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Abstract We present five nonstandard finite difference methods designed for the
numerical simulation of the simplified Anderson-May model of viral infection. The
proposed methods, based solely on the principle of nonlocal discretization, are able
to preserve all of the essential qualitative features of the original model: the non-
negativity of the solutions and local stability of the equilibrium points, along with
their stability conditions. One of the proposed methods preserves the types of the
equilibrium points (i.e. the presence and absence of oscillations) as well. All of these
results are independent of the chosen step-size of the simulation.
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1. Introduction. The nonstandard finite difference methods (or NSFD
methods / schemes) are numerical methods dedicated for mathematical mod-
els based on systems of differential equations [3, 1, 6]. The main idea that
lies behind this approach is that the continuous model should be discretized
in such a manner that the dynamics of the obtained difference equations are
qualitatively consistent with the dynamics of the original continuous model.
This is achieved by a combination of two discretization strategies: (1) intro-
duction of a special function of the step-size in the denominator of the discrete
derivative, and (2) nonlocal discretization of the model equations.

In this paper, we present five examples of NSFD methods designed for the
numerical simulation of the simplified (i.e. two dimensional) Anderson-May
model of viral infection [, 5|. This model is very significant for the mathemat-
ical modeling of the immune response, as it is often used as a basis for more
complicated descriptions of virus - immune system dynamics, see e.g. |7].

There exist several general NSFD methods that may be applied to the
simplified Anderson-May model (e.g. [2, 8]). All of these approaches preserve
the non-negativity of the solutions and the stability of the equilibria. What
makes our examples stand out among other approaches is that our NSFD
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methods are based solely on the principle of nonlocal discretization of the
mathematical model. The qualitative properties of the simplified Anderson-
May model are preserved without restrictions on the step-size, and therefore
there is no need for modification of the denominator of the discrete derivative.

As it turns out, one of the presented nonlocal discretization methods also
preserves the presence (or absence) of oscillations around the asymptotically
stable equilibrium point. This qualitative feature (the preservation of the
types of equilibrium points) is rarely investigated. As a consequence, in many
discretization methods, the choice of certain parameter values may lead to
qualitative inconsistencies with the original mathematical model.

2. The simplified Anderson-May model of viral infection. The
simplified Anderson-May model of viral infection describes the interactions of
the uninfected target cells () and infected cells (y). The model is a system
of two ordinary differential equations:

T = \—dr — By, (la)

y = Bxy — ay, (1b)
with a non-negative initial condition and positive values of the parameters.

Parameter A\ denotes the constant inflow of the uninfected cells (z). These
cells become infected by virus particles at a rate proportional to concentra-
tions of both uninfected (z) and infected cells (y) with proportionality pa-
rameter . The death rate of uninfected and infected cells is denoted by d
and a, respectively. For a more detailed biological interpretation of system (1)
and its parameters, see e.g. [1]| or [7].

The qualitative properties of the simplified Anderson-May model are well
known. The solutions of system (1) are non-negative. The model has two equi-
librium points. The observed outcome is governed by the basic reproductive
ratio of the virus (the average number of newly infected cells produced by a
single infected cell at the beginning of the infection):

_ B
~ad’
The first (virus-free) equilibrium is observed in the absence of infection (y(0) =

0) or when the viral replication is too low to establish a long term infection
(Ro < 1). In these cases solutions of system (1) converge to:

(Tof Yor) = (370)- (3)

In the case of Ry > 1, on the other hand, a successful infection is established
and solutions of system (1) converge to the following infection equilibrium:

Ry (2)

a A d) (4)

(ﬂfmf,ymf) = (B’E - E .
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The local stability analysis reveals that the virus-free equilibrium is always
a stable node, i.e. there are no oscillations around point (3). The type of
the infection equilibrium depends on the discriminant of the characteristic
equation:
A 2
A= (ﬂ) — 4(B\ - ad). (5)

a

In the case of A, > 0, point (4) is a stable node and no oscillations should be
observed. In the opposite case (A, < 0), point (4) is a stable focus, therefore
fading oscillations should always be present in the numerical simulations of
this case.

