ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO ’
Seria III: MATEMATYKA STOSOWANA XXXV (1992) ms pltm

W. KozLOWSKI

Warszawa

The power method for the generalized eigenvalue problem

{(Praca wptyneta do Redakcji 1.08.1992)

Abstract In this paper the Power Method for the generalized eigenvalue problem for
matrix pencil (A— AB)z = 0 is considered. At any step of this iterative process the system
of linear algebraic equations By = Az has to be approximately solved with respect to y.
We try to answer the question: how accurately we have to solve this system on each step
of iteration,in order to guarantee resolution of the eigenproblem with given precision.

1.Introduction Let A, B denote n X n matrices. We have to find such
pairs (A, v) - where A is scalar (eigenvalue) and v is a nonzero n-dimensional
vector (eigenvector coresponding to A) - which satisfies the equation:

(1.1) (A-ABywv=20
If matrix B is nonsingular this problem is equivalent to the standard eige-

nvalue problem for matrix B~ A. Following iteration process is called the
power method for matrix pencil (A4, B):

o
(1.2) Byry1 = Azy
Yr41
T4l =
Ykl

Where z¢ is an initial vector. As in the standard Power Method the vector
sequence {x,} generated in this way in general converges to the eigenvector
corresponding to the largest (in absolute value) eigenvalue of the pencil
(A,B).

In this paper three conditions involving matrices A, B will be assumed:

C1) A, B are Hermitian n X n matrices.

C2) Matrix B is positively definite i.e:

VeeC", z#0 (Bz,z);>0
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where (, )2 denotes the standard scalar product in the space C™.

C3) Matrix A is nonsingular.

The conditions (C1) and (C2) guarantee that in the spaceC™ there exists
basis {v;}, consiststing of eigenvectors of the pencil (A, B). Moreover all
eigenvalues A; (A; corresponds to v;) are real and corresponding eigenvectors
{v:}2, may be chosen orthogonal in the following sense:

(1.3) Vi, j € {1...n}(Bv,~,vj)2 = 6,',]'

Condition C2 could be replaced by the following one :
C4) There exist a positively definite linear combination of matrices A,B
i.e:
Jp1, po € C such that matrix gy A + g2 B is positively definite.
It is easy to see that pencil (u1 A, pt1 A + p2 B) has the same eigenvectors
as (A, B). More details concesing these facts may be found in [1].
DEFINITION 1.1 Let B be nxn Hermitian, positively definite matrix,put:

(z,9)5 Z (Bz,y),  (lells)* ¥ (z,2)5 Yo,y € O™

We call || ||p the energetic norm related to the matrix B.

Relation (1.3) indicate that the vectors {v;}2; form an orthonormal basis
in C™ with respect to the scalar product (, )g. This important property of
eigenvectors of the matrix pencil (A, B) simplify investigation of the process
(1.2) when the norm || || p is used.

The following theorem gives relation between norm || ||g and the stan-
dard norm || ||z in the space C™.

THEOREM 1.1 For each x € C™ and positively definite Hermitian n X n
matriz B:

X
sz < Nl < (18R el

Proof. The right inequality follows from the Schwarz inequality:

(lzll)? = (Bz,z): < ||Bzllzlizl2 < IIBll2(lizll2)°-
The left inequality follows from the above inequality applied to the norm
5-1:
(Nzll2)* = (BB 'a,2); = (B~'z,2)p < [| B '2|lsllell5 =
= llzll-1llzlls < (1B [l2)* 2 llzllzll=]l 8
]
In the continuation of this article the vectors {v;}2; will denote eigenvec-

tors of the pencil (A, B) which satisfy equations (1.3) and A; will denote the
eigenvalue corresponding to v;. It will be assumed that for every & ||zx||p = 1
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i.e: in every step of iteration (1.2):

Ye+1
Tpy1 = ————  hold.
7 Nlyksalls

2. Convergence of the sequence {z,} Existence of n linear indepen-
dent eigenvectors of the matrix pencil (A, B) imply the linear convengence
of iteration process (1.2).

Suppose that:

(21) AM=X=...= A, and |/\1|>|/\T+1|>...>|/\ l

The value: £ = Qef "\"'1' will be called coeficient of convergence for matrix
pencil (A, B). We have £€0,1).

Let V;be the subspace of C™ spanned by all eigenvectors corresponding
to Ay: Vy; = span(vy ...v,).

THEOREM 2.1 Let zp = Y., a;v; where a; € C for i € {1...n} and
Si_q1|lei| > 0. Then for every k € N there exists vector w € Vyy, |Jw|lp = 1
such that

€k [Zz—r+l| 1| ]1/2
(S le2)]?

