, 3 B,, then every
set Z = X bounded with respect to B, is also bounded with respect to B;.
Hence, if B, ~ B,, then Z < X is bounded with respect to B, if and only
if it is bounded with respect to B,.

Proof. Recall that B; 3 B, means that there is a number a; 5 0
such that for every U,e B, there exists U,e B, with o, U, = U;. Let
Z = X be bounded with respect to B,. Then for every U,e B, there is
a, # 0 such that a,Z < U,. Thus we get a,0,Z < U, for U,e¢ B,. This
means that Z is bounded with respect to B;.

7.4. Let B be a modular base and Z a set in X. Z is bounded with respect
to B if and only if it is bounded with respect to B .

Proof. If Z is bounded with respect to B”, then, by 3.4.1° and 7.3,
it is bounded with respect to B. Conversely, let Z be bounded with
respect to B. Then for every Ue B there is a; # 0such that a,Z < U. Let
V be any set in B”. It can be represented as V = a, U, where Ue B and
a; % 0. Hence a;a,Z < V. It follows that Z is bounded with respect
to B

7.5. Bvery sequence {x,} in X satisfying the Cauchy condition with
respect to a modular base B is bounded with respect to B

Proof. Let {#,} be a sequence in X satisfying the Cauchy condition
with respect to B. Then there is a, # 0 such that for every U'e B there
is a positive integer m, such that Ao (@ — @) € U for n > n,. According
to (M2) for B every U e B is absorbent in X and so there exist numbers
a, #0, n =1,2,...,n,, such that a,z,c U for n =1,2 ...,n, Let
U be any set in B. By (M1) for B we find a set U < B such that bal.U’ <
I(U') = U. Take a = $inf{|agl, lay], ..., la,l}. We obtain

atpe aog ' U cbal.U « U for m =1,2,...,%,
and

-1
Ny

0z, = (aa5?) oy (@, — @, ) +(a0n) ay By, T(T) = U

’Ilo
for n = my+1, ny+2, ... Hence {x,} is bounded with respect to B.

6 — Roczniki PTM — Prace Matematyczne XVIII
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7.6. Let [X, B ] be a modular space and Z a set in X. Z is said to
be bounded in [X, B~ ] if it is bounded with respect to B. It follows from
7.3 that B in this definition can be replaced by any base B, in the class
B". The result of 7.4 says that Z is bounded in a modular space [X, B™]
if and only if it is bounded in the upper linear-topological space [X, B "]
generated by [X, B ].

8.1. A modular base B in X is said to be almost locally bounded, when-
ever there exists a set Uye B bounded with respect to B. A modular base
B such that every Ue B is bounded with respect to B is called locally
bounded.

8.2. Let B, and B, be two modular bases in X. If B, ~ B, and B, is
almost locally bounded, then so is B,.

Proof. Let U%¢ B, be bounded with respect to B,. Since B, 3 B,
then there are a s 0 and UJe B, such that aUy = U?. Thus Uj is bounded
with respect to B,. Since also B, -3 B;, by 7.3, we get that U} is bounded
with respect to B,.

8.3. A modular base B in X is almost locally bounded if and only if
the base B is almost locally bounded and B is locally bounded if and only
if B is locally bounded.

Proof. Let B be almost locally bounded modular base in X. Then
there is a U, B bounded with respect to B. By definition of B', U,e B,
and by 7.4 it is bounded with respect to B . Hence B is almost locally
bounded. Conversely, let B~ be almost locally bounded. Then there is V,
in B” bounded with respect to B . V, is of the form V, = aU,, where
Uye B and a # 0. We conclude therefore that U, is bounded with respect
to B and, by 7.4 it is also bounded with respect to B. This means that B
is almost locally bounded.

Now let B be locally bounded. Note that every V <« X of the form
V = alU, where Ue B and a % 0, is bounded with respeet to B. By 7.4
we get that every Ve B is bounded with respect to B . Hence B is also
locally bounded. Conversely, if B is locally bounded, then since B = B
it follows immediately that B is locally bounded.

8.4. For every almost locally bounded modular base B in X there is an
equivalent locally bounded modular base B, in X. It can be assumed that
B, < B.

Proof. Let B be modular base almost locally bounded in X. Then
there is a set Uye B bounded with respect to B. Let B, denote the family
of all these Ue B such that U < U,. Clearly B, is the required modular
base in X.



Generalized modular spaces I 239

8.5. If a modular base B in X is locally bounded, then any Z < X is
bounded with respect to B if and only if there exist Ue B and a # 0 such
that aZ < U.

The simple proof is omitted.

8.6. A modular space [ X, B™ ]is said to be locally bounded if B is almost
locally bounded. It follows from 8.2 that in this definition B can be replaced
by any base B, in the class B™. The result 8.4 says that [X, B™ ] is locally
bounded if and only if in the class B~ exists a locally bounded base.

The result of 8.3 states that the modular space [ X, B™ ] is locally bound-
ed if and only if the upper linear-topological space [X, B "] is locally
bounded.

9.1. A modular base B in X is said to be locally conver if every set
Ue B is absolutely convex, i.e. I'(U) = U.

Notice that a non-void family B of sets in X is a locally conves modular
base if and only if it satisfies the three following conditions:

1% every Ue B is absolutely convex,

2° for every Uy, Uye B there is Uze B such that Uz < U;NU,,

3° every Ue B is absorbent in X.

9.2. If B is a non-void family of absolutely convex and absorbent
sets in X, then the family B* of all sets U = X representable in the form

U = Uanzn coo ﬁUn,

where Uy, U,y ..., U,e B, is a locally conver modular base in X.
This is a consequence of the remark in 9.1.

