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O n generalized modular spaces I

Abstract. The present paper proceeds in 10 sections. Section 1 introduces a concept 
of a modular space; central cores of it are modular hases and a comparision relation 
of these bases. Section 2 shows that the theory of linear-topological spaces is a special 
case of the theory of modular spaces. In Section 3 an upper linear-topological space 
and in Section 4 a lower linear-topological space is defined for a given modular space. 
Section 5 deals with the convergence of Moore-Smith sequences in modular spaces. 
Section 6 introduces separations axioms for modular spaces. Section 7 concerns hounded 
sets in modular spaces. In Section 8 locally bounded modular spaces and in Section 
9 locally convex modular spaces are investigated. Finally, in Section 10 the concept 
of a locally convex modular space generated by a given modular space is investigated.

Introduction. The central core of the contemporary functional analysis 
is a concept called a linear-topological space ([2], [3], [16], [17]). This 
concept cannot, however, deal with such spaces investigated in the func­
tional analysis as modular spaces ([11], [12], [13], [14]) and in particular 
as Orlicz spaces ([15], [4], [9], [10], [6], [7], [8], [1], [5]). The purpose 
of this paper is a construction of such a model which could contain both 
theories of modular and linear-topological spaces.

I. GENERALIZED MODULAR SPACES

1.1. Let X  be a real or complex linear space. A non-void family В 
of subsets of X  will be called a modular base in X  if the two following 
conditions are satisfied:

(Ml) for every two sets Ux, U^eB there exists a set U3e В such that 
Г ( и з) cz U1n U 2,

(М2) every set Z7e В is absorbent in X.
In the above conditions for a given set U с  X  by Г( U) we denoted 

a set of all vectors z e X  representable in the form z =  ax -f- fry, where 
у c U and a, j3 are numbers such that Jot] +  |/3| <  1. A set U <=. X  is absor­

bent in X  if for every vector xe X  there is a number а Ф 0 such that axe U.
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1.2. Let Bx and B2 be two modular bases in X. We shall say that 
a base B2 is non-weaJcer than a base Bx, written Bx-3 B 2, if there exists 
a number а Ф 0 snch that for every set Ux e Bx there is a set U2 e B2 
satisfying aU2 <= Ux.

Here, for a given nnmber a and a given set U с  X  by aU we denote 
as nsnal, a set of all these vectors y e X  representable in the form у =  ax, 
where xe U.

It is easy to see that the relation 43 is reflexive and transitive in the class 
of all modular bases in X. Therefore the equivalence of modular bases 
means the following:

We say that modular bases Bx and B 2 in X  are equivalent, written 
henceforth as Bx ~  B2, if simultaneously Bx 43 B2 and B2 -3 Bx.

In the sequel B~ will denote a class of all modular bases equivalent 
to a modular base B. In accordance with this we shall write Bx =  B2 
if Bx~ B 2 and Bx <  B2~ whenever Bx -3 B2.

1.3. Let V be a subset of X. By bal. U we denote the set of all vectors 
y e X  which could be written in the form у =  ax, where x e U and a is such 
a number that |a| <  1. Whenever it occurs that ü  =  bal. U we shall 
call U, in accordance with already widely used terminology, a balanced 
set. Again, let В be a family of subsets of X. By bal.B we denote the family 
of all sets U' cz X  such that V  =  bal. U, where U e B.

We shall show that
For every modular base В in X  the family bal.B is also a modular base 

in X  and bal.B ~  B.
Proof. Let В be a modular base in X. Clearly, the family bal.B sat­

isfies condition (М2). Let U[ and U2 be any two sets in bal.B. Then there 
exists sets Ux, TJ2e В such that XJ[ — bal. Ux and JJ2 =  bal.U2. By virtue 
of (Ml) for В it follows that there is a set Z73eВ such that Г ( и г) <= Uxn  
n U2. Observe that

U[nU2 ^ Uxn U2 => Г( Z73) =  B(bal.P3).

The set bal. B3 is an element of bal.B. This means that the family 
bal.B satisfies (Ml), hence it is a modular base in X.  It remains to prove 
that bal.B ~  B. From the inclusion U cz bal. V it clearly follows that 
bal.B -4 B. Let now U be an arbitrary set in B. By (Ml) for В we get 
that there exists a set Uxe В such that U з  Г ( Ux) => bal.Ux. Hence 
the required relation В -4 bal.B follows.

1.4. A generalized modular space is said to be the pair [X , B~], where 
X  denotes a linear space and В a modular base in X.

Occurring in this definition sign ~  over В is essential; B~ denotes 
the whole class of modular bases in X  equivalent to B. Instead of gen-
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eralized modular space [X , B~ ] we shall also say modular space [Х ,Б ~] 
or modular space X  with respect to the class of modular bases B ~.

Let [X , Bx ~\ and [X , B2 ] be two modular spaces over the same linear 
space X. We shall write [X , Bx ] <  [X , B f]  whenever Bx <  B2 .

The pair [X , B], where X  is a linear space and В a modular base in 
X, we shall call the representative of a modular space or a free modular 
space. Let [X , Bx] and [X, B 2] be two free modular spaces. The space 
[X, B 2] is said to be поп-weaker than the space [X, Bx], denoted [X,  Bx] 
—3 [X, Б2], if Вг -з B 2. Whenever Bx ~  B 2 then we call the spaces [X, Bx] 
and [X , B2] equivalent and we denote [X , Bx] ~  [X, B2]. According to 
this we have [X, B~] =  [X , В ] .

2.1. A linear-topological space is the pair [X, T], where X  is a linear 
space ancT T a topology in X  such that the algebraic operations in X  are 
continuous in this topology. This topology T is called a linear topology 
in X  ([2], [3], [16], [17]).

