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Abstract The 1994 Major League Baseball (MLB) Season in the United States
ended prematurely when the players went on strike on August 12th, due to a la-
bor disagreement with team owners. This paper describes the model estimation for
predicting the runs scored in each of the unplayed games and gives the results of
1,000 simulations. Of particular interest are the Cleveland Indians and the Montreal
Expos. The Expos were on pace to have the best season in franchise history (and the
best record in the league), while the Indians were poised to begin a very successful
run that could have ended the city’s World Championship drought dating from 1948.
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1. Introduction. Tensions ran high between players and owners heading
into the 1994 Major League Baseball Season. The collective bargaining agree-
ment had expired in December of 1993 as team owners pressed for a salary
cap to fix the disparity in the league, hoping to make small market teams
more competitive. Player trust of ownership, however, was suffering from the
lingering effects of the recent free agency collusion charges that resulted in
a $280 million settlement. The situation was exacerbated when ownership
opted in June not to pay $7.8 million in pension and benefits that had pre-
viously been agreed upon. This was followed by the U.S. Senate’s failure to
approve anti-trust legislation which would have given the players leverage
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in the negotiations. As a result, the players went on strike effective August
12, 1994. The strike lasted 232 days and was the 4th work stoppage for the
league in the last 22 years. As many as 710 games went unplayed, depending
on how the playoffs would have played out. It was the first time the World
Series had been canceled since 1904 [30].

The strike cut short what was shaping up to be a very interesting sea-
son. Before the work stoppage, Matt Williams was on pace to match Roger
Maris’ single season home run record, and Tony Gwynn had the best chance
of breaking .400 for a season batting average since Ted Williams. The Mon-
treal Expos had a 74-40 record, on pace to have the best season in club
history and were widely considered to be major World Series contenders,
even though they had the 2nd lowest payroll in the league. Following the
strike the attendance in MLB dropped across the board, and Montreal never
recovered, eventually losing the franchise to Washington D.C., where they
became the Nationals [30].

The Cleveland Indians also lost a great opportunity. Given its well-pub-
licized championship drought in major sports, fans bemoan how often they
have been on the wrong end of spectacular games or plays that decide cham-
pionship runs. Not since 1964 has the city won a championship (NFL title),
and not since 1948 had the Indians brought home the World Series. 1994
marked the first year in what would become a string of successful seasons as
players such as Carlos Baerga, Kenny Lofton, and Sandy Alomar Jr. began
to perform at a high level. At the time of the strike, Cleveland sat one game
behind the White Sox in the race for the AL Central, and one game ahead
of the Kansas City Royals for the Wild Card spot (the playoff spot reserved
for the best record outside of a divisional champion in each league). The In-
dians would go on to make the playoffs in each of the following five seasons.
Losing in the World Series in 1995 to the Braves, and in 1997 to the Marlins,
they couldn’t quite close the deal, coming as close as a single out from being
crowned the champion [7]. Fans may always wonder what could have been,
had the fateful 1994 season been played out? Could the Expos have parlayed
a magical season into a sustainable, competitive franchise? Could the Indi-
ans have acquired the playoff experience necessary to close the deal in the
subsequent World Series? This paper fits a statistical model to the data of
the played season and then uses it to simulate the unplayed portion of the
regular season 1,000 times to see what probably would have transpired.

The paper is written in the style that would appeal to a quantitative
baseball expert. We assume that the reader is familiar with the fundamentals
of the baseball game but do not include all the mathematical and statistical
subtleties involved. Instead, we provide detailed citation for a mathematically
inclined person.

2. Related Work. Professor Bolesław Kopociński of the University of
Wrocław, Poland, addressed a similar problem in his two papers, Components



Z. Hass, W.A. Woyczynski, Ch. Yanosko, E. Becker 15

of the Game Result in a Football League [20] and Unfinished League Season of
Football [21]. In the former, Professor Kopociński shows how Poisson regres-
sion is useful for estimating the different components that affect goals scored
in a soccer match. He finds home field advantage, relative strength of teams
(as measured by position in final standings), and a random component to be
significant in predicting goals scored [20]. In the latter paper, Kopociński uses
his method for estimating components to fit a model to the results of the 1939
Polish Premiere Soccer League season. That season ended about two-thirds
of the way through as it was interrupted by the invasion of Poland by the
German and Soviet armies and the resulting outbreak of World War II [21].
Although baseball is certainly a different sport from soccer, the parallels be-
tween the two situations are strong enough to extend Kopociński’s work to
our situation. All but 14 games of the 1994 season through August 11th were
played, and the results are readily available for fitting a model to predict the
latter part of the season (the other 14 were postponed, presumably due to
inclement weather). Additionally, runs scored in baseball, like goals in soccer,
is also a type of count data making Poisson Regression the logical first choice.