9.3. If a modular base B in X is locally convew, then B~ and B” are
also locally convex.

Proof. Let B be a locally convex modular base in X. Then for every
set Ue B we have I'(U) « U. Hence for every Ue B and a # 0 we get
that

I'(aU) = ol'(U) € aU.

Thus every set Ve B is absolutely convex. This means that B~ is
locally convex. Let now {U,} be any sequence of sets in B. We observe
that

T( 3 (U, ... —{—Un))c

n=1 n

Cs

(F'(UY+ ... +I'(U,))

I

7’

Cs

(@

(Uy+ ... +T,).

~

1

Thus every set We B~ is absolutely convex. This means that B” is
locally convex.

S
i
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9.4. A modular space [X, B ]is said to be locally convex if in the class
B~ there is a locally convex base.

The result of 9.3 says that if the modular space [X, B™ ] is locally con-
vex, then the linear-topological spaces [X, B "] and [X, A" "] are also
locally convex.

10.1. Let B be a modular base in X. By abs.conv.B we denote the
family of all sets V = X of the form V = abs.conv.U, where Ue B.

For any set U « X by abs.conv.U we denote, as is widely accepted,
the smollest absolutely convex set containing U, i.e. the set of all these
x¢ X which can be represented in the form

r = o2+ ... +a,%,,

where #,...,#2,¢U and a,,..., a, are numbers such that
legl = oo Fla,l <1 (or = 1).

We shall show that

For any modular base B in X the fumily abs.conv.B is a locally convex
modular base in X.

Proof. Obviously, the family abs.conv.B satisfies 1° and 3° of the
remark in 9.1. Let now V, and V, be any sets in abs.conv.B. Then there
exist sets U,, Uye B such that V; = abs.conv.U, and V, = abs.conv.U,.
By (M1) for B we get that there exists a set Uje B such that Uz < ['(Us)
c U,nU,. Note that V, = abs.conv.U, belongs to abs.conv.B and has
the property that

V3 < abs.conv.(U,;nU,) < abs.conv.U;n abs.conv.U, = V,NV,.

This proves that abs.conv.B satisfies 2° of the remark in 9.1. Hence
this family is a locally convex modular base in X.

10.2. Let B, and B, be two modular bases in X. If B, 3 B,, then also
abs.conv.B, 3 abs.conv.B,. Hence, if B, ~ B,, then also abs.conv.B,
~ abs.conv.B,.

Proof. B, -3 B, means that there is a 7% 0 such that for every U,e B,
there exists U,e B, with aU, = U,. Hence we get that then also

aabs.conv.U, = abs.conv.(aU,) < abs. conv U,.

Thus abs.conv.B; -3 abs.conv.B,.

10.3. For any modular base B in X the following hold:

1° abs.conv.B 3 B, .

2° if By is a locally convex modular base in X such that B, -3 B, then
B; 3 abs.conv.B.
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Proof. For every U < X we have U < abs.conv.U. Hence abs.conv. B
-3 B.Now, let B, be a locally convex modular base in X such that B, 3B.
Then B, -3 B indicates that there is a s 0 such that for every U,e¢ B,
there exists Ue B with aU <= U,. This implies that

aabs.conv.U = abs.conv.(aU) < abs.conv.U, = U,.
Hence B, -3 abs.conv.B.

10.4. If B is an LT-base inX, then abs.conv.B is also an LT-base in X.

Proof. Let B be an LT-base in X. Then B satisfies (A,), i.e. for every
Ue B there is U'e¢ B such that 2U < U. Hence then we have also
2abs.conv.U' < abs.conv.U. This proves that abs.conv.B satisfies (A,)
and so it is an LT-base in X.

10.5. For any modular base B in X the following relations hold:

-
.

abs.conv.B~ = (abs.conv.B)" and abs.conv.B" ~ (abs.conv.B)
Proof. For any Ue B and o % 0 we have

abs.conv. (aU) = aabs.conv.U.
Thus abs.conv B~ = (abs.conv.B) .
For any sequence {U,} in B we see that

[so]

(abs.conv.U; + ... -+abs.conv.U,) > abs.conv. (U (U + ... +T,)).
n=1 n=1

Hence (abs.conv.B)” -3 abs.conv.B". On the other hand from 4.2.1°
and 10.2 we get abs.conv.B~ -3 abs.conv.B. By 10.4 and 4.2.2° it follows
that abs.conv.B” -3 (abs.conv.B)". Thus abs.conv.B~ ~ (abs.conv.B) .

10.6. If a modular base B in X is almost locally bounded (resp. locally
bounded), then so is abs.conv.B.

Proof. Recall that B is almost locally bounded means that there
is & set U,e B such that for every Ue B there is a # 0 with aU, < U.
Hence then we have also aabs.conv.U, < abs.conv.U. This means that
abs.conv.B is almost locally bounded.

Similarly, if B is locally bounded, then for any U,, U,¢ B there is
a # 0 such that aU, « U,. Thus also aabs.conv.U, < abs.conv.U,. This
Proves that abs.conv.B is locally bounded.

10.7. 1t follows from 10.1 and 10.2 that for a modular space [X, B™ ]
the pair [X, (abs.conv.B)” ] determines the unique locally convex mod-
ular space. The space [X, (abs.conv.B)” ] will be called the locally convex
modular space generated by [X, B~ ). The result of 10.5 states that for any



242

R. Leéniewicz

modular space [X, B" ] the following equalities hold:

[X, (abs.conv.B")"] = [X, (abs.conv.B) "1,
[X, (abs.conv.B") ] = [X, (abs.conv.B)" " ].

10.6 implies that the locally bounded modular space [X, B | generates

the locally convex modular space [X, (abs.conv.B)" ] also locally bounded.
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