The two following well-known theorems from the theory of linear- 
topological spaces are crucial for our considerations:

I. In every linear-topological space [X , T] the family В of all neighbour­
hoods of the origin satisfies the following conditions :

(LT1) for every set Uxe В there exists U2e B with Z72-fU 2c: UX7
(LT2) for every set Uxe В there exists U2e В with bal.TJ2 c  U1,
(LT3) for each two sets Ux, U2e В there exists U3e В such that U3 с  и хп  

n TJ2,
(LT4) every set U eB is absorbent in X.
For any two sets TJX, TJ2 <=. X  by и х+  TJ2 we denote, as usual, the set 

of all xe X  representable in the form x =  хх-\-х2, where xte TJX and x2e ü2.
II. For every non-void family В of sets in the linear space X, satisfying 

(LT1) through (LT4), there is a unique topology T in X  satisfying the fol­
lowing conditions:

1° [X , T] is a linear-topological space,
2° for every neighbourhood of the origin V in T there is a set TJeB such 

that TJ a V,
3° for every U eB  there is a neighbourhood of the origin V in T such 

that V c  U.
In this topology T the closure of any set Z с  X  is

П {Z+U).
UeB

2.2. Hereafter any non-void family В of sets in X  satisfying (LT1)- 
(LT4) shall be called a linear-topological base or shortly an LT-base in X.
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Let TJ be an arbitrary set in X. By A ( U) we denote the set of all vectors- 
ze X  representable in the form z =  ax +  where æ, ye U and a, /? are 
numbers such that sup{|a|, \ft\} <  1. Note that using this notation, instead 
of four conditions for an LT-base (LT1)-(LT4) only two suffice:

(LT1*) for any two sets Ux, U2e В there is U3e В such that A ( Uz) cz TJxr\ 
r\U2,

(LT*2) =  (М2).
Moreover, note that for any set U c= X  always holds Г( U) c  A( U). 

Hence
Every LT-base В in X  is a modular base in X.

2.3. For any modular base В in X  the three following conditions are 
equivalent :

(A0) for every а Ф 0 and for every Uxe В there is a set TJ2e В such that 
aU2 c  Ux,

(A2) for every Uxe В there is U2e В such that 2U2 c  JJX,
(A*) there exists a with |a| >  1 such that for every Uxe В there is a set 

TJ2€ В such that aTJ2 cr Ux.
Proof. Clearly, (A0) implies (A2), and (A2) implies (A*). Thus let a mo­

dular base В fulfils (A*) and let /? be any number different from 0 and Ux 
any set in B. Then we find a positive integer n such that \a\n>  m- By 
(A*) there is U2e В such that aU2 a Ux. Repeating this n times we see 
that there exists a set Un+1€ В such that aUn+1 a Un. In view of condi­
tion (Ml) for В there is Un+2e В such that bal.Un+2 <=. Vn+1. Hence

TJX 3 aU2 => a2 U3 3 ... anUn+l anbal.ZJn+2 гэ /?bT,l+2.
This shoAvs that (A*) implies (A0).
2.4. A modular base В in X  is an LT-base if and only if it satisfies one 

of the three equivalent conditions of 2.3, e.g. (A2).
Proof. Let В be an LT-base in X. For every U <= X  always holds 

2U a A(U). This ail’d (LT1*) imply that В satisfies (Д2). Conversely, 
let В be a modular base in X  satisfying (A2). For every set ü a X  always 
holds A ( U) cz 2 r(U).  Hence conditions (A2) and (Ml) ensure that В sat­
isfies (LT1*). This means that В is an LT-base in X.

2.5. Let Bx and B 2 be two modular bases in X. I f  Bx ~  B2 and Bx is 
an LT-base, then B 2 is also an LT-base.

Proof. B x ~ B 2 means that there are numbers ax, a2 ^ 0  such that 
for every Uxe Bx there is U2e B 2 such that ax U2 c  Ux, and for every 
U'2e B2 there exists TJ[e Bx such that a2 TJ[ <= TJ2. Let U2 be an arbitrary 
member of the base B 2. Then there is TJ[ e B x such that a2 TJ[ a U2. Bx 
is an LT-base, hence it satisfies (A0). It means that there exists a set
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UX€ Bx with 2ax га2 1 Ux <=■ TJ[. Then we can find U2e B2 such that ax U2 
a  TJX. Assembling these inclusion we get

JJ2 =з a2TJ['=> a2( 2afla2l TJX) — 2ax l TJX :=> 2U2.

This means that B2 satisfies (Л2), hence it is an LT-base.

2.6. Let Bx and B2 be two LT-bases in X. The relation Bx -3 В2 holds 
if  and only if for every Ux e Bx there is TJ2 € B2 such that XJ2 <=. Ux.

Proof. If for every Uxe Bx there is U2e B2 such that U2 c  Ux, then 
clearly Bx -3 B2. Conversely, let us assume that Bx -3 B2. Then there 
is а Ф 0 such that for any Uxe Bx there is*?72e^2 with aTJ2 c  Ux. B2 is 
an LT-base and hence it satisfies (A0). It means that there is U2e B 2 such 
that a-1 U2 c  U2. It follows that U2 a aU2 <= Ux.

2.7. Let A  be a fixed linear space. By Qx we denote the set of all linear 
topologies T on X  and by û 2 the set of all classes B~ in X  including as 
a member an LT-base. Taking into account 2.1. I and 2.2 we define a map­
ping F : Qx̂ Q 2, as follows: to a linear topology Те Qx there corresponds 
a class F(T) =  B~, where В is a family of all neighbourhoods of the origin 
in T. In view of 2.1. II, 2.5 and 2.6 we can verify that this is a one-to-one 
mapping of Qx onto 0 2. Hence

There exists a one-to-one correspondence between the set Qx of all linear 
topologies T on X  and the set Q2 of all classes B~ containing as a member 
an LT-base. This correspondence establishes the above defined mapping F.

This together with 2.1.1 imply
I f  Tx and T2 are two linear topologies on X, and Bx , B2 their correspond­

ing by F  classes of modular bases, then Tx c  T2 holds if and only if Bx 
<  B f holds.

In the sequel this correspondence we shall simply regard as an identity, 
i.e. the topological-linear space [X , T ] will be identified with the modular 
space [X , В ~ ], where В ~ =  F (T), and conversely the modular space [X , В ~ ] 
such that B~ contains as a member an LT-base will be identified with the 
linear-topological space [X,  T] such that F(T) — B~. This identification 
is in fact nothing else but a formal equivalence of the two different methods 
of defining a linear-topological space: one in which the linear topology 
T for a linear space is explicitly given and the other in which the class B~ 
of equivalent LT-bases is given. -In this way the theory of linear-topo­
logical spaces becomes a part of the theory of modular spaces.