Relevant approaches to modeling scores in sports leagues may also be
found in papers by Glickman and Stern [12], Keller [19], and Lee [23]. Also,
in the baseball context, the Bradley-Terry model with random effects is de-
scribed in James, Albert, and Stern [16], and a two-stage Bayesian model
for predicting winners in Major League Baseball is proposed in Yang and
Swartz [29]. However, to the best of our knowledge, no one made an effort
to apply those techniques in the dramatic context of the unfinished 1994
season.

3. Data set. The amount of data about any single baseball season,
readily available to the public, has exploded in recent years. The rising pop-
ularity of sabermetrics, a field of baseball research based on statistics and
other objective evidence, has fueled much of the growth in this data1.

One of the key concepts of sabermetrics is the run creation. There are var-
ious formulas for run creation, but they all contain three basic components:
the ability to get on-base, the ability to advance bases, and the number of
opportunities to do both. On the other hand, the Runs Above Replacement
(RAR) measure quantifies how many runs a player produces beyond what
a replacement would produce over the course of a full season.2 This impor-
tant concept can be applied directly to pitching, fielding, and batting, and
the results allow for relative comparisons amongst different players utilizing
a single number. Pitching RAR, for instance, measures a pitchers ability to
prevent runs from scoring [8].

1The name sabermetrics is derived from the name of the organization, Society for Amer-
ican Baseball Research (SABR).
2 Here, by a replacement we mean an average player from a .320 winning percentage

club.
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Table 1: Selected variables and baseball statistics abbreviations.

The data set used here for our model fitting contains 3200 “observations”
from 1600 games of all 28 MLB teams (Arizona and Tampa Bay did not enter
the league until 1998). All statistics were taken from Baseball-Reference.com
[27]. A number of different variables were tested as potential predictors; the
basic baseball abbreviations and the formulas for those predictor variables
are given in Table 1. The dependent variable, of course, is the number of
Runs Scored (RS) by each team.

Our work shows that the most useful predictor turns out to be a relative
strength index (RSI) based on the RAR measures which provides a much
better differentiation across the aspects of the game than one based on the
standings alone. In this paper RSI is defined as a sum of the offensive, fielding,
and pitching RARs.

For each team, offensive RAR is a sum of the RARs for the 8 position
players on each roster in the National League (NL), and the same sum plus
the designated hitter’s RAR in the American League (AL). Likewise, the
fielding RAR is a sum of the 8 position players’ fielding RARs. Pitching
RAR was calculated as a sum of the RARs of the top 5 starting pitchers, the
top closer, and the top 4 relievers for each ball club.

The game relative strength (GRS) for each team in a given pairing is the
maximum of 0 and the difference between the RSIs of the team and its oppo-
nent. This choice of the definition of the game relative strength assures that
this quantity remains nonnegative, an important property in our modeling.

4. Empirical Model. Baseball runs are count data, with the event
counted being a run scoring play. This makes the Poisson distribution a nat-
ural first, and simplest (one parameter) candidate for our modeling. Our data
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have the mean of about 4.9 runs per team per game which yields the model
probability distribution

Prob [# of runs = k] ≈ e−4.9 4.9k

k!
, k = 0, 1, 2, . . . (4.1)

We would like to emphasize here that this choice (obviously influenced by
Kopociński’s papers) was the “rough first cut” and was made to simplify
our calculations and permit access to standardized regression software. A
discussion of the limitations of this choice – obvious from Figure 1 where the
QQ plot, (see, e.g., Denker and Woyczynski [9], p. 69) showing the quantiles
of the scored runs data from the completed part of the 1994 MLB season
versus the quantiles of the Poisson distribution with the same mean λ = 4.9
— and the distributional issues involved can be found in Section 7.

Figure 1: The QQ plot for the quantiles of the scored runs data from the
completed part of the 1994 MLB season, versus the quantiles of the Poisson
distribution with the same mean λ = 4.9.