Proof. From definition of the Power Method (1.2):

2 — wlls

_ (B_IA)kIL‘o
M) o = BT Dzl
(2) (B A)rzo = Y ai(Mi)Foi = M F za v + Z ai(A)F A1 o;)?
=1 i=r+1

Here s denotes the sign of (A;)*. As {A;(A1)| < € < 1 (fori > 7) from (1) and

(2) follows easily that zx converges to the vector: w = "s s a' T hence

i=1

w € V; and ||w||p = 1.
To make it more clear put:

n

a= zr:ai'vi b= Z ai(A:)*| M| F v,
i=1

i=r+1

Orthonormality of eigenvectors of the pencil (A, B) gives following inequ;l,—
lities:

n 1/2 n
(3) ol = [D laalPI0PH AL 2] < €[ Y Jaal?]?
i=1

t=r+1
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n 1/2
(@) la+blm = (ol + 1817 2 llells = | Y o]

i=r+1
From (1),(2) and definition of vectors a, b follows:
(5) ek — wllp = [l(a + 8)(lla + bll5) ™" — a(llal) ™" lI5 =
= (lla + blisllallz) " lllalls ~ lla + blls)a + llallsblls < 2llblls/lla + blls

Thesis follows from (3),(4) and (5).

3. Residual vector and error of one step of the iteration At each
step k of the Power Method (1.2) we have to solve the linear system with
matrix B:

(3.1). By = Ady,

Let’s consider now one step of iteration starting from vector dj. (||di||p = 1).
Let y, # 0 be an aproximation of the solution y (y = B~! Ady) such that
the residual vector r = By, — Ad}. of the linear system (3.1) associated with
y, satisfies the inequality:

(3.2) Irlla < 6,
Let:

(3.3) det1 = y/llyllB
(3.4) k1 = Ya/ l|vall

Define the error e, at this step as:

(3.5) €k def [|zk+1 — di+1l|B

Hence e, is the error of single step of the power method,result of not exact
solution of system (3.1) and calculed in the norm || ||. Following theorem
answers the question how the value e, depends of §,.

THEOREM 3.1
_ 1/2 _
ex < 2[1B|Is] /I Bll2 N A~ 126,

Proof. Assumptions imply:
By — Ad, =0
By, - Ady =r and lirll2 < 6,
Hence:

B(ya—y)=r

ya_y=B_l7‘
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lva — yllz = 1B~ il = ||l g1
Applaying theorem (1.1) to || || g-1 we get:
—1p 11/2 1y 11/2
1) lva = iz < (1B~ ) lirlle < [1B=11] %4
From (1) and from general properties of vector norm:
ek = ||ya/ll9all = v/llyllBll5 =

= (lyllallyallz) " 1(vall9lls — Yallvalls + vallgallz — yllvalls)ll <
< (Iyllallyall )~ yalla(Ullyall = 1¥ll8] + l1ya — yllB) <
- _ - 1/2
< 2({lyls) "My - valls < 2(lwll5) 1B 1] V26
The last inequality imply:

2[|1B~|12] /%S,

2 er <
) “= BT AT
Applaying theorem 1.1 to norm || || g-1 we get:
(3) 1B~ Adi|lp = || Adklls-1 2 | Adill2/(1|B])2)"/?
lldellz = |47 Adil2 < [|A7!||2]| Adill2, hence
1 1A~

(4) <

[Adellz = lldk]l

Appplaying again theorem 1.1 we get:
1/2
) 1 (IBlk)
lldll2 = lldklls
The thesis follows by (2),(3),(4),(5). m

= (I1Bl2)"/*

4. Accuracy of aproximation of eigenvector For lemma 4.1,4.2,4.3
will be applied following notation. Consider agai)n one step of power method
for matrix pencil (A,B) starting from vector di, ||dk||s = 1.

Let dit1, 2k+1, ex be defined by equalities (3.3),(3.4),(3,5) respectlively.
ie.: dx41 is an exact vector calculated by Power Method after one step, 241
is a vector calculated after one step of power method when the linear system
is solved not exactly and ey is an error of this iteration.

Let a; jforz € 1...n,j € k,k+ 1 be such complex numbers that

n n
(4.1) d]' = Zai,jvi = wj + Z Q50
i=1

i=r+1

where {v;}? ; are the eigenvectors of pencil (A, B) orthormal with respect
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to (, )p- Since ||d;llp = 1 for j = k,k + 1 we have:

n

(4.2) S el =1

i=1
Assume that cooresponding eigenvalues satisfy relations (2.1). Hence the
vector wg € V1 and wy is the orthogonal projection (with respect to (, )}g)
r _

of di on subspace Vy; i.e: wgx = ) (d,v)pv;. Hence:

i=1
(4.3) llwk — dellp = min |lw—dk|B
w€EVi
Now define for j = k,k + 1:
de . w;
vi  lwillz andify; #£0: w; €
llwjllz"