The theory of modular spaces is more general than the theory of 
linear-topological spaces. This can* be-showed on a simple example. The 
pair [(7, B~], where C is a complex number system and В the family con­
sisting of only one set U =  {ae C: |a| <  1}, is a modular space but not
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a linear topological space. In this case the modular base В does not sat­
isfy condition (A2) ; for the set U in В there is no set U' e В such that 
2 U' cz U.

3.1. Let В be a modular base in X.  By 5 V we denote a family of all 
subsets V <= X  representable in the form V =  aU, where TJe В and a 
is a number different from 0.

We shall show that
For any modular base В in X  the family В v is an LT-base in X.
Proof. Let Vx and V2 be any two sets in B v. Then there exist Ux, TJ2 

€ В and ax, a2 ф 0 such that Vx — axUx and V2 =  a2XJ2. By virtue of 
(Ml) for В there is a set Ще В such that r ( U 3) a UxnU2. Then for a 
— infdctjJ, |a2|} we have

Уг =  axUx zz ахГ( Uf) =  => aI\U3) =  2Г(1а£73) =, A(\aTJb)

and similarly V2 => A(£aU3). Hence Vxr\V2 zz A(\aTJ3). The set \aXI3 
belongs to B \  It follows that B" satisfies (LT1*). Obviously, 5 ’  also 
satisfies (LT2*). Therefore B ” is an LT-base in X.

3.2. Let Bx and B 2 be two modular bases in X. The relation Bx -3 B2 
holds if and only if for every set TJxe B x there are a set Z72e B2 and a number 
а Ф 0 such that aU2 a TJX.

Proof. Let Bx -3 B2 and let Ux be a set in Bx. Ux is in Bx since Bx 
c= Bx . In view of 2.6 from Bx -3 B2 we deduce that there is a set V2eB2 
such that V2 cz TJX. Hence for every set TJxe Bx there are a set U2aB2 
and a number а Ф 0 such that aU2 cz Ux. On the other hand let for every 
UX€ Bx there exist TJ2e B 2 and а Ф 0 such that aU2 cz TJX, and let Vx 
belong to B x. Then Vx is of the form Vx — axUx, where Uxe B x and ax 
Ф 0. According to the hypotheses for a set TJX we can find U2e B 2 and 
а Ф 0 satisfying aU2 cz TJX. This means that Vx => a axU2. The set aax U2 
is clearly in B2 . Hence Bx -3 B2 .

3.3. Let Bx and B 2 be two modular bases in X. If Bx -3 B2, then also Bx 
-3 B2 . Hence if Bx ~ B 2, then also Bx ~  B2 .

This is immediate from 3.2.
3.4. For any modular base В in X  the following hold:
1° В -3 B \
2° if B x is an LT-base in X  such that В -3 Bx, then B* -3 Bx.
Proof. В -3 is a simple consequence of B cz B " . It remains to 

prove 2°. Let then B x be an LT-base in X  such that В -в Bx. Let V be 
a set in B \  This V can be written as V =  aU, where Uе В and а Ф 0. 
В -3 Bx implies that there are ax Ф 0 and U[e B x such that ax U'x -3 U.
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As an LT-base Bx satisfies condition (Д0) and so there is a set TJxe B x 
with a~l ax 1TJx <=. TJ[. Hence we get TJX c  aaxTJ[ cr V. Thus the proof 
that B* —3 Bx is accomplished.

3.5. For any modular base В in X  the relation В ~  B* holds if and 
only if В is an LT-base.

Proof. If В , then by 3.1 and 2.5 we get that В is an LT-base. 
Conversely, let В an LT-base. Then from 3.4.2° and the obvious relation 
В -3 В it follows that B" -3 B. Then 3.4.1° implies that В -3 B" and 
so В ~  B \

3.6. From 3.1 and 3:3 follows that for a modular space [X , B~ ] the 
pair [X,B~~]  uniquely determines the linear-topological space. The 
result of 3.4 says that [ X , B"~] is the linear-topological space best for 
a given modular space [ X , B~ ]  with respect on the right-hand side of 
the relation <. In the sequel* the space [X,  B"~] will be called the upper 
linear-topological space generated by the modular space [X,B~] .

4.1. Let В be a modular base in X.  By B~ we denote the family of 
all sets IF с  X  which can be represented as

oo
W =  U ( £7i +  П2 +  ... +  XJn) =  lim( Ux -f U2 -f- ... +  TJn),

n =  1 n->0O

where {Un} is an (infinite) sequence of sets in B.
We shall demonstrate that
For any modular base В in X  the family B" is an LT-base in X .
Proof. Let Wx and W2 be arbitrary sets in Б ”. Then there exist 

sequences { V 'n} and { U"} of sets in В such that
OO oo

TFX =  [J (TJx-\- ... -hUJ and W2 +  U (Ux -1- ... +  Z7W).
n—1 n=l

By virtue of (Ml) for В we see that for m =  1,2,... there exist 
sets Ume В such that

bal. TJm с  Г( Um) <= U2m—1 ̂  ̂ 2m-l ̂  ̂ 2m ^2m •
The set

oo
W =  и  (Ux+ . . .  +  Un)

n — 1

clearly belongs to Б д. We shall show that A(W) <= Wxr\W2. Let z be 
an arbitrary member in A (IF). Then, according to the definition, г =  ax +  
+ /%, where x , y e W  and a, are numbers such that sup{|a|, |/?|}< 1. 
We observe that there is a positive integer n such that x, ye ( Vx +  ... +
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4- Un). Hence

z — ax +  fiy e a TJX +  ... +  a Un +  /?Z7j +  ... +  /? TJn
cr bal. t/j +bal. Ux -f- bal. U % ~Ь bal. TJ2 ~b ••• H- bal. bal. hjn
c z ( ü [n ü ï )  +(U'nU'' )  +  . . . +(  V2n_xn + (U2nn ü'2'n) .

Thus we get

ze TJx-\- U2-\- ... +  TJ2n_i -j- Z72n cz W x

and z e ü ' ' + U 2 + . . . +  V2n_x + ü2n c= TF2.

It means that 0e Wxn W 2. Therefore Б" satisfies (LT1*).
Now, let IF be an arbitrary set in B \  Then there exists a sequence 

{ Un} of sets in Б such that W  is the above given form. We see that Ux <= W. 
Now, by virtue of (М2) for Б it follows that the set W  is absorbent in X.  
Thus, B* satisfies also (LT2*), and so it is an LT-base in X.

