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Approximation Guarantees for Max Sum and Max
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Triangle Inequality and Applications in Result
Diversification

Abstract Facility Dispersion Problem, originally studied in Operations Research,
has recently found important new applications in Result Diversification approach in
information sciences. This optimisation problem consists of selecting a small set of
p items out of a large set of candidates to maximise a given objective function. The
function expresses the notion of dispersion of a set of selected items in terms of a
pair-wise distance measure between items.

In most known formulations the problem is NP-hard, but there exist 2-approximation
algorithms for some cases if distance satisfies triangle inequality.

We present generalised 2/α approximation guarantees for the Facility Dispersion
Problem in its two most common variants: Max Sum and Max Min, when the un-
derlying dissimilarity measure satisfies parameterised triangle inequality with pa-
rameter α. The results apply to both relaxed and stronger variants of the triangle
inequality.

We also demonstrate potential applications of our findings in the result diversifica-
tion problem including web search or entity summarisation in semantic knowledge
graphs, as well as in practical computations on finite data sets.
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1. Introduction
The concept of diversity-awareness has important practical applications

in web search, recommendation, database querying or summarisation (e.g.
[6, 12, 18]). The general idea is to return to the user the set of items (being
database query or search results, recommended items, etc.) that are not only
relevant to the query but also diversified. The rationale behind such approach
is to reduce the risk of result redundance and to cover as many different
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aspects of the query as possible. Equivalently, it is a technique for maximising
the likelihood that the user’s unknown intent behind a potentially ambiguous
query is satisfied, at least partially.

A possible formulation of the described diversification problem is by means
of the Facility Dispersion optimisation problem that was originally studied
in Operations Research (e.g. [7, 8, 14, 16]). More precisely, the problem con-
cerned selecting locations for some dangerous or obnoxious facilities in order
to make them mutually distant to each other. The range of possible applica-
tions is wide, and includes minimising the effects of a terroristic or military
attack (if items represent nuclear plants, amunition dumps, etc.) or to avoid
self-competition between the stores of the same brand, etc.

In the context of information sciences, the notion of mutual spatial dis-
tance has been substituted with that of pairwise dissimilarity between the
items to be returned to the user.

Examples of recent applications of this approach include web search (e.g.
[6, 12]) or graphical summarisation of entities in semantic knowledge graphs
[15,18], for example.

The facility dispersion problem is NP-hard in most common variants, in
particular, in Max Min and Max Sum variants studied in this article, and
it remains such even when the distance (dissimilarity) function d satisfies
triangle inequality [9, 19]. However, in such case, there is a polynomial-time
2-approximation algorithms for this problem [14,16].

This article focuses on two most common variants of the problem called
Max Sum and Max Min Facility Dispersion. The main results include the
generalisations of approximation guarantees of 2 for metric cases of these
variants [14, 16] to the value of 2/α for the case when the distance function
satisfies parameterised triangle inequality with parameter α.

1.1. Contributions This paper is an extension of a short paper [17],
where the following results were first presented:

• generalised approximation guarantee for Max Sum Dispersion Problem
with Parameterised Triangle Inequality (Section 5.1) with the proof
(Appendix)

• link between the above result and the Result Diversification Problem
that is of interest in web search and other applications (Section 6.2)

• observation concerning satisfying parameterised triangle inequality by
finite datasets (Section 6.1)

Compared to the above results, the main extension contained in this pa-
per consists in analogous results concerning another variant of the problem,
known as Max Min Facility Dispersion. A list of the extensions compared
to [17] includes:
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• discussion of the related work concerning Max Sum, Max Min and
related problems (new Section 2)

• some remarks on the parameterised triangle inequality (Section 4)

• tight example for the approximation guarantee for Max Sum Dispersion
Problem generalised for parameterised triangle inequality (Section 5.2)

• generalised approximation guarantee for Max Min Dispersion Problem
with parameterised triangle inequality (Section 5.3)

• generalised impossibility result (i.e. lower-bound approximation factor)
for the Max Min Dispersion Problem with parameterised triangle in-
equality (Section 5.4) with proof (Appendix A)

2. Related Work

2.1. Previous Works on Facility Dispersion Problem Facility Dis-
persion Problem was studied in many works in Operations Research.