LEMMA 4.1 If‘)’j # 0 then u; € Vi, ||uJ||B =1 and:
luj —djlls = min [lw—djlls

lwlig=1

Proof. Relation (4.2),definition of 7; and orthonormality of eige- nvec-
tors v; imply:

(1) (Ild; — u5liB)* = (l‘j —uj,dj —u;)p =
= Zlam i j(7;) P+ Z IO‘m|2

i=r+1
n

== ()P el +1=(3)) =

i=1
=[1= ()P () + 1= (1) = 2(1 - ;)
T
Let w € V1 be an arbitrary vector such that ||w||p = 1. Put w = 3 s;v;

i=1
(si € C).Since v; are orthonormal we have:

-
dolsl?=1
=1

Applaing Schwarz inequality we get:

@) (lw=dille)* =D lai; —sil* + Y leisl 2

i=1 i=r+1

.
> Y (leil = lsi)? + 1= (1) =
i=1
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= Z lsil® + Z i ;12 — Q(Z |sillei i) + 1= (v;)* =

=1+ (7;)* - 2(2|s,||a,,1|)+ 1- ()% =201~ (Z |sillei ;1) >

N

2(1- Z| z|2]1/2[2| aijl’] 1/2 =2(1-7;)

Now thesis fo]lows by (1) and (2). .

With the same notation we have for j = k,k+ 1: ;[ 0, || ]1/2
hence: 0 <v; <1 and y; = 1if and only if d; € V.
From definition (1.2) of power method, ;41 depends on 7, as follows:

Tk
(4.4) Vi1 = -
()2 + Diert1 lai,k|2]’\i|2|’\1|—2]1/2

LEMMA 4.2 If v > 0 then:

5 1
(k1 — urs1llB)? < (lldk — ukllB)® — 2% |:[(,7k)2 ) 1 (O 1}

Proof. As in proof in lemma (4.1) we calculate:
(Nde — ukllB)* = 2(1 = &),

(ldesr — v llB)® = 2(1 = Ye41)-
Hence and from (4.4) follows that:

(Ildx — url|B)® = (lldks1 — vrs1llB)? = 20741 — 7&) =

27"[ n : 172 1} 2
[(76)? + im g lo k212012 A1) =2

271:[ - ! ) 1/2—1}2
[(ve)? + (1 e k)(€)?)

1
27k [ 172 - 1}
[(r)? + (1 = (7%)2)(€)?]
This inequality is equivalent to the inequality in thesis of lemma. n

Remark. The inequality in lemma 4.2 is equivalent to the following

one:
i - > mj —d
Jnin v —dillp 2 min v~ disllp
lwlig=1

Both terms are equal if and only if 4, = 1 i.e dx € V3.
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Let f:[0,1] — R be a function defined as follows:
1/2

Fn) & (2172 {(1— A S L 7
! ! [ (1) (€12 + (6] /]

where £ € [0,1) is the coeficient of convergence of matrix pencil (A4, B).
This function for any £ € [0,1) has the following properties: — f is

nonnegative and takes the value 0 only for ¥ =0 or vy = 1. — f is concave.
Graphs of f() for various values of parameters { are given below.
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LEMMA 4.3 .

i) If ex < f(vk) then: ||zk41 — ursillB < lldk — ukl||B. In other words if
in this iteration we calculated not ezact vector dyy, but some vector
zkt1 such that: ||zxy1||B = 1 and ||zk41 — di1llB < f(7k) then zxy, is
not worse aprorimation of eigenvector of pencil (A, B) than dy, in the
following sense:

min ||w—dg]|p > min ||Jw - 241 B
wEVyy,

we€Vyy,
lwilg=1 vl pail
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it) Let o be real number and 0 < o < 1. If ex < of(yx) then: ||zk41 —
uks1l|B < |lde — ukllB — (1 = o) f(7x)-
Proof.

(1) |lzk41 —uks1llB = 2641 —dig1+dig1 — trsrllB < ex+|lditr —urt1llB

From (1) and from lemma 4.2 follows that:

(2)

1
llzk+1—vk+1llB < ex+ [(Ildk—uk||3)2—27k[

1/2
mv4mwuwwf4]

Consider the inequality:

(3)
ex +

1
[(v)? = (€7)* + (€

Observe that ||dy — ux||B = [2(1—7k)]!/%. After algebraic reduction, inequal-
ity (3) turns to be equvalent to following one:

(4) ex < f(7k)
So if (4) is true then (3) is true and because (3) implies that: ||zx41 —
ugt1||p < ||de — uk||p then (i) is proved. Implication (ii) follows simply
from (3). and assumption about e in (ii). ]
Now let {z;} be the sequence of vectors generated by Power Method
(1.2) when in each step of iteration system By = Az is solved aproximately
(i.ein every step z; being normalized approximate solution of this system).
For every k ||zx|]|B = 1. ex — is the error at single k-th step of iteration
calculated in norm ||| i.e: if di41 is the exact vector calculated after one
step of Power Method starting from z, then: ex = ||2x41 — di+1]| B- Let:

1/2
(I - wela)” - 22 mm—ﬂ] < llds - el

n
=) Bigvi, Vik Pix€C,
i=1

r

Pr = Z[lﬂi,k|2]l/2-

i=1

THEOREM 4.1 Let py > 0; 0 < ¢ < (2)'/2
Put:

81 < 6 < 0.5min[f(po), f(1 - g)l

le N: 1%

If for every k e, < §; then:
Ime Nm<X[,3w € Vyy,||lwllp=1 such that: |z, —w|p <c.

Ent[([l20 — uoll B — €)(6) 7] +1
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If 61, ¢ are so small that 1 — 0.5(¢ + 61)* > vo then for each k > m:
Jw € Vi, |lwlle=1 such that: ||zx —w|lp <e+ 6

Proof. Define the vectors ug: ux def (px)t [ZLI ﬂivi] i.e: uy is nor-
malized orthogonal projection (relatively (, )g) ofzx on space V;. Hence
lemma 4.1 implies: '

Vk ur € Vi, ||lukllp =1 and
llue = 2xllp = min flw - 2|5
llwlig=1

It follows from relation: .

(1) |26 — willm = [2(1 = pe)]*/?
that the inequalities:

(2) flzk —ull < €

(3). pr > 1—0.5(¢)?

are equivalent for each ¢ : 0 < ¢ < 21/2,
Hence for every k € N:

(4) if ||zx — ukllp > ¢ then px < 1—0.5(¢)?
Now let’s observe that:

If for: € {0,1...k—1}: ||z — uil| B > € then:
(5)  |lzk —uk|lB < ||20 — uollB — ké and po < p1 < ... < pr—1 < pk-
This implication follows from assumption about e and from lemma 4.3 (ii)
with ¢ = 0.5.

From properties of function f and definition of § we get:
(6) 6§ <0.5f(p) foreach p:py<p<1—0.5().

Now let’s procede by induction to prove implication (5). for k = 1:

If ||20 — uo||p > € then from (4) : pg < 1 —0.5(¢)%.

Hence according with (6): e; <6 <0.5f(p). ~

From (ii) in lemma (4.3):

llz1 — u1lls < |l20 — uollB = 0-5f(po) < [|20 — uollB — &

From (1) follows that: pp < p1.

Assume that implication (5) is true for ¢ < k — 1 and and let’s proof it
for ¢ = k.

From assumption of induction we have:

l2k-1 — uk-1llp > & [lzk-1 — wk—alle < [0 — wollp — (k = 1)é;

Po<p1<...< Pr-1

So: po < pr-1 <1 —0.5(¢)* and hence e < 6§ < 0.5f(pr-1)..-
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Applying again lemma 4.3 (ii) we get:
llzk — wkllB < ll2k-1 = wk—1llB = 0.5f(pr-1) < l|20 — uo||B — k6.
Implication (5) is proved by induction.
The above says that until we do not calculate such good vector z,, that
l2m — umllB < € our procedure produces always better approximation at

next step then it was beafore,the error being diminished at least by §&.
Relation (5) implies that exists a natural number m (m < ) such that:

lzm — um||B < €.
For k = m + 1 since px > 1 — 0.5(¢)? relation (6) is not true and zpy,4q
may be worse approximation of eigenvector than z,,.
Let s > m + 1 be the first natural number such that:

(7) |2s-1 —us—1]lp < € and ||z, — us|lp > ¢
Denote as d, the exact vector calculated from z,_; after one step of Power
Method (1.2).

Let wy; € V1 be such vector that ||w,|lp = 1 and ||w, — ds||p =

min wevy, |lw—dsl|p ie:
Nwll g =1

_ E:=1(ds, vi)Bvi

X 1(ds, v) il 8

Because ||d; — w;|lp < ||25-1 — us—1||p < € (exact calculation gives always
not worse aproximation of eigenvector after one step — see lemma 4.2) we
have:

Ws

”Zs - ws”B < ”zs - ds”B + ”ds - ws”B < 61 + €
and:
||Zs - us”B < “23 - ws”B <6y +e.
This inequality and (7) implies:
1-05(e)> > ps > 1 - 0.5(c + 61)? > po

Hence the lemma 4.3 may be applied again because according (6): e, < § <
0.5f(ps). We have then:

”Zs+1 - us+1|IB < Ilzs - us“B - 05f(ps) < ”zs - us”B —-6<d+e-b=¢
Hence for every k& > m:

lzx — uklls <€+ &
(in fact in the worse case upper bound of ||z — ux|| g may oscilate arternately

between ¢ and € + §;). ]
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