4.2. For any modular base В in X  the following hold :
1° Б~ -3 В,
2° if B x is an LT-base in X  such that Bx -3 Б, then Bx -З-В*.
Proof. A quick look at that part of the proof of 4.1 in which we have 

proven that for Б" holds (LT2*) reveals that for every set We Б" there 
is a set TJxe В with TJX <=. W. Hence В л -3 Б.

Now let Bx be an LT-base in X  such that Bx -3 Б and let V be any 
set in Bx. By (LT1) (also (LT1*)) for Bx we get the existence of a set Vxe Bx 
with V =з Vx +  Vx. Again, by the same condition shows that there is 
V2 e Bx such that Vx => V2 +  V2. Continuing this procedure we obtain 
a sequence {Vn} of sets in Bx such that Vn => Vn+1 +  Vn+l for n = 1 , 2 , . . .  
and V => Vx +  Vx. Since Bx -3 Б it follows that there exists a number 
« Ф 0 with the property that for every sequence {Fn} of sets of Bx there 
is a sequence { Un} of sets of Б such that aUn <= Fn for n — -1, 2, ... Hence, 
for every n we have

7=> Vx +  Vx => Vx +  Vt + V 2 => ...=> 7 1 +  F2+ . . .  +  Fn +  F№

=> ^  +  7 , +  ... + V n z> a(Ux+ U 2+ . . .  +  Un)
and

OO

7 o  « U  (*7i+ET*+... '+Vn).n=1

The set on the right-hand side of the above inclusion clearly belongs 
to Б" and a is independent the of choice of Fin Bx. Therefore the follow­
ing holds Bx —3 Б * .
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4.3. Let Bx and B2 be two modular bases in X. I f  Bx -3 B2, then also 
Bx -3 B2 . Hence if Bx ~  B 2, then also Вx ~  B2 .

Proof. Let Bx -3 B2. By 4.2.1° we have B[ -з B x. This together with / 
our assumption yields Вx -3 B2. This, in view of 4.2.2° implies that Вx 
~3 B2 .

4.4. For any modular base В in X  the relation В ~  В holds if and 
only if В is an LT-base.

Proof. If В ~  B", then by 4.1 and 2.5 we get that В is an LT-base. 
Conversely, let В be an LT-base. Then by 4.2.2° and obvious relation 
В -3 В we get В -3 В". In view of 4.2.1° it follows B* -3 В and so В

4.5. Let Bx and B2 be two modular bases in X. The relation Bx -3 B2 
holds if and only if for every а Ф 0 and every Ux e Bx there exists U2 e B2 
such that aU2 cz TJX.

Proof. Let Bx -3 B2 . Then by 3.4.1° we get B x -3 B2 . This means 
that there is a number ax Ф 0 such that for every Uxe B x there exists 
T T 2 e B2 with a1TT2 c :  XJx. Since B2 is an LT-base it satisfies (A0), and so, 
for every а Ф 0 there is TV2e B 2 with adflW2 c  W2. Eeferring again to 
the proof of 4.1 we see that then there exists U2 in B2 such that U2 <=■ W2.
It is an easy matter to verify that then aU2 a axW2 <= Ux.

Conversely, let Bx and B2 be modular bases in X  satisfying the con­
dition of the theorem. Let Vx be an arbitrary set in B x. Then Vx =  (3UX, 
where Uxe Bx and ft ф 0. From our hypothesis it follows that there exists 
U2e B2 with U2 a ftUx =  Vx. This implies that Bx -3 B2 and hence by 
3.1 and 4.2.2° we get Вx -3 B2 . '

4.6. It is a consequence of 4.1 and 4.3 that for a modular space [X,  B~ ] 
the pair [ 1 , B * ’ ] determines the unique linear-topological space. The 
result of 4.2 says that [X ,B "~ ]  is the linear-topological space best for 
a given modular space [X,  B~] with respect on the left-hand side of the 
relation <. In the sequel the space [X , B"~] will be called the lower 
linear-topological space generated by the modular space [X , В ].

4.7. For any modular base В in X  the four following conditions are 
equivalent :

1° В is -an LT-base, 2° В ~ B  ,
3° В ~ B %  4° B v - B \
Therefore for a modular space [X , B~] the following conditions are 

equivalent :
1° [X , B~ ] is a linear-topological space,
2° [X , B~] =  [ X , B V~],
3° [X, B~] =  [ Х , в л~],
4° [ X , B V~] =  [ Х , В Л~].
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This is an immediate consequence of 3.5, 4.4, 3.4.1° and 4.2.1°.
5.1. Let В be a modular base, 8 =  {xa} an Moore-Smith sequence 

(MS-sequence) over a directed set [27, -3 ] and x0 a point in X. MS-sequence 
8  is said to converge to œ0 with respect to the base B, written 8 Д  x0 or хаЛ-х0, 
if there is a number а Ф 0 such that for every U e В there exist o0 e 27 
such that for every ее 27 with o0-3 о the following holds a(xa — x0)e U.

Notice that an MS-sequence 8 =  {xa} converges to x0 with respect 
to В if and only if the MS-sequence {xa — x0} converges to 0 with respect 
to B.

5.2. Let В be a modular base, 8 t =  {x'a}, S2 =  {x'J} two MS-sequen- 
ces over the same directed set [27, -3 ] and xx, x 2 two points in X. I f  8 X con­
verges to X} and 82 converges to x2 both with respect to B, then for any numbers 
a, (3 the MS-sequence a8 1-\-̂ 8 2 =  {ax'e +  px” } converges to ax1Jr j3x2 with 
respect to B.

Proof. Let S1—>x1 and $2Да?2. It means that there are two numbers 
cq, a2 # 0  such that for every U'e В we can find cq, a2e 17 such that 
a.i(xa — Xi)e U' for < q  - 3  ae 27 and a2(x'ô — x2)e U' for a2 -3 oe 27. Let a, 
be any numbers. Take a3 Ф 0 such that |aa3| ^  £|cq| and |/9a3| <  ||a2l- 
In view of (Ml) for В it follows that for every Ue В there is. U' e В with 
r(U')  cr U. Take then c31 27 such that аг -3 аг and a2 -3 cr3. It is easy 
to verify that for cr3 —3 oe 27

az[axa +  fx'J — (aoq + f3x2)) e Г( U’) cz U.

ВHence a$! +/?$2->aa?:i +  f x 2.