In [16] there are presented approximation results for the Max Min and
Max Average (that is equivalent to the Max Sum considered in this paper)
variants. Some of these results were improved in [14] for the metric Max Sum
variant. To be precise, the latter work concerns the k-dispersion problem
that is more general than the one considered here. We focus on the most
important case of k-dispersion for the value of parameter k = 1, since this
case has important recent applications in the result diversification problem in
information sciences. Since the proofs would not be affected much for higher
values of k, for simplicity we do not consider higher values of the k parameter
in [14].

Many more variants of the Facility Dispersion problem (over 10) and
approximation algorithms for them were studied in [7] and its extension [8].
It would be interesting in future to analyse the applicability of these variants
in the result diversification problem in information sciences, however we are
not aware of such work at the time of writing.

Our main results presented here build on the results in the two works
[14,16] mentioned above, and the proofs presented in this paper are extensions
of the proofs presented in these works and in [13] by appropriately introducing
the parameter of the parameterised triangle inequality.

2.2. Related Work on Parameterised Triangle Inequality An im-
pact of various forms of parameterised triangle inequality on the approxi-
mation guarantees for various hard optimisation problems was studied previ-
ously in many works. One of the early works on this issue is [1]. An especially
intensively studied problem in the context of parameterising the triangle in-
equality is the Travelling Salesman Problem (e.g. [2–4] or a recent exam-
ple [5]).
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Many of these works consider either relaxed or sharpened variant of the
triangle inequality. In this paper, we consider the full possible range of the
parameter value.

Other forms of relaxing triangle inequality on the performance of algo-
rithms are studied. For example a recent work [11] concerns the impact of
triangle inequality violations on the performance of a vehicle routing algo-
rithm.

An example of a practically used pair-wise dissimalirity measure that
naturally satisfies parameterised triangle inequality is a variant of the NEM
(Non-linear Elastic Matching) measure used in pattern matching for compar-
ing visual shapes [10].

2.3. Related Work on Result Diversification Result diversification
approach has recently became an intensively studied topic in web search,
recommendation, databases or summarisation.

The connection between the Facility Dispersion Problem and the Result
Diversification approach was presented in [12] by proposing an appropriate
transformation of the dissimilarity function. In this paper, in Section 6.2, we
observe that our result holds while this transformation is performed.

In particular, Result Diversification based on Max Sum was recently pro-
posed in [15] in a novel context of diversity-aware entity summarisation in
semantic knowledge graphs [18].

Interestingly, the results contained in this paper are related to the ques-
tion recently stated in the last sentence of [6], where the Max Sum Diversi-
fication Problem was studied in a more general framework of monotone sub-
modular functions. The question concerned the impact of relaxing triangle
inequality for approximation guarantee for a generalised Max Sum Disper-
sion Problem. Our result can be viewed as a partial answer to the special
case of this problem.

3. Facility Dispersion Problem
In Facility Dispersion Problem, the input consists of a complete, undi-

rected graph G(V,E), an edge-weight function d : V 2 → R+ ∪ {0} that rep-
resents pairwise distance between the vertices and a positive natural number
p ¬ |V |. The task is to select a p-element subset P ⊆ V that maximises
the objective function fd(P ) that represents the notion of dispersion of the
elements of the selected set P . In the remaining part of the article we will sim-
plify the notation and use f(P ) instead of fd(P ), since the pairwise distance
function d will be known from the context.

Depending on the particular form of the objective dispersion function
f(P ) to be maximised there are considered several variants of the Facility
Dispersion Problem. The two most commonly studied variants are Max Sum
and Max Min Facility Dispersion and are described in Sections 3.1 and 3.2,
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respectively.

3.1. Max Sum, or equivalently, Max Average Facility Dispersion
Problem

In the Max Sum Dispersion Problem the objective function to be max-
imised is defined as follows:

fSUM (P ) =
∑

{u,v}⊆P
d(u, v).

This variant is a special case of the more general k-dispersion problem
that was studied, for example, in [14]. In this paper, we focus only on the
special case of k-dispersion for k = 1, since this case is important for the
Result Diversification problem discussed in Section 6.2.

In some works (e.g. [13, 16]) the objective function is formulated as:

fAV E(P ) =
2

p(p− 1)

∑
{u,v}⊆P

d(u, v),

and then the problem is known as Max Average Facility Dispersion. Since,
for the fixed value of p, the formulation is obviously equivalent to that of
Max Sum Facility Dispersion, we will refer to them interchangeably in this
paper.