3. The nonlocal discretization. We start the discretization of sys-
tem (1) by replacing the left-hand sides of equations with discrete derivatives.
We use a standard form of the discrete derivative, the same as in forward Euler
or Runge-Kutta methods:

. Yn+1 — Un

y — h )

where h > 0 is the step-size of the simulation. Next, the variables on the right-

hand sides of equations (1) have to be replaced with their present (local) or

future (nonlocal) discrete approximations. There are many ways of how this

can be done. For convenience, we only consider the cases which do not put

restrictions on the step-size h for the non-negativity of x, 1 and y,41.
After some additional analyses, we arrive at the following five easiest pos-

sibilities of nonlocal discretization of system (1):

Tpi1 — T = h(N — dxyi1 — Brp?), (6a)

Ynt1 — Yn = h(BEY2 — ayny1), (6b)

where the triple (y1, Z,y2) is equal to one of the following:

(ym Tn, yn); (7&)
(yna Tn+1, yn)7 <7b)
(yn+17 xny yn)7 (7C)

(yn—i-l, Tn+1, yn)v (7d)
(Yn+15 Tnt1, Ynt1)- (7¢)

Each of the discretization methods given by Eqs. (6) - (7) preserves the
qualitative properties of system (1) independently of the chosen step-size
h > 0 (see Theorems 3.1 - 3.4 below). Please note that we provide proofs only
for the most complicated discretization case (7e). The proofs of Theorems 3.1 -
3.4 in four other cases (7a) - (7d) are either analogous or easier.
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THEOREM 3.1 For a non-negative initial condition (xg,yo) there exists a
unique and nonnegative solution of system (6) with (yi,,y2) given by any
of formula (7).

PROOF (case (7e)) It is sufficient to show that if x,,y, > 0 then there exist
unique and nonnegative x, 11, yn+1. From Eq. (6a), we have:

Tn + hA
14 hd+ hByn+1’
which substituted into Eq. (6b) yields:

A(h)y721+1 + B(h, T, yn)yn+1 + C(h,yn) = 0, 9)

(8)

Tpt+1l =

where:

A(h) = Bh(1 + ha),
B(hvxTL)yn) =1+ (_ﬁxn - Byn +a+ d)h + ((Id - B)‘)h27
C(hayn) = _yn(l + hd)

For any h > 0 and y,, > 0, we have A(h) > 0> C(h,y,), and thus quadratic
equation (9) has two real roots, one of which is non-negative. Therefore we
choose y,+1 to be the larger root of Eq. (9). The non-negativity of y,+1 yields
that x,,41 has to be non-negative as well (see Eq. (8)). n

THEOREM 3.2 The fixed points of discrete system (6) are equal to equilib-
rium points (3) - (4) of continuous system (1).

ProOF Each fixed point (Z,7) of system (6) satisfies:
0=2—2=h(A—dz — Bzy),
0=y —y=h(Bzy — ay).

Therefore, for all h > 0 the fixed points of system (6) are the same as equi-
librium points of system (1). n

THEOREM 3.3 The virus-free fixed point (3) of system (6) is a locally asymp-
totically stable node as long as Ry < 1, where Ry is given by (2).

PROOF (case (7¢)) The Jacobi matrix for (x,f,y,f) is equal to:

1 —BAh
hd i
and thus the eigenvalues of system (6) are:
1 d
" 1+hd P d+ (ad— BN

Under the assumption Ry < 1, we obtain that Ly, Ly € (0,1) for any step size
h > 0. Therefore (xyf,y,y) is locally asymptotically stable. Moreover, it is a
node. n
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Note that the converse assumption Ry > 1 makes the fixed point (z, ¢, yyf)
unstable (since Ly > 1, see the proof of Theorem 3.3). This result is consistent
with the qualitative behavior of system (1).

THEOREM 3.4 The infection fixed point (4) of system (6) is locally asymp-
totically stable as long as Ry > 1, where Ry is given by (2).

PROOF (case (7c)) The Jacobi matrix for (2;nf, yiny) is equal to:

1 a —a’h
a+ BA\h+a(BX —ad)h? | (BA—ad)h a+ BAL |’

thus the characteristic polynomial of system (6) takes the following form:

9 2a + BAh a

X == N+ a(Br —adi2 ™ T ¥ BN+ a(BA — ad)i?