5.3. Let Вл and B 2 be two modular bases in X. Relation В, -3 B 2 holdsB2 By
if and only if for every MS-sequence 8 in X : S-+0 implies 8 -> 0. Whenceв i
Bx ~  B 2 occurs if and only if for every MS-sequence 8 in X : S—>0 if and 
only if 8 —> 0.

Proof is omitted.

5.4. Let В be a modular base in X . For any MS-sequence 8  =  {xa}
22 v

the condition 0 is equivalent to : for every number a Ф 0 and every Ue В 
there is a o0e 27 such that axae U for o0-3 oe 27.

в vProof. Assume that 8 ^ 0 .  Then there is a1 Ф 0 such that for every 
set Ye jB" there exists a o0e 27 satisfying axx„e V for o0 -3 oe 27. For every 
а Ф 0  and every Ue В we have axa~l Ue B \  Hence holds the condition 
of the theorem :  for every number а Ф 0 and every set Ue В there is 
a <r0e27 such that axae U for o0 - 3  oe X. Conversely, let 8  satisfies this 
condition. Every set V in J3v is of the form V =  fiU, where Ue В and /? ф 0.
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Then for every VeB~ there is a a0 eZ with xaeV for a0 -3 ae 27. This
В vmeans that $-^-0.

5.5. For any modular base В in X  the following conditions are 
equivalent :

1° В is an LT-base,
в в v2° for every M8 -sequence В in X : B-+ 0 if and only if 8 -> 0,

3° for every M8 -sequence 8 in X : $Л-0 if and only if 8 -̂> 0,
p v  В *4° for every MB-sequence 8  in X : $->0 if and only if $->0,

5° for every MB-sequence {xa} in X  the condition : for every U e В there 
is аге Z such that xa e U for ax-3 a e 27, implies : for every а Ф 0 and every 
V € В there is a о2e Z such that axa e U for a2 -3 or e 27.

6 °  for every M 8 -sequence { xa}  in X  the condition :  for every TJ e В there 
is axe Z such that xae U for аг Ф> ее Z, implies : for every Ue В there is 
a a2e Z such that 2xa e U for a2-3 or e 27,

7° there exists a number \a\ >  1 such that for every MB-sequence {xa} 
in X  the condition : for every Ue В there is a axe Z such that xae U for gx
-3 a e Z, implies : for every U e В there is a a2 e 27 such that axa e U for a2
-3 (Те 27,

8° for every M 8 -sequence {x0} in X  satisfying the condition: for every 
Ue В there is a axe 27  such that xae U for аг -3 o re  2 7 , there exists a number
|aj >  1  such that for every Ue В there is a a2e 27  such that axae U for a2
—3 cr e  27.

Proof is omitted.

5.6. A modular base В in X  is an LT-base if and only if for every MB- 
sequence 8 =  {ixa} in X  any two out of the three following condition are equi­
valent :

1 °  for every number а Ф 0  and every Ue В there exists a a0e 27  such 
that OLXa e U for (Tq —3 (T e  2 7 ,

2 °  for every Ue В there is a a0e 27 such that xae U for <r0 - 3  ae 27 ,

3° there is a number а Ф 0 such that for every Ue В there exists a a0e 27 
such that axae U for a0 A ae 27, i.e. 0.

This follows from 5.5.

5.7. Let Б Ь еа  modular base and 8 =  {x0} an MS-sequence in X. 8 
is said to satisfy the Cauchy condition with respect to В if there exists 
a number а Ф0 such that for every U eB  there is a cr0e27 satisfying 
a(®ai—0Co2)eU for <70 -3 <*i, <У2е 27.

Let В be a modular base and 8 — {xa, ae 27, -3} and MS-sequence 
in X.  We equip the cartesian product 27x27 with the relation -3i as
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follows: (cq, a'2) -Зх(<ух , a’f )  whenever a[ -3 a” and a2 -3 af . The pair 
[27x27, -3 X] is clearly a directed set. Denote =  #<, — дц for сjq, a2-
e 27. Notice that S satisfies the Cauchy condition with respect to В if 
and only if the MS-sequence Sx =  {ox, o2) e Z xZ,  -3x} converges,
to 0 with respect to B. This, on account of 5.3 implies that

I f  Bx and В2 are two modular bases in X  such that Bx -3 Bz, then every 
MS-sequence S in X  satisfying the Cauchy condition with respect to B t 
also satisfies this condition with respect to Bx. Hence, if  Bx and B 2 are such 
modular bases in X  that Bx ~  B 2, then any MS-sequence S in X  satisfies 
the Cauchy condition with respect to Bx if and only if does with respect 
to B2.

5.8. Let В be a modular base in X. Each MS-sequence S in X  cover gent 
with vespeet to В satisfies the Cauchy condition with respect to B.

Proof. Assume that S — {xa} converges with respect to В to some 
x0 e X.  Then, according to the definition of convergence, there is a number 
а ф 0 such that for every set U' e В there exists а <т0е 27 such that a(xa — a?0) 
e U' for cr0 -3 ere 27. Let U be any set in B. By (Ml) for В there is a set 
V'eB  with Г{и')  c  U. Then

la{æai- æ a2) =  la{æax —æ0)-%a(æa2- æ 0)e Г( U') <= U

for o0 -3 ox, a2 e 27. Hence satisfies the Cauchy condition with respect 
to В.

5.9. Let [X,  Б ” ] be a modular space, S an MS-sequence and %0e X* 
S is said to converge to xQ in the space [X , B~ ] if S-^-x0.

It is clear in view of 5.3 that in the above definition the phrase “S ^ x f 7 
can be replaced by uS -*x0v, where B x is any base in the class B~. Con­
sidering conditions 2° and 3° in 5.6 we get that when [X , B~] is a linear- 
topological space this definition of convergence of S to xQ coincides with 
that commonly used in the theory of linear-topological spaces.

Let [X , B~ ] be a modular space and S an MS-sequence in X. Similarly 
as above S is said to satisfy the Cauchy condition in [ X , jB~] whenever 
it does with respect to B. The remark of 5.7 says now that in this defini­
tion В can be replaced by any base Bx in the class The result of 5.8- 
means that every MS-sequence S in X  convergent in [ X , B~ ]  satisfies 
the Cauchy condition in this space.