The Max Sum Dispersion problem is NP-hard even if the distance function
d is a metric, but in such case there exists a polynomial-time algorithm of
approximation factor of 2 that was presented in [14].

Algorithm 1: HRT: an efficient 2-Approximation Algorithm for Max Aver-
age Dispersion Problem
INPUT: An undirected graph G(V,E) with edge-weight function d : V 2 →
R+ ∪ {0}, a natural number 1 < p ¬ |V |
OUTPUT: A p-element set P ⊆ V

1. P = ∅

2. Compute a maximum-weight bp/2c-matching M∗ in G

3. For each edge in M∗, add its both ends to P

4. In case p is odd, add any node from V \ P to P

5. return P

Algorithm 1 shows a heuristic, polynomial-time approximation algorithm,
based on computing a maximum-weight matching, that guarantees approx-
imation factor of 2 for Max Average Dispersion when d satisfies triangle
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inequality and was presented [14] under the name HRT. A straight-forward
implementation of the algorithm makes its time complexity O(|V |3), how-
ever it is possible to implement it so that the time complexity is reduced to
O(|V |2(p + log(|V |)). There exists another algorithm for the same problem,
for which the same approximation guarantee of 2 can be proved, but which
has better time complexity of O(|V |2+p2log(p)). For all the remaining details
we refer the reader to [14].

3.2. Max Min Dispersion Problem
In the Max Min Dispersion Problem the objective function to be max-

imised is defined as follows:

fMIN (P ) = minu,v∈P,u6=vd(u, v). (1)

Similarly to Max Sum, even if the distance function d satisfies the stan-
dard triangle inequality, the problem is NP-hard, but in such case there exists
a polynomial-time algorithm that guarantees an approximation factor of 2.

The algorithm and its 2-approximation guarantee proof is presented in
[16] under the name GMM and is shown in Algorithm 2. Its time complexity
is O(p2|V |).

Algorithm 2: GMM: an efficient 2-Approximation Algorithm for Max Min
Dispersion Problem
INPUT: An undirected graph G(V,E) with edge-weight function d : V 2 →
R+ ∪ {0}, a natural number 1 < p ¬ |V |
OUTPUT: A p-element set P ⊆ V

1. P = argmax{vi,vj}⊆V d(vi, vj)

2. while (|P | < p):

• find v ∈ V \ P so that v = argmaxv∈V \P (minu∈P {d(v, u)})
• P = P ∪ {v}

3. return P

4. Parameterised Triangle Inequality Assume that V is a non-empty
universal set and d : V 2 → R+ ∪ {0} is a distance function. More preciselty,
it is assumed that d for all u, v ∈ V satisfies the properties of discernibility
(d(u, v) = 0 ⇔ u = v) and symmetry (d(u, v) = d(v, u)). If, in addition, for
all mutually different u, v, z ∈ V , d satisfies the triangle inequality : d(u, v) +
d(v, z) ­ d(u, z), d is called a metric.
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Here, we introduce the following definition of parameterised triangle in-
equality :

Definition 4.1 Let V be a set, α ∈ R, 0 ¬ α ¬ 2. A distance function
d : V 2 → R+ ∪ {0} satisfies parameterised triangle inequality (α-PTI) with
parameter α iff for all mutually different u, v, z ∈ U :

d(u, v) + d(v, z) ­ αd(u, z).

α-PTI generalises the standard triangle inequality (for α = 1). 0-PTI is the
weakest variant, i.e. it is satisfied by any distance function d, and is equivalent
to so called semi-metric. Observe that the higher the value of the α parameter,
the stronger the property.

The value of α cannot be higher than 2:

Lemma 4.2 The value of 2 is the highest possible value for α in α-PTI.

Proof Assume that some distance function d : V 2 → R+∪0 satisfies α-PTI
for α > 2 with |V | ­ 3. Let u, v, z be three different elements of V . Let
introduce the following denotations: a = d(u, v), b = d(v, z), c = d(z, u). We
obtain directly from the definition that a+ b > 2c, that implies c < a+b

2 .
By summing up the following two inequalities obtained directly from the

definition: b + c > 2a and c + a > 2b and then using the above observation,
we obtain the following chain of inequalities (that makes a contradiction):

2a+ 2b < 2c+ a+ b < 2
a+ b

2
+ a+ b = 2a+ 2b.