As a consequence of the above choice the Poisson (rather than the stan-
dard Gaussian) ) mixed effects predictive regression was employed. Mixed
effects Poisson regression model is the special case of generalized linear model
with the logarithmic link function and is appropriate for modeling of count
data (see, e.g., Jiang [18], Cameron and Trivedi [5], or Christensen [6], for
mathematical details). The formal assumption is that the response variable Y
has a Poisson distribution. Rather than fitting a very high-dimensional and
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computationally intensive Poisson regression model for the number of runs
Rij scored by team i against team j involving simultaneously all possible
predictor variables,

Rij = P(λij) (4.2)

with the mean

λij = c1 ·HOMEij + c2 · BAi + c3 ·OBPij + c4 ·OPSi + c5 · FLDi

+c6 · SPi + c7 · BPi + c8 ·GRSij + c9 + RND, (4.3)

we opted for a collection of eight, lower dimensional Poisson regression models
involving fewer regressor (predictor) variables which made “baseball sense”.
We employed the popular STATA computing platform using the “ready-to-
use” xtmepoisson command for the mixed effects Poisson regression model.
A comparison of the coefficients for these Poisson regression fittings, as well
as their AIC scores, is shown in Table 2. Sizes of the 95 % confidence intervals
for each coefficient are also displayed in parentheses.

Table 2: Selected Poisson Mixed Effects regressions; Runs Scored is the
dependent variable here. (***Significant at the 1% level, **5% level, +10% level.

Recall that AIC (see, e.g., [1], or [4], for more details), which rewards
goodness of fit of the model but also penalizes overfitting by including too
many parameters, measures the loss of information (increases of entropy)
caused by using the particular model under consideration instead of the
“true” model. Utilizing the concept to compare two different models, with
AICs, say, 16992 and 16990, respectively, produces the information that the
first model is exp((16990 − 16992)/2)) = .37 as probable as the second to
minimize the information loss.

The random component was used to capture such things as weather con-
ditions, player illness, or even a swarm of midges converging on a pitcher (as
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was the case in the famous game 2 of the 2007 American League Division Se-
ries between the Indians and Yankees) [7]. One observation is that the home
field advantage was not a useful predictor of the number of runs scored; note
the large confidence intervals associated with the corresponding coefficients.
This is not inconsistent with Levernier and Barilla’s work [24] analyzing the
home-field advantage in Major League Baseball using logit models.

Observe that all the fittings in Table 2 resulted in the negative coefficient
for the BA term in the expression for the expected number of runs λ. This,
obviously, is counterintuitive as the baseball “common sense” would indicate
that the increased batting average would result in a larger number of runs
scored. But we have to remember that OPS is also in the model and it
is a broader offensive statistics and does have a positive coefficient as one
would expect. So, in our model the BA plays the role of an adjustment
variable for the effect of OPS. OPS measure how often someone gets on
base (regardless of the method) and how far they get around the bases on
average. BA measures only how often a player gets on base through a hit
out of those at bats that qualify (it doesn’t count sacrifice flies or bunts for
example). Although the phenomenon may seem controversial it turned out to
be significant and we decided to include it to make the model more flexible.
The ’94 average National League OPS was 0.794, and average BA was 0.267.
Multiplying these numbers by the coefficients gives an average positive effect
on the number of runs scores as one would expect (around 0.63, or so).

Of all the candidate models fit to the data, we selected the one with the
lowest AIC (Akaike Information Criterion) but balanced the choice by taking
into account the appearance of the most statistically significant coefficients.
As a result of the above considerations we settled on the last model (num-
ber 8) in Table 2 to model the number of runs Rij scored by team i against
team j;

Rij = P[1.115− 4.081 · BAi + 2.159 ·OPSi + 0.002 ·GRSij ], (4.4)

where P[λ] denotes a Poisson random variable with mean λ. The constant
term combines both the constant and the random term (0.946, and 0.169,
respectively). To predict the runs scored for a game, for any combination of
teams, one needs the teams’ Batting Averages, On-Base Plus Slugging, and
the Relative Strength measure between the two team’s Runs Above Replace-
ment measure. Inserting this information into the model provides the Poisson
random variable for a given team against a given opponent, which is then
plugged into a Poisson random number generator, providing the score of that
team for a particular game and simulation.