A modular base В in X  is said to be complete if every MS-sequence S in X  
satisfying the Cauchy condition with respect to В is convergent with 
respect to it. Whenever a modular base possesses only the property that 
every (countable) sequence {xn} in X  satisfying the Cauchy condition with 
respect to В is convergent with respect to it, is called sequ en tia lly  
complete.
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The space [X , B~] is called complete if the base В is complete and 
sequentially complete if В is sequentially complete. Obviously В can be 
replaced by any base Bx in .

6.1. Let В be a modular base in X. Consider the following three 
conditions imposed on B:

(T  ̂) for every xe X, x Ф  0, there is an а Ф 0 and Ue В such that x 4 aXJ t
(T2) for every xe X , x ф 0 , there is a set XJ e В with x 4 U,
(T^) for every xe X , x Ф 0, there is a sequence {XJn} of sets in В such 

that
oo

x iVJ (XIx-\-... + U n).
n~\

Notice that if В satisfies (T^), then it also satisfies (Tx) and this in 
turn implies that (T  ̂) holds for B. Moreover, (Txv ) holds for В if and only 
if (Tj) holds for 5 V and (Тхл) holds for В if and only if (Tx) holds for

6.2. A modular base В in X  satisfies (Tx) if and only if  the following 
condition holds: for each xe X , x Ф 0, and for every а Ф 0 there is a set 
XJ € В with ax 4 U.

Proof. If В satisfies this above condition, then, obviously, В satisfies 
(Tx). Now let x be any member in X  different than 0 and a any number 
different than 0. Then a x e X  and ax Ф 0. By (Tx) for В it follows that 
there is a set XJeB such that ахц. U. Therefore the required condition 
holds for B.

6.3. Let Bx and B 2 be two modular bases in X. I f  Bx A B 2 and (Tx) 
(resp. (Tx ), (Tf)) holds for B x, then (Tx) (resp. (Tx ), (Tx )) holds for B2. 
Bence if Bx ~  B2y then Bx satisfies (Tx) (resp. (Txv ), (Tx )) if and only if B 2 
does.

Proof. In view of the remark in 6.1 as well as of 3.3 and 4.3 it is clear 
that it suffices to prove only for (Tx).

Let B x and B 2 be modular bases in X  such that Bx A B 2 and let (Tx) 
holds for B x. Becall that Bx -3 B 2 means that there is а Ф 0 such that 
for every set Uxe B x one can find a set U2e B 2 with o.TJ2 a Ux. By virtue 
of 6.2, it follows from the fact that Bx satisfies (Tx) that for each xe X , 
я Ф 0, there is Z71eB 1 with ax 4 XIx. Thus for each x e X ,  x Ф 0, there 
exists a set t72e B 2 such that X4 U2. This clearly means that B 2 satisfies (Tx).

6.4. For an LT-base В in X  condition (Txv ), (Tx) and (Tx ) are equivalent.
This is immediate from 6.3 and 4.7 and the remark of 6.1.
6.5. Let В be a modular base in X. Every MS-sequence (countable sequence) 

8 in X  convergent with respect to В has exactly one limit if and only if В sat­
isfies (Tx).
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Proof. Let Б be a modular base in X  satisfying (Tx) and $ =  {xa} be 
any MS-sequence (sequence) in X  convergent with respect to B. Assume 
that $-5aq and $Дж2, where xx, x2e 21. Then there exists ax Ф 0 such 
that for every U' e В there is a oxe 27 with the property that ax(xa — xx) e V  
for ax -3 ere 27, and there exists a2 Ф 0 such that for every JJ' e В there 
is a <72e 27 with the property that a2(xa — x2)e U' for a2 -3 ae 27. Now let 
U be any set in B. By (Ml) for В it follows that there is a set U'e В with 
F(U') a JJ. Take a =  ^inf{!«!|, J«2|} and <;0e27 such that ax -3 cr0 and 
o'2 -3 o0. We verify that

a(x2—xx) =  (aaf^a^x^ — xx) — (aaf1) a2(xaQ — x2)e F(U') с  U.

Hence as В satisfies (Tx) we get a{x2 — xx) =  0 and so x 2 =  xx.
Conversely, let for a modular base В in X  condition (Tx) fails to hold. 

Then there is xe X ,  x ^  0, such that xe U for every Ue B. Consider the 
sequence 8 =  {;xn}, where xn =  x for n = 1 , 2 , . . .  Observe that xne U 
and xn — x =  0e TJ for every UeB  and n — 1 , 2 ,  ... Whence $-5-0 and
$  -5  x, лvhere x Ф 0 .

6.6. A modular space [ X , B~ ]  is said to satisfy condition (Tx) (resp. 
(Txv), (Тхл)) whenever В satisfies (Tx) (resp. (Txv), (Tx )).

Obviously in this definition В can be replaced by any Bx in Б~. Instead 
of “the modular space [ X , B~ ]  satisfies (Tx)-condition” we simply say 
“ [X, B~] is Ti-space” , and similarly for (Tx ) and (Тхл).

7.1. Let В be a modular base and Z a set in X. Z is said to be bounded 
with respect to В if for every U eB  there is а Ф 0 such that aZ c  U.

This definition is identical to that of the theory of linear-topological 
spaces.

7.2. For any modular base В and any set Z in X  the following condi­
tions are equivalent :

1° Z is bounded with respect to B,
2° for every sequence {xn} in Z and for every sequence of numbers {an} 

converging to 0, the seqtience {anxn} converges to 0 with respect to B,
3° every sequence {n~lxn}, where xne Z for n = 1 , 2 , . . . ,  converges 

to 0 with respect to B.
Proof. Suppose that 2° does not hold. Then there are sequences {xn} 

in Z and {an} of numbers converging to 0 such that {anx„} does not con­
verge to 0 with respect to B. Furthermore there exist a subsequence {аПкхПк} 
of {апжп} and U eB  such that аП]хПк4 U for Jc = 1 , 2 , . . .  By (Ml) for В 
we find a set U' e В with bal. U' <=■ U. For any number а Ф 0 let h be 
such that \ank \ ^  M and note that then axnk4 U'. Thus aZ ф U for every 
а Ф 0. This proves that 1° does not hold. Therefore 1° implies 2°.
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That 2° implies 3° is clear.
Now suppose that 1° fails to hold. Then we have XJ e В such that for 

any positive integer n the difference Z\n% XJ is non-void. Take the sequence 
where soneZ \n2U for n = 1 , 2 , . . .  and let a be any number 

different than 0. By (Ml) for В there is U' e В with bal. V' c: U. Note 
that for n >  |a|-1 we have an~lxn% XJ'. This implies that {n~lxn} does not 
converge to 0 with respect to B. Therefore 3° does not hold. Thus 3° 
implies 1°.