(Quod erat demonstrandum)♦ �

Notice that since 2-PTI implies that all non-zero distances are equal,
that is equivalent to being a discrete metric (up to rescaling), the Facility
Dispersion Problem becomes trivial for the case α = 2.

4.1. PTI vs Relaxed Triangle Inequality In some works (e.g. [10])
an equivalent concept of ρ-relaxed triangle inequality (RTI) is considered in
the following form, for some ρ ∈ R+:

ρ(d(u, v) + d(v, z)) ­ d(u, z).

Obviously, such formulation is equivelent to α-PTI with ρ = 1/α with the
following observations:

• the case of semi-metric (α = 0) is not expressable by ρ-relaxed triangle
inequality
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• the range of possible values of α is bounded [0, 2], with the metric case
being exactly in the middle of that range (α = 1). For RTI its parameter
value has no upper bound and cannot be smaller than 1

2 .

• for PTI the higher the value of the parameter, the stronger the property,
while for the RTI it is the opposite

For the above reasons the α-PTI formulation seems a bit more natural than
that of RTI.

5. Improved Approximation Guarantees for α-PTI Case In this
section we present main results, i.e. we demonstrate that the approximation
guarantees for Max Sum and Max Min Facility Dispersion problems gen-
eralise from the value of 2 (for metric case) to the value of 2/α when the
distance function d satisfies α-PTI for 0 ¬ α ¬ 2. The longer proofs are
presented in the Appendix.

5.1. 2/α Approximation Guarantee for Max Sum Dispersion Sat-
isfying α-PTI

In this subsection we present a theorem that generalises and extends the
2-factor approximation guarantee of the algorithm presented in Algorithm 1
for the case when the function d satisfies α-PTI. The algorithm, under the
name HRT, was presented in [14] together with a proof for a metric case.
Our proof of this theorem, is an adaptation of the one presented in [13] by
properly introducing the α parameter and is presented in the Appendix.

Theorem 5.1 Let I be an instance of Max Average Dispersion problem with
distance function d satisfying α-PTI for 0 < α < 2. Let’s denote by OPT (I)
the value of an optimal solution and by HRT (I) the value of the solution
found by the algorithm HRT . It holds that OPT (I)/HRT (I) < 2/α.

As mentioned in Section 3.1, the result applies equivalently to the Max Sum
Dispersion problem. For the value of α = 2 the problem becomes trivial, since
d becomes a discrete metric in such case.

5.2. Tight Example for Max Sum Dispersion We show here that
the 2/α bound for the algorithm for Max Sum Dispersion with α-PTI pre-
sented in Algorithm 1 is (asymptotically) tight.

Let the graph G(V,E), where |V | ­ 2p, M = 2/α, m = βM = 2β/α,
for some 0 < β < 1 (intentionally, close to 1 )contain exactly bp/2c edges of
weight M and exactly one p-clique, call it C, within which all the edges have
weights of m, and all the other edges have weight of 1. Note that α-PTI is
satisfied.

The HRT algorithm will select the ends of the bp/2c edges of weight M
and, in case p is odd, any arbitrary vertex that brings a total weight of (p−1).
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But the optimum, for β being sufficiently close to 1, is the set of vertices
of the p-clique C, with the value of OPT = p(p− 1)m/2. Thus, we have:

OPT/Heven =
p(p−1)

2 m
p(p−1)

2 + p
2(M − 1)

=
m

1 + (M−1)
(p−1)

,

OPT/Hodd =
p(p−1)

2 m
(p−1)(p−2)

2 + (p−1)
2 (M − 1) + (p− 1)

=
m

1 + (M−1)
p

.

Both the above expressions, for sufficiently large p are arbitrarily close to
m = 2β/α that is arbitrarily close to 2/α for β < 1 sufficiently close to 1.

In [14] there is presented another than the one presented in Algorithm 1,
even simpler, greedy algorithm for solving Max Sum Dispersion Problem. The
algorithm, in each iteration, adds to the solution the ends of the heaviest cur-
rently available edge and removes all the incident edges, until 2bp/2c vertices
are collected. If p is odd, at the end it adds one arbitrary vertex to the solu-
tion. In [14] it is proven that this algorithm also provides 2-approximaition
guarantee for Max Sum Dispersion Problem. The above tight example works
also for the latter algorithm.

5.3. 2/α Approximation Guarantee for Max Min Dispersion Sat-
isfying α-PTI

The following theorem is a generalisation and extension of the result [16]
of 2-approximation for Max Min Dispersion satisfying standard triangle in-
equality.