5. Simulations. The schedule of regular 1994 season games taken from
RetroSheet.org [28] shows that 655 games originally scheduled after Au-
gust 11, 1994 were not played. Furthermore, it can be deduced upon careful
examination that an additional 14 games were postponed and not made up



20 Recovering the End of a Baseball Season

elsewhere in the schedule leaving 669 games to be simulated to finish the
regular season.

Figure 2: Transition graph of the Markov Chain used to resolve the outcome
of the extra innings

Major League Baseball games do not end in ties. If the score is tied after
nine innings of play, an additional inning is played. If the score is again tied
after this additional inning, they will play an eleventh inning, and so on, until
there comes an inning where one team emerges victorious. To resolve this,
we used Markov Chain modeling (see, e.g., [3]). This is appropriate since
a Markov Chain is a random process where the probabilities of advancing
to any particular state depend only on the current state. Figure 2 shows an
illustration of the state space and its transition graph for the relevant Markov
Chain.

Since we were not interested in how many innings the game took to be re-
solved, we only needed the asymptotic probabilities of victory given a team’s
λ (the expectation of the Poisson random variable) and the opponent’s λ.
Such a calculation can be done by building a matrix of probabilities for each
of the possible runs scored, with the columns referring to home team’s runs,
and rows referring to away team’s runs, both beginning at 0. The sum of
the lower triangular portion of the matrix is the home’s probability of loss,
while the upper triangular portion sums to the home’s probability of victory,
and the diagonal sums to the probability of a tie, that is, an additional extra
inning of play. The win-loss probabilities were then rescaled to sum up to one
(asymptotic probabilities). This was done for all potential match-ups.

It is worth noting that this method did not calculate additional runs
scored in the extra innings, which reduced average runs scored for the sim-
ulated seasons. End-of-season standings’ ties were also prominent. The pairs
of teams which ended the regular season tied most often in 1,000 simulations
are given in Table 3, together with the corresponding frequencies. Only end
of season ties that affected which clubs would qualify for the playoffs were
resolved. Interestingly, several three-way end-of-season ties were encountered.
In the case of a three-way tie, each team was assigned a random slot, with
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Team A and Team B playing each other, and Team C playing the winner for
the right to advance to the playoffs. More unique situations exist based on
whether the tie was for the wild card or for the division, but all were resolved
according to the MLB policy [25].

Table 3: Pairs of teams which ended the regular season tied most often in
1,000 simulations. The right-most column shows the corresponding frequen-
cies

6. Results. In all, 1,000 regular season simulations were calculated and
tabulated. The cumulative results for each MLB team are given in Table 4.

The consecutive columns show the final average (over 1000 simulated
seasons) number of wins and losses, the percentage of simulations in (or,
equivalently, probability with ) which the team made the playoffs and earned
the wild card. Also, in the final two columns, shown are the probabilities that
the team won its division, and the frequency with which it participated in
a play-in game.

Twelve of the teams did not make the playoffs a single time out of a thou-
sand. This is not unexpected, as teams are often out of the race by August.
Two of these, though, Toronto and Detroit ended the season in a tie for
the wild card before subsequently losing the play-in game. The AL West
stayed true to expectations, putting forth a sub .500 champion in the Seattle
Mariners (46% of simulations) with an average mark of 75–87. The National
League West did slightly better with an average champion in the Los Angeles
Dodgers (76% of simulations) with a record of 84–78. In both leagues, the
Central and Eastern Divisions competed for the wild card spot. In the Na-
tional League, three of the playoff spots went to the Montreal Expos, Atlanta
Braves, Cincinnati Reds, or the Houston Astros in every season. Out of the
thousand simulations, in only 11 did the Expos fail to make the playoffs, and
only 8.1% of the time were they the wild card.
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Table 4: Results of the simulations

The most probable playoff picture in the National League would have
pitted the Montreal Expos (1st Seed) vs. the Los Angeles Dodgers (3rd seed),
with the winner taking on the winner of the Cincinnati Reds (2nd seed) vs.
the Atlanta Braves (4th seed). The one and four seeds would not meet in
divisional round as they are from the same division.

The most likely substitutes to this scenario, according to our table, would
be the San Francisco Giants replacing the Dodgers 23.6% of the time, and
the Houston Astros in the playoffs 54.5% of the time for the Reds, Braves,
and Expos in the order of most likely.