7.3. Let Bx and B 2 be two modular bases in X. I f  Bx -3 B2, then every 
set Z a X  bounded with respect to B2 is also bounded with respect to Bx. 
Hence, if  Bx ~ B 2, then Z a X  is bounded with respect to Bx if and only 
if it is bounded with respect to B2.

Proof. Becall that Bx -3 B 2 means that there is a number ax Ф 0 
such that for every Uxe JB, there exists f7aeB2with axXJ2 ci Ux. Let 
Z a X  be bounded with respect to B2. Then for every XJ2e B 2 there is 
a2 Ф 0 such that a2Z a U2. Thus we get axa2Z a TJX for XJxe Bx. This 
means that Z is bounded with respect to Bx.

7.4. Let В be a modular base and Z a set in X. Z is bounded with respect 
to В if and only if it is bounded with respect to B \

Proof. If Z is bounded with respect to В v, then, by 3.4.1° and 7.3, 
it is bounded with respect to B. Conversely, let Z be bounded with 
respect to B. Then for every TJ e В there is cq Ф 0 such that axZ a XJ. Let 
V be any set in B \  It can be represented as V =  a2 U, where XJ e В and 
a2 Ф 0. Hence axa2Z a V. It follows that Z is bounded with respect 
to B \

7.5. Every sequence {жп} in X  satisfying the Cauchy condition with 
respect to a modular base В is bounded with respect to В

Proof. Let {xn} be a sequence in X  satisfying the Cauchy condition 
with respect to B. Then there is a0 Ф 0 such that for every V' e В there 
is a positive integer n0 such that a0(xn — xno)e U' for n ^ n 0. According 
to (М2) for B ev'ery U' e В is absorbent in X  and so there exist numbers 
an ^ 0 , n =  1, 2, ..., n0, such that anxntU'  for w = l , 2  . . . , n 0. Let 
Ü be any set in B. By (Ml) for В we find a set U' e В such that bal. V' a 
Г{Т1') a U. Take a ~  |inf{|a0|, jaj, ..., |aoJ}. We obtain

axn e a a ^ 1 XJ' c  bal. XJ' a XJ for n =  1 , 2, . . . ,  n0 

and

axn =  (aa0 ) ctQ (xn € ^ ^ ^

for n =  n0+ 1, n0J-2, ... Hence {xn} is bounded with respect to B.

6 — Roczniki PTM — P race M atematyczne X V m
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7.6. Let [X , B~] be a modular space and Z a set in X. Z is said to 
be bounded in [X , B~] if it is bounded with respect to B. It follows from 
7.3 that B,in this definition can be replaced by any base Bx in the class 
B~. The result of 7.4 says that Z is bounded in a modular spaee [X , B~] 
if and only if it is bounded in the upper linear-topological space [ J , £ v“ ] 
generated by [X , B~].

8.1. A modular base В in X  is said to be almost locally bounded, when­
ever there exists a set U0e В bounded with respect to B. A modular base 
В such that every U€ В is bounded with respect to В is called locally 
bounded.

8.2. Let Bx and B 2 be two modular bases in X. I f  Bx ~  B2 and Bx is 
almost locally bounded, then so is B 2.

Proof. Let Uxe B x be bounded wdth respect to Bx. Since Bx -3 B2 
then there are а Ф 0 and B2 e B2 such that a l 2° c  Ux. Thus U2 is bounded 
with respect to B x. Since also B 2 -3 Bx, by 7.3, we get that B2 is bounded 
with respect to B 2.

8.3. A modular base В in X  is almost locally bounded if and only if 
the base B* is almost locally bounded and В is locally bounded if and only 
if B" is locally bounded.

Proof. Let В be almost locally bounded modular base in X. Then 
there is a ü 0e В bounded with respect to B. By definition of B , U0e В , 
and by 7.4 it is bounded with respect to B \  Hence B" is almost locally 
bounded. Conversely, let B v be almost locally bounded. Then there is V0 
in B" bounded with respect to B \ V0 is of the form V0 =  aU0, where 
U0€ В and а Ф 0. We conclude therefore that U0 is bounded with respect 
to B" and, by 7.4 it is also bounded with respect to B. This means that В 
is almost locally bounded.

Now let В be locally bounded. Note that every V <= X  of the form 
V =  all, where U eB  and а Ф 0, is bounded with respect to B. By 7.4 
we get that every V e В v is bounded with respect to В v. Hence В v is also 
locally bounded. Conversely, if B" is locally bounded, then since B c B *  
it follows immediately that В is locally bounded.

8.4. Bor every almost locally bounded modular base В in X  there is an 
equivalent locally bounded modular base Bx in X. It can be assumed that 
Bx c  B.

Proof. Let В be modular base almost locally bounded in X. Then 
there is a set U0e В bounded with respect to B. Let B x denote the family 
of all these U eB  such that U cz U0. Clearly Bx is the required modular 
base in X.
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8.5. I f  a modular base В in X  is locally bounded, then any Z a X  is 
bounded with respect to В if and only if there exist Ue В and а Ф 0 such 
that aZ c  U.

The simple proof is omitted.
8.6. A modular space [X , B~ ] is said to be locally bounded if В is almost 

locally bounded. It follows from 8.2 that in this definition В can be replaced 
by any base Bx in the class B~. The result 8.4 says that [X , B~ ] is locally 
bounded if and only if in the class B~ exists a locally bounded base.

The result of 8.3 states that the modular space [X , B~ ] is locally bound­
ed if and only if the upper linear-topological space [X , B ~] is locally 
bounded.

9.1. A modular base В in X  is said to be locally convex if every set 
Ue В is absolutely convex, i.e. Г{П) c  U.

Notice that a non-void family В of sets in A  is a locally convex modular 
base if and only if it satisfies the three following conditions :

1° every Ue В is absolutely convex,
2° for every Ux, U2e B there is U&e В such that U3 c  UxnU2,
3° every U e В is absorbent in X.