Theorem 5.2 Let I be an instance of the Max Min Dispersion Problem where
the distance function d satisfies α-PTI for 0 < α ¬ 2. Let OPT(I) denote
the optimum value of the objective function fMIN (see Equation (1)) for this
instance and GMM(I) denote the value of the solution found by the GMM
algorithm for I (Algorithm 2). Then OPT (I)/GMM(I) ¬ 2/α, i.e. the GMM
algorithm provides 2/α-approximation guarantee for this problem.

The proof is presented in Appendix A.2 and constitutes an our extension
of the one presented in [16] by properly introducing the parameter α.

5.4. Lower Bound for Max Min Dispersion with α-PTI For metric
cases the 2-factor polynomial approximation algorithm is the best that exists
for Max Min Dispersion problem, assuming P 6= NP [16].

Below, we present a generalisation of this to the case of α-PTI.

Theorem 5.3 Assume that the distance function d satisfies α-PTI for 0 <
α < 2, and that β < 2/α is a real positive number. There is no poly-time
algorithm for Max Min Dispersion with approximation factor of β unless
P = NP .
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Proof Imagine an instance (G(V,E), p) of the Maximum Independent Set
problem, decision version: “Does there exist an independent set of size at
least p in the given graph G”? Let’s set weights of edges in E to 2/α and add
all the other possible edges of weight 1. A polynomial-time β-approximation
algorithm for Max Min Dispersion problem on such modified graph would
return the value of 1 iff the answer for the question is positive i.e. solve an
NP-hard problem. (Quod erat demonstrandum) ♦

To complete the above result, one can notice that for the value of α = 2,
as explained in Section 4, all the pairwise distances in V are the same, and all
feasible solutions to Max Min Dispersion have the same value. Thus, formally,
the guarantee of approximation factor of 2/α = 1 also holds.

6. Practical Applications of the Results

6.1. α-PTI in Practical Computational Problems In practical ap-
plications, the input dataset V is always finite. Here, we make the observation
that this fact implies that the distance function d always satisfies α-PTI for
some 0 < α ¬ 2. To practically find the actual maximum value of the α
parameter it suffices to check all triples u, v, z ∈ V in O(|V |3) time, so that
the α-PTI is satisfied as follows: α = minu,v,z∈V [d(u, v) +d(v, z)]/d(u, z). By
this way, it is possible to guarantee a constant-factor of the approximation
algorithms for Max Sum and Max Min Dispersion problems even if no other
theoretical properties about the distance function are known. In particular,
in the metric case, it is always possible to guarantee better than 2 approx-
imation factor in practical applications (unless there are no “degenerated”
triangles in the data).

In the on-line variant of the considered problems (i.e. when data comes
in time), α can be systematically updated while data comes.

6.2. Applications to the Result Diversification Problem in Web
Search, etc.

In this section, it is demonstrated how the theoretical results from Sec-
tion 5.1 impact some important recent applications in information sciences
including web search and others.

In web search, the problem known as Result Diversification Problem can
be specified as follows [12]. There is given a set V of documents that are
potentially relevant to a user query, a number p ∈ N+, p < |V |, a document
relevance function w : V → R+ and a document pairwise dissimilarity func-
tion d : V 2 → R+∪{0}. The task in this problem is to select a subset P ⊆ V
that maximises the properly defined diversity-aware set relevance function.
For example, in [12] the following objective function (to be maximised) is
proposed as the diversity-aware relevance function:
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fdiv−sum(λ, P ) = (p− 1)
∑
v∈P

w(v) + 2λ
∑

{u,v}⊆P
d(u, v). (2)

The λ ∈ R+∪{0} parameter controls the balance between the relevance term
and the diversity term.

The same work explains that by a proper modification of d to d′ (see
Equation (3)) it is possible to make the described problem of maximising
fdiv−sum(λ, P ) equivalent to maximising

∑
{u,v}⊆P d

′
λ(u, v), where:

d′λ(u, v) = w(u) + w(v) + 2λd(u, v). (3)

In this way, the result diversification problem described above is equiva-
lent to the Max Sum Dispersion problem for d′λ. 1

It is also claimed in [12] that d′ is a metric if d is such. 2

Notice that, due to the observation in Section 6.1 the following concluding
Lemma 6.1 extends the application of the results presented in this paper to
the result diversification problem on any finite datasets.