(10)

It can easily be shown that under the assumption Ry > 1, the following
inequalities hold for all h > O:

2a + BAh

<2. (11)

Inequalities (11) guarantee that the characteristic polynomial (10) either has
two complex roots with magnitude less that one (since x(0) < 1) or two real
roots within the range (0,1). We conclude that the eigenvalues of system (6)
satisfy |L1],|L2| < 1, which entails the local stability of (inf, Yint)- n

Apart from ensuring the stability of the infection equilibrium, inequali-
ties (11) play a major role in the preservation of oscillations around the point
(Zing, Ying)- They yield that the real roots of characteristic polynomial (10)
have to be positive. Therefore, the presence of oscillations in discrete sys-
tem (6) is governed solely by the sign of the discriminant Ay of the charac-
teristic polynomial x(L). As it turns out, in the case of (7e) we obtain:

ah 2
Agis = Acon7 12
dis <a—|—5>\h+a(ﬁ>\ —ad)h2> (12)

where Ay, (5) is the discriminant of the characteristic polynomial of sys-
tem (1). Since the signs of A, and Ay are responsible for the presence
(or absence) of oscillations around the point (Zinf,Yinf), We arrive at the
following conclusion.

COROLLARY 3.5 The discretization method given by Eqs. (6) and (7e) pre-
serves the type of the infection equilibrium point (4) independently of the
chosen step-size. Oscillations around the point (x,f, yins) are simultaneously
present (or absent) in systems (1) and (6).
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Finally, we have to point out that although inequalities (11) hold true for
every considered discretization case (7), property (12) is unique for case (7¢).
In other cases, it is possible to chose parameter values and step-size h in such
a way that the qualitative oscillatory properties of systems (1) and (6) are
different. For example, the choice of @ = d and S\ = 2d? in the case (7a) gives
Agis < 0= Agpp, for all step-sizes h > 0, and therefore spurious oscillations
may be observed in the discrete system.

4. Numerical simulations In order to illustrate the results from Sec-
tion 3, we simulate the simplified Anderson-May model (1) using the dis-
cretization method given by (6) and (7e) (the explicit equations for this ap-
proach are (8) - (9)).

infected cells (y)
o
N

0 0.2 0.4 0.6 0.8 1
uninfected cells (x)

Figure 1: Stability of the wvirus-free equilibrium: node (13a).

We arbitrarily chose the following three parameter sets:

A=1, d=1, =1 a=2, (13a)
A=1, d=1, B=10, a=1, (13b)
A=1, d=1, =10, a=5. (13¢)

Parameter sets (13) correspond to different qualitative outcomes for sys-
tem (1). The simulations are started from five initial points, with step-size
h = 0.1 and time span t € [0,20]. The obtained results are presented in
Figs. 1 - 2.

Parameter values (13a) correspond to the case of Ry < 1 (see Eq. (2)),
and therefore the virus-free equilibrium point (3) is a locally asymptotically
stable node, as seen in Fig. 1.

The choice of either (13b) or (13c) gives Ry > 1 (2), and thus entails
the instability of the wirus-free equilibrium point (3) and local asymptotic
stability of the infection equilibrium (4). Depending on the parameter values,
this equilibrium point may be a stable node (13b) or a stable focus (13c).
Our numerical simulations (Fig. 2) are consistent with these mathematical
results.
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Figure 2: Stability of the infection equilibrium: (i) node (13b), (ii) focus (13c).
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O nielokalnej dyskretyzacji uproszczonego
modelu Andersona-Maya infekcji wirusowej.
Adam Korpusik, Marek Bodnar

Streszczenie Przedstawiono pie¢ niestandardowych metod réznic skonczonych za-
projektowanych do symulacji numerycznych uproszczonego (dwuwymiarowego) mo-
delu infekcji wirusowej Andersona-Maya. Proponowane przez nas metody sa oparte
wylacznie na zasadzie nielokalnej dyskretyzacji uktadu. Dzieki temu wszystkie wy-
niki dotyczace zachowania przez nie wlasnosci jakosciowych uproszczonego modelu
Andersona-Maya sa niezalezne od wybranego kroku symulacji. Prezentowane metod
zachowuja istotne cechy jakosciowe wyjsciowego modelu ciaglego, tzn. nieujemnosé
rozwiazania i lokalna stabilno$¢ punktéw stacjonarnych, wraz z warunkami ich sta-
bilnosci. Jedna z proponowanych metod zachowuje rowniez typy punktow stacjonar-
nych, co przeklada sie na obecnos¢ lub brak oscylacji w ich otoczeniu.

Klasyfikacja tematyczna AMS (2010): 65L12; 651.20.

Stowa kluczowe: niestandardowa metoda réznic skoriczonych, metoda NSFD, nielo-
kalna dyskretyzacja, model Andersona-Maya, infekcja wirusowa.
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