9.2. I f  В is a non-void family of absolutely convex and absorbent 
sets in X, then the family B* of all sets U с  X  representable in the form

U =  UxnU2n ... nUn,

where Ux, U2, ..., Une B, is a locally convex modular base in X.
This is a consequence of the remark in 9.1.
9.3. I f  a modular base В in X  is locally convex, then В and В are 

also locally convex.
Proof. Let В be a locally convex modular base in X. Then for every 

set Ue В we have Г( U) c  U. Hence for every Ue В and а Ф 0 we get 
that

r(aU)  =  аГ( U) c  aU.

Thus every set Ve B* is absolutely convex. This means that В v is 
locally convex. Let now {Un} be any sequence of sets in B. We observe 
that

CO  OO

■P( U  ( +  ... +  Un)) c= U  [Г{ Ux) +  ... +Г( Un))
n~ 1 n—1

*  OO

<= U  {Ui  +  ... +  un) .
»■= 1

Thus every set W e B~ is absolutely convex. This means that В л is 
locally convex.
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9.4. A modular space [X,  B~] is said to be locally convex if in the class 
B~ there is a locally convex base.

The result of 9.3 says that if the modular space [X , B~] is locally con­
vex, then the linear-topological spaces \ X , B ''~] and [ Z , i A*] are also 
locally convex.

10.1. Let В be a modular base in X.  By abs.conv._B we denote the 
family of all sets V cz X  of the form V — abs.conv. U, where U e B.

For any set U <= X  by abs.conv. U we denote, as is widely accepted, 
the smollest absolutely convex set containing U, i.e. the set of all these 
xe X  which can be represented in the form

x =  axxx3~ — anxn,
where xx, ..., xn e U and a,, ..., an are numbers such that

lail +  ••• +  Kl < 1  (or — 1 )•
We shall show that
For any modular base В in X  the family abs.conv._B is a locally convex 

modular base in X.
Proof. Obviously, the family abs.conv.B satisfies 1° and 3° of the 

remark in 9.1. Let now Vx and V2 be any sets in abs.conv.B. Then there 
exist sets JJlt U2e B  such that Vx =  abs.conv.JJX and V2 =  abs.conv.TJ2. 
By (Ml) for В we get that there exists a set TJ3e В such that U3 с  Г( U3) 
c= Uxn U 2. Note that V3 =  abs.conv.U3 belongs to abs.conv._B and has 
the property that

V3 cz abs.conv.( TJ^TJi) <= abs.conv.и гг\ abs.conv.U2 =  Vxr\V2.
This proves that abs.conv.B satisfies 2° of the remark in 9.1. Hence 

this family is a locally convex modular base in X.

10.2. Let Bx and B 2 be two modular bases in X. I f  Bx -3 B2, then also 
abs.conv.Bx -3 abs.conv.B2. Hence, if B x ~ B 2, then also abs.conv.B, 
~  abs.conv.B2.

Proof. B, -3 B 2 means that there is а Ф 0 such that for every UX€ B, 
there exists TJ2e B 2 with aU2 cz Ux. Hence we get that then also

aabs.conv.U2 =  abs.conv.(aU2) cz abs. conv TJX.

Thus abs.conv.Bx -3 abs.conv.B2.
10.3. For any modular base В in X  the following hold:
1° abs.conv.B -3 B,1 +
2° if B, is a locally convex modular base in X  such that B x -3 B, then 

B, -3 abs.conv.B.
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Proof. For every JJ с  X  we have TJ c= abs.conv. U. Hence abs.conv. В  

-3 В. Now, let Bx be a locally convex modular base in X  such that Bx -3B. 
Then Bx -3 В indicates that there is а Ф 0 such that for every TJxe Bx 
there exists Ue В with all a Vx. This implies that

a abs.conv. 77 =  abs.conv.(aTJ) a abs.conv.TJX =  TJX.

Hence Bx -3 abs.conv.B.
10.4. I f  В is an LT~base inX, then abs.conv.B is also an LT-base in X. 
Proof. Let В be an LT-base in X. Then В satisfies (Д2), i.e. for every

U e В there is 77' e В such that 2 U' cz TJ. Hence then we have also 
2abs.conv. TJ' c  abs.conv. TJ. This proves that abs.conv.-B satisfies (A2) 
and so it is an LT-base in X.

10.5. For any modular base В in X  the following relations hold: 

abs.conv.-B" =  (abs.conv.B)" and abs.conv.B" ~  (abs.conv.B)".

Proof. For any TJ € В and а Ф 0 we have

abs.conv. {a TJ) = a abs.conv. TJ.

Thus abs.conv В " =  (abs.conv.B)".
For any sequence {Un} in В we see that

0 0  CO

U (abs.conv.Ux + ... +  abs.conv.TJn) => abs.conv. ( U (^ i+  ••• +Hn)).
n=l n=l

Hence (abs.conv.B)" -3 abs.conv.B". On the other hand from 4.2.1° 
and 10.2 we get abs.conv.B" -3 abs.conv.B. By 10.4 and 4.2.2° it follows 
that abs.conv.B" -3 (abs.conv.B)". Thus abs.conv.B" ~  (abs.conv.B)".

10.6. I f  a modular base В in X  is almost locally bounded (resp. locally 
bounded), then so is abs.conv.B.

Proof. Eecall that В is almost locally bounded means that there 
is a set TJ0e В such that for every TJ e В there is а Ф 0 with aTJ0 c  TJ. 
Hence then we have also aabs.conv.P0 c: abs.conv.TJ. This means that 
abs.conv.B is almost locally bounded.

Similarly, if В is locally bounded, then for any TJX, TJ2eB  there is 
a Ф 0 such that aTJx c  Z72. Thus also aabs.conv.Z7j c  abs.conv.Z72. This 
proves that abs.conv.B is locally bounded.

10.7. It follows from 10.1 and 10.2 that for a modular space [X , В ] 
the pair [X, (abs.conv.B)~] determines the unique locally convex mod­
ular space. The space [X, (abs.conv.B)"] will be called the locally convex 
modular space generated by [X , B~]. The result of 10.5 states that for any
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modular space [X , B~] the following equalities hold:
[X , (abs.conv.-B")~] =  [X , (abs.conv.J3)"~],
[X , (abs.conv.#~)~] =  [X , (abs.conv.E)* ~].

10.6 implies that the locally bounded modular space [X , B~] generates 
the locally convex modular space [X , (abs.conv._B)~] also locally bounded.
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