Lemma 6.1 If distance function d satisfies α-PTI, for some 0 < α ¬ 1,
then the modified distance function d′λ defined in Equation (3) also satisfies
α-PTI.

Proof d′λ(u, v) + d′λ(v, z) = 2w(v) + w(u) + w(z) + 2λ(d(u, v) + d(v, z)) ­

­ 2w(v) + w(u) + w(z) + 2λαd(u, z) ­

­ 2w(v)+α[w(u)/α+w(z)/α+2λd(u, z)] ­ αd′λ(u, z). (Quod erat demonstrandum)

♦ �

The diversification problem has other interesting applicaitons than in web
search. For example, the problem of optimising the fdiv−sum(λ, P ) objective

1Considering the Max Min Dispersion Problem, [12] also considers a variant of bi-criteria
objective function: fdiv−min(λ, P ) = minu∈Pw(u)+λminu,v∈P d(u, v) and the authors seem
to suggest that maximising it is equivalent to the Max Min Dispersion by defining a mod-
ified distance function d′λ(u, v) = (w(u) + w(v))/2 + λd(u, v). But this is, unfortunately,
not true, in general. To see this consider the following example: V = {u, v, z}, w(u) =
1, w(v) = 1, w(z) = 20, d(u, v) = 10, d(v, z) = d(z, u) = 1, p = 2, λ = 1. In this example,
fdiv−min(λ, P ) is maximised for P = {u, v} but f ′div−min(λ, P ) = minu6=v∈P d

′
λ(u, v) is

maximised for P = {u, z} or P = {v, z}. Furthermore, it is necessary to make the discerni-
bility property satisfied by explicitly setting d′λ(u, v) = 0 for u = v since this condition is
necessary in the proof of approximation factor of 2 that authors of [12] refer to (see the
proof of Theorem 5.2, in the Appendix, more precisely, the property of non-emptiness of
S∗i ).
2Formally, this is not true in the form proposed in [12] because the discernibility property

would be not satisfied by d′ (see Equation (3)). A simple explicit addition of d′(u, v) = 0
for u = v, however, makes this claim correct.



252 Approximation Guarantees for Max Sum and Max Min Facility Dispersion

function has been recently adapted to the novel context of diversified entity
summarisation in knowledge graphs [15, 18].

7. Conclusions and Future Work In this work we gathered some basic
theoretical results concerning approximation guarantees for metric cases of
Max Min and Max Sum Dispersion problems and generalised them to the
case of parameterised triangle inequality.

Despite the results were obtained mostly by simple extensions of the ex-
isting proofs, it was demonstrated that they may have additional practical
impact on computations on real, finite datasets and, in particular, on recent
important diversity-related applications in information sciences as in [12]
or [15], for example.

α-PTI property not always affects the guarantees of approximation algo-
rithms in the same way as in this paper (see [1] for example).

In the context of practical computations, it would be interesting to study
which distance metrics used in practical applications (such as the measure
described in [10]) satisfy α-PTI and what is the value of the parameter.

A. Proofs In this Appendix we present two longer proofs of theorems
presented in previous sections.

A.1. Proof of Theorem 5.1 from Section 5.1
The following, including the Lemmas, Theorem and their proofs consti-

tute our extensions of the versions presented in [13][pp. 38-8–38-9] (earlier
variants were in [14]). The extensions presented here consist mostly in prop-
erly introducing the parameter α.

Let us introduce some denotations. Let V ′ ⊆ V be a non-empty sub-
set of vertices. Let G(V ′) denote the complete graph induced on V ′ and
W (V ′),W ′(V ′) denote the total weight and average weight of edges in G(V ′)
respectively. By analogy, for a non-empty subset E′ ⊆ E of edges, let denote
by W (E′) and W ′(E′) = W (E′)/|E′| the total and average weight of the
edges in E′, respectively. We use the following technical Lemma, presented
in [14].

Lemma A.1 If V ′ ⊆ V is a subset of vertices of cardinality at least p ­ 2
and M

′∗ is a maximum-weight bp/2c-matching in G(V ′), then W ′(V ′) ¬
W ′(M

′∗).

A very short proof, presented in [14] does not assume anything on the
distance function d, so that we omit it here.