In the American League, five teams competed for the other three spots
opposite the AL West champion, the New York Yankees, Baltimore Orioles,
Chicago White Sox, Cleveland Indians, and Kansas City Royals. In the East,
the Yankees took the division crown 97% of the time, and the Orioles were
the third most likely to take the wild card at 7.9%.

In the Central, where only a game separated 1st, 2nd, and 3rd place be-
fore the simulation, it was the Indians who took the divisional crown most
often at 75% of the time, with the White Sox taking it the other 25%of the
time. Of the five, the Royals were the least likely to make the playoffs at
only 1.8% of simulations. It should be noted that the Royals strength that
year, in respect to RAR was their pitching, as they were ranked number
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one overall. In batting and fielding they were ranked 19th and 20th respec-
tively.

The most likely playoff picture for the American League would pit the
Yankees (1st seed) vs. the Chicago White Sox (4th seed) with the winner
playing the victor of the Cleveland Indians (2nd seed) vs. the Seattle Mariners
(3rd seed). The Texas Rangers would be most likely to replace the Mariners
(34.5% of the time), then the Oakland A’s (18.8%), and California Angels
(0.5%). The Orioles (10.9%) and Royals (1.8%) would replace the other three.

7. Refinements, Future Work, Conclusions. At this point a number
of thoughts come to mind:

7.1. How good is the Poisson approximation? The answer is: not
very good but, perhaps, good enough for our purposes. We believe that a more
sophisticated, long-tail model mentioned below would not have changed the
final predictions significantly; the winning team running up the score seldom
changes the final outcome of the game. The QQ-plot in Figure 1 shows that
the choice of the Poisson mixed effects regression model is not completely
unreasonable. But a more subtle analysis of the data shows that the tail of
the probability distribution of the number of runs scored is much heavier
that that of the Poisson random variable P(λ) with the same mean. The
probability of a Poisson random variable with λ = 4.9 being equal to, say,
k = 10, is equal to 0.016, whereas, the empirical data of runs scored show the
corresponding frequency to be frequency 0.034. Table 5 shows all the original
relative frequencies fk of the number of runs k scored in games actually played
in the 1994 season.

k fk k fk

0 0.04477 12 0.01502
1 0.08547 13 0.01095
2 0.11834 14 0.00563
3 0.12398 15 0.00250
4 0.13807 16 0.00219
5 0.11646 17 0.00125
6 0.09987 18 0.00031
7 0.08140 19 0.00093
8 0.05666 20 0,00000
9 0.04383 21 0.00062
10 0.03381 22 0.00031
11 0.01753

Table 5: Relative frequencies fk of the number of runs k scored in games
actually played in the 1994 season.
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More significantly, the variance of the the above Poisson distribution is
4.9, while the corresponding empirical variance for our data is 10.4. But with
only one parameter in the Poisson distribution once one fits the mean, there
is no flexibility to fit the variance as well.

Furthermore, Poisson distributions have, essentially, Gaussian tails, since
(see, e.g., Glynn [13]) Prob [P(λ) ­ k] is bounded from above by (up to
some constants) 1 − Φ(k), where Φ(k) =

∫ k
−∞ e

−x2/2 dx/
√

2π is the cumula-
tive distribution function, CDF, of the standard Gaussian distribution. The
former is a very rapidly decaying function of k. Indeed,

1− Φ(k) ¬ 1√
2πk

e
−
(

k√
2

)2
. (7.1)

Thus, a slower-decaying probability distribution with, perhaps, two pa-
rameters may be in order. A natural choice here would be to replace the
exponent k2 in (7.1) by a slower growing kα with α < 2. Thus we settled on
the CDF of an integer-valued random variable W of the form

Φα,β(k) = Prob [P(λ) ¬ k] = 1− e−
(
k+1
β

)α
, k = 0, 1, 2 . . . (7.2)

This distribution is known as the discrete Weibull distribution and has been
considered in the context of reliability (see, Nakagawa and Osaki [26]), and
microbial counts (see, Englehardt and Li [10]]. The parametric estimation
issue for (7.2) was studied by Ali Khan et al. [2].

The result was a surprisingly good fit shown in Figure 3 (left). The dots
indicate the values of Φα,β(k), for α = 1.72, and β = 6.04, and the continuous
line shows the (interpolated) values of the empirical CDF obtained from the
actual frequencies in Table 5. For comparison, in Figure 3 (right), we are
showing the Poisonian CDF (dots), with the mean λ = 4.9, versus the same
empirical CDF (continuous line). The results speak for themselves. The CDF
Φα,β(k) may be viewed as a discrete version of the Weilbull, or stretched
exponential, distribution.