Lemma A.2 Assume that the distance function d satisfies α-PTI for some
0 < α < 2. If V ′ ⊆ V is a subset of p ­ 2 vertices and M is any bp/2c-
matching in G(V ′), then W ′(V ′) > (α/2)W ′(M).
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Proof (of Lemma A.2) Let M = {{ai, bi} : 1 ¬ i ¬ bp/2c} and let denote
by VM the set of all vertices that are ends of the edges in M . For each edge
{ai, bi} ∈ M let Ei denote the set of edges in G(V ′) that are incident on ai
or bi, except the edge {ai, bi} itself. From α-PTI we get that for any vertex
v ∈ VM \ {ai, bi} we have d(v, ai) + d(v, bi) ­ αd(ai, bi). After summing this
inequality over all the vertices in VM \ {ai, bi} we obtain:

W (Ei) ­ α(p− 2)d(ai, bi). (4)

There are two cases:
Case 1: p is even, i.e. bp/2c = p/2. After summing up the Inequality 4

above, over all the edge sets Ei, 1 ¬ i ¬ p/2, we obtain, on the left-hand
side, each edge of G(V ′) twice, except those in M . Thus, 2[W (V ′)−W (M)] ­
α(p− 2)W (M). If we substitute in the last inequality W (V ′) = W ′(V ′)p(p−
1)/2 and W (M) = W ′(M)p/2, and divide both sides by p, we can quickly
get to W ′(V ′) ­ (α/2)W ′(M)[p − 2 + (2/α)]/(p − 1), that is equivalent to
W ′(V ′) > (α/2)W ′(M) (for α < 2). This completes the proof for the Case 1.

Case 2: p is odd, i.e. bp/2c = (p−1)/2. Let x be the only node in V ′ \VM
and let Ex denote the set of all edges incident on x in G(V ′). By α-PTI we
get:

W (Ex) ­ αW (M). (5)

Let’s again sum up the previous Inequality (4) over all the edges Ei,
1 ¬ i ¬ bp/2c. On the left-hand side, each edge in G(V ′) occurrs twice,
except the edges in M (that do not occur at all) and the edges in Ex that
occur once, each. Thus, 2[W (V ′)−W (M)]−W (Ex) ­ α(p− 2)W (M). Now,
applying the Inequality (5), we obtain 2[W (V ′)−W (M)] ­ α(p−1)W (M). If
we now substitute W (V ′) = W ′(V ′)p(p−1)/2 and W (M) = W ′(M)(p−1)/2
and divide both sides by (p − 1)/2 we will quickly obtain that W ′(V ′) ­
(α/2)W ′(M)[p − 1 + (2/α)]/p that is equivalent to W ′(V ′) > (α/2)W ′(M)
(for 0 < α < 2). This completes the Case 2 and the whole proof of the
Lemma. (Quod erat demonstrandum)♦ �

The following proof of Theorem 5.1 is an extension of the one proposed
in [14] (and later presented in [13]) by properly introducing the parameter α.

Proof (of Theorem 5.1 from Section 5.1) Let P ∗ and P be the set of nodes in
an optimal solution and that in the solution returned by the HRT algorithm
for instance I, respectively. By definition, OPT (I) = W ′(P ∗) and HRT (I) =
W ′(P ). Let M∗ and M denote a maximum-weight bp/2c-matching in P ∗ and
in P , respectively. By Lemma A.1, we get:

OPT (I) ¬W ′(M∗). (6)

In addition, from Lemma A.2 we get:
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HRT (I) > (α/2)W ′(M). (7)

Now, because the algorithmHRT finds a maximum-weight bp/2c-matching
in G, we get W ′(M) ­ W ′(M∗). This, together with the Inequality (6) and
Inequality (7) implies that HRT (I) > (α/2)W ′(M) ­ (α/2)W ′(M∗) ­
OPT (I)/ 2

α that completes the proof of the theorem. (Quod erat demon-
strandum)♦ �

A.2. Proof of Theorem 5.2 from Section 5.3 The proof consti-
tutes an extension of the one presented in [16] by properly introducing the
parameter α.

Let define λ = 2
α , where α is the value of the parameter in α-PTI satisfied

by the distance function d. Let P denote the set-valued variable used in GMM
presented in Algorithm 2. By induction on size of P we will show the following
condition:

fMIN (P ) ­ OPT (I)/λ (8)

holds after each addition to P . After the last addition to P , GMM(I) =
fMIN (P ) holds, that would imply the theorem.

Initially, the condition holds due to adding two vertices joined by the
heaviest edge in V to P . Let’s make the inductive assumption that the con-
dition holds after k additions to P , for some 1 ¬ k < p− 1 (notice that after
k additions P contains k + 1 elements). It will be proven that the condition
also holds after the (k + 1)-th addition to P .

Let P ∗ = {v∗1, . . . , v∗p} denote an optimal solution to I and let l∗ =
OPT (I).

Observation 1: d(v∗i , v
∗
j ) ­ l∗ for any i 6= j, due to the minimality of l∗.

Let Pk = {x1, x2, . . . , xk+1} denote the set P after k additions for 1 ¬
k < p − 1. Because GMM adds at least one more node to P the following
holds:

Observation 2: For 1 ¬ k < p− 1, |Pk| = k + 1 < p.

Let, for every v∗i ∈ P ∗, define S∗i = {u ∈ V | d(v∗i , u) < l∗/λ}. Notice that
for any 1 ¬ i ¬ p, S∗i 6= ∅, since v∗i ∈ S∗i due to the discernibility property of
the distance function d (see Section 4).

Furthermore, for any 1 ¬ i < j ¬ p, S∗i and S∗j are disjoint. To prove
this, assume the opposite, i.e. that S∗i ∩ S∗j 6= ∅ for some i 6= j. Let u ∈
S∗i ∩S∗j . Thus d(v∗i , u) < l∗/λ and d(v∗j , u) < l∗/λ. This, together with α-PTI
implies αd(v∗i , v

∗
j ) ¬ d(v∗i , u) + d(v∗j , u) < 2l∗/λ = αl∗ that is equivalent to

d(v∗i , v
∗
j ) < l∗. But this would contradict the Observation 1.

Thus S = {S∗i }1¬i¬p constitutes a family of p non-empty and pair-wise
disjoint sets. Thus, since for k < p − 1, Pk has strictly less than p elements
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and there are p nonempty sets in family S there must be at least one index
r, 1 ¬ r ¬ p such that S∗r ∩ Pk = ∅.

Due to the definition of S∗r , for each u ∈ Pk, d(v∗r , u) ­ l∗/λ. Due to the
fact that v∗r is available for selection in the k+ 1-th step of GMM and GMM
will select a vertex v ∈ V \ Pk that maximises minv′∈Pkd(v, v′) among all
the vertices in V \ Pk it is implied that the condition (8) still holds after the
(k + 1)-th addition to P (having made the inductive assumption). (Quod
erat demonstrandum)♦
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Gwarancje współczynnika aproksymacji dla problemów Max Sum
(i Max Min) Facility Dispersion z parametryzowaną nierównością

trójkąta i zastosowania w dywersyfikacji wyników
Marcin Sydow

Streszczenie Problem „Facility Dispersion”, pierwotnie studiowany w badaniach
operacyjnych, znajduje od niedawna nowe ważne zastosowania w podejściu polega-
jącym na dywersyfikacji wyników w naukach informacyjnych.

Jest to problem optymalizacji dyskretnej polegający na wyborze niewielkiego zbioru
p elementów z pewnego dużego zbioru kandydatów tak, aby zmaksymalizować pewną
funkcję celu. Funkcja ta wyraża „rozproszenie” wybranych elementów, za pośred-
nictwem pomocnicznej miary odległości par elementów. Problem jest NP-trudny w
większości znanych wariantów, lecz istnieją algorytmy aproksymacyjne o współczyn-
niku 2 dla niektórych z nich, gdy miara odległości jest metryką.

W artykule zaprezentowano twierdzenia, które uogólniają znane wyniki do przy-
padku gdy miara odległości spełnia parametryzowaną nierówność trójkąta z para-
metrem alfa, dla wariantów „Max Sum” oraz „Max Min”problemu. Wyniki dotyczą
zarówno osłabionej jak i wzmocnionej nierówności trójkąta.

Zademonstrowano także potencjalne zastosowania powyższych rezultatów w proble-
mie dywersyfikacji wyników w takich dziedzinach jak wyszukiwanie informacji czy
podsumowania encyj w semantycznych grafach wiedzy, jak również w praktycznych
obliczeniach na skończonych zbiorach danych.

2010 Klasyfikacja tematyczna AMS (2010): 68, 68U35, 68W25.

Słowa kluczowe: dywersyfikacja, problem dyspersji, parametryzowana nierówność
trójkąta.
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