Remark 7.1 The statistical environment R contains a parametric estima-
tion package for the Discrete Inverse Weibull Distribution. Four methods are
provided: the method of moments, the method of proportion, the heuris-
tic algorithm, and the method of (inverse) Weibull probability paper plot
in [17]. They all gave much worse results than the basic method used by us
to produce the fit visualized in Fig. 3 (left). We just scanned numerically the
2-D parameter space and found the values of the parameters α, and β, that
minimized the Kolmogorov-Smirnov (KS) uniform distance between the fit
and the empirical CDF, which turned out to be equal to 0.016. A thorough
asymptotic statistical analysis of the minimum KS distance can be found
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Figure 3: Left: The dots indicate the values of the CDF Φα,β(k), , for α = 1.72,
and β = 6.04, and the continuous line shows the (interpolated) values of the
empirical CDF obtained from the actual frequencies in Table 5 showing a
surprisingly good fit. Right: For comparison, i the Poisonian CDF (dots), with
the mean λ = 4.9, does not fit nearly as well the empirical CDF (continuous
line).

in, .e.g., [22], and [14, 15]. We are not aware of any sufficiently deep mathe-
matical analysis of the estimators proposed by [17] to recommend them. An
implementation of R package to the problem considered in the present paper
were not encouraging either.

7.2. Future Work. So, why didn’t we work with Φα,β(k) instead of
the Poissonian model? The answer is that, for the Poissonian model we had
tools of the mixed effects regression readily available in STATA software.
Given the amazingly good fit shown in Figure 3 (left), it certainly would
be worthwhile to develop similar analytic and software tools for the Φα,β(k)
model using the theory available in, e.g. Jiang’s book [18]. It will take some
serious mathematical effort but we intend to work on it in the future.

Table 6: Checking Reasonability of Our Projections for Select Teams.

There may be some deeper reason for the appropriateness of the Φα,β(k)
model in baseball. In soccer games considered by Kopocinski [20, 21], the
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Poisson model was totally appropriate because of the low typical scores. The
corresponding cumulative score count process N(t) is the Poisson process (as
a function of time t). It is memoryless, and the number of goals scored in
disjoint time intervals are assumed to be independent random variables. The
“instantaneous” rate of change of the score is constant in time in this model.
Also, one can score only one goal at a time. On the other hand, in baseball,
the score can advance instantaneously by up to four runs and there may be
a tendency for teams ahead in the game to pile up runs, which would make the
instantaneous rate of change of the score time-dependent. The continuous-
time version of the Φα,β(k) model is often encountered in reliability studies,
and the corresponding Weibull distribution is the limit distribution for the
minimum of independent identically distributed random variables (also, see,
Denker and Woyczynski [9], and Ferguson [11].

Obviously, the fact the baseball score can advance by up to four runs,
makes the compound Poisson model also a good candidate for our future
studies.

Subsequent work could take the simulation all the way through the play-
offs, either by simulating playoff games based on the most probable playoff
match ups or by finishing each individually simulated season off with the ap-
propriate playoff simulation, or perhaps some third method. One thing that
is clear, however, is that a great opportunity for baseball fans was lost that
year, especially those that followed the Indians and the Expos.

Application of our approach to prediction of outcomes of any given season
based on a partial season information is also likely to be of some use to the
baseball insiders and outside bettors (wherever legal).

7.3. Conclusions. How reasonable are the results of this paper? Table 6

Table 7: Simulated winning percentages of top five and bottom five perform-
ers.

gives select teams’ winning percentages for the games already played, for
the games simulated, and projected winning percentages. The projection is
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based on a simple weighted average of each team remaining on the schedule
multiplied by the winning percentage against that opponent in games actually
played that year. The weight is given to the number of games remaining
against that opponent.

To illustrate, at the time of the strike the Yankees had a winning percent-
age of 0.619. In the simulation, their average winning percentage was 0.578.
Given who the Yankees had left on their schedule and how well they had
previously done (for example they had not lost to the Indians all season and
had 3 games remaining against them, which would be counted as 3∗1.000 = 3
wins) they were projected to finish with a winning percentage of 0.547. This
serves as a sort of baseline for the results. In this case the drop off in wins
in our simulation is reasonable given the toughness of the Yankees remaining
schedule.

Who appears to have missed out the most from the premature end to
the season? Table 7 gives gives an answer for the top five and bottom five
performers in the simulations. After 1,000 simulations, the Cleveland Indi-
ans make the playoffs 82.8% of the time and the Montreal Expos breeze into
postseason play a convincing 98.7% of the time. Although the model could
be improved by considering a Weibull-type or Compound Poisson Process
regression model before fans demand that record books show an additional
playoff berth, it did work reasonably well in simulation, providing fairly con-
vincing results.

8. Epilogue. We dedicate this paper to the endlessly suffering, but dedi-
cated fans of the Cleveland Indians. During the past half-century the Indians
teased us seven times by getting into the post season. Yet, since 1948 they
brought no World Championship home. But, Leo Tolstoy begins his short
story, also (not accidentally) titled A Lost Opportunity, with a citation from
St. Matthew xviii., 21-35: “Then came Peter to Him, and said, Lord, how oft
shall my brother sin against me, and I forgive him? till seven times? . . . ” So,
perhaps, eighth time’s the charm.
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Stracone nadzieje: Symulacja dokończenia przerwanego przez
strajk sezonu amerykańskiej ligi baseballowej

Streszczenie: Amerykański sezon baseballowy w roku 1994 zakończył
się przedwcześnie 12 sierpnia, kiedy zawodnicy zadeklarowali strajk z po-
wodu kontraktowych konfliktów z wlaścicielami klubów. Dla kibiców w Ame-
ryce, gdzie baseball jest narodowym sportem granym od dziecka, było to dra-
matyczne wydarzenie. Niniejsza praca proponuje model estymacji prognozy,
opartej na mieszanych modelach liniowych, wyników w każdej z nierozegra-
nych z powodu strajku gier sezonu i przedstawia wyniki 1000 symulacji Monte
Carlo i przewidywania ostatecznej klasyfikacji sezonu. Szczególnie intereresu-
jąca była sytuacja dwóch klubów: Cleveland Indians i Montreal Expos. Expos
mieli szanse pobicia swojego własnego rekordu wygranych gier w jednym se-
zonie i osiągniecia najlepszego wyniku w całej lidze. Sezon Indians rownież
się zapowiadał bardzo pomyślnie i otwierał realistyczną możliwość wygrania
World Series, po raz pierwszy od 1948 roku.

Chociaż, począwszy od igrzysk w Los Angeles w 1984 roku, baseball
jest regularnym sportem olimpijskim (bardzo rozpowszechnionym nie tylko
w USA ale rownież w Ameryce Łacińskiej i Japonii) i po raz pierwszy był
sportem demonstracyjnym już na Sztokholmskich igrzyskach w roku 1912,
gra nie jest popularna w Polsce (choć istnieje) i jej zasady nie są powszechnie
rozumiane. W tym celu (i w duchu kulturalnego zbliżenia między polskimi
i amerykańskimi kibicami, w którym niniejsza praca została przedstawiona do
międzynarodowego czasopisma redagowanego w Polsce) sugerujemy by czy-
telnik, przed przestudiowaniem naszej pracy, zajrzał do jednej z paru polskich
stron internetowych wyjaśniających zasady baseballa. Doskonałym przykła-
dem jest tutaj barwna strona http://www.baseball.pl/o-grach/zasady.html,
w której wyjaśnienia są po polsku, ale z dokładnymi odnośnikami (w nawia-
sach) do klasycznej angielskiej terminologii. Oczywiście, w internecie amery-
kanskim, zagooglowanie terminu baseball oddaje błyskawicznie, w ciągu .21
sekund, listę 549 milionów związanych z tematem stron internetowych i ter-
minologia baseballowa znalazła mocne odzwierciedlenie w codziennej idio-
matyce języka angielskiego w Ameryce. Tutaj dobrym źrodłem dla począt-
kującego fanatyka baseballa (i studenta Amerykańskiego angielskiego) jest
http://en.wikipedia.org/wiki/Baseball rules

Słowa kluczowe: Regresja poissonowska z mieszanymi efektami, symu-
lacje, statystyki basebolowe, dyskretny rozklad Weibulla, łańcuchy Markowa.

http://www.baseball.pl/o-grach/zasady.html
http://en.wikipedia.org/wiki/Baseball_rules
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