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AbstractWe consider a sequence of independent random variables with the known
distribution observed sequentially. The observation n is assumed to be a value of one
order statistics such as s : n-th, where 1 ¬ s ¬ n. It the instances following the nth
observation it may remain of the s : m or it will be the value of the order statistics
r : m (of m > n observations). Changing the rank of the observation, along with
expanding a set of observations there is a random phenomenon that is difficult to
predict. From practical reasons it is of great interest. Among others, we pose the
question of the moment in which the observation appears and whose rank will not
change significantly until the end of sampling of a certain size. We also attempt to
answer which observation should be kept to have the “good quality observation” as
long as possible. This last question was analysed by Ferguson, Hardwick and Tamaki
(1991) in the abstract form which they called the problem of duration.

This article gives a systematical presentation of the known duration models and a
new modifications. We collect results from different papers on the duration of the
extremal observation in the no-information (denoted as rank based) case and the
full-information case. In the case of non-extremal observation duration models the
most appealing are various settings related to the two extremal order statistics. In
the no-information case it will be the maximizing duration of owning the relatively
best or the second best object. The idea was formulated and the problem was solved
by Szajowski and Tamaki (2006). The full-information duration problem with special
requirement was presented by Kurushima and Ano (2010).
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1. Introduction. It was Ferguson, Hardwick and Tamaki [6] who formu-
lated the duration problem as the optimal prediction the relative extremal
observation keeping the leading position for the highest period. The basic
formulation was for the classical no-information secretary problem. It is a
sequential selection problem which is a variation of the classical secretary
problem (CSP) treated, for example, by Gilbert and Mosteller [9]. The aim
of the CSP is to examine items ranked from 1 to N by the random selection
without replacement, one at a time, and to win wchich means to stop at any
item whose overall (absolute) rank belongs to the given set of ranks (in the
basic version this set contains the rank 1 only), given only the relative ranks
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of the items drawn so far. Since the articles by Gardner [8] the secretary prob-
lem has been extended and generalized in many different directions. Excellent
reviews of the development of this colourful problem and its extensions have
been given by Rose [22], Freeman [7] and Samuels [23]. The deepest analysis
of the assumptions and their consequences was made by Ferguson [6].

1.1. Duration problems for the no-information case. The basic
form of the duration problem can be described as follows. A set of N rankable
objects appears as in CSP. As each object appears, we must decide whether
to select or reject it on the basis of the relative ranks of the objects. The
payoff is the length of time we are in possession regarding a relatively best
object. Thus we will only select the relatively best object, receiving a payoff
of one as we do so and an additional one for each new observation as long as
the selected object remains relatively best.

Ferguson, Hardwick and Tamaki [6] considered various duration models
in quite some detail. Moreover, they mention that they had discussed the
duration problem also for a random number of arrivals in continuous time.
The solution is indeed easy if the arrival process is the Pascal process, since
then (see Bruss and Rogers [4, Theorem 2]), the corresponding record arrival
process is Poisson. The latter gives then also access to Poisson embedding
(Bruss and Rogers [3]) displaying an interesting duality. However, Ferguson
et al. [6] confined themselves throughout their study to the duration problem
for the relatively best items. Maximizing the expected duration of owning
a relatively best object arriving with a Poisson process was analyzed by
Kurushima and Ano [12, 14] (cf. [13] for various continuous time selection
problem from the random number available objects close to the model under
consideration). In this paper, we attempt to extend the problems to choose
and keep the items having the relatively high leading position for the long
period. As a simple example we refer to a relatively best or the second best
object as a candidate. The focus is the case where each time we receive a
unit payoff as long as either of the chosen objects remains a candidate.
Obviously only candidates can be chosen, the objective being to maximize
the expected payoff. This problem can be viewed from another perspective as
follows. Let us observe at moment i the relatively second candidate and let
us denote T (i) the time of the first candidate after time i (i.e. the relatively
best or the second best item) if there is one, and N + 1 if there is none. If we
observe at i the relatively best item then T (i) is the moment when new item
appears, which changes the relative rank of ith item to the non-candidate
rank. The time T (i) − i is called duration of the candidate selected at time
i. The objective is to find a stopping time τ∗ such that

vN = E

[
T (τ∗)− τ∗

N

]
= sup

τ∈MN

E

[
T (τ)− τ

N

]
, (1)
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where MN denotes the set of all stopping times.

1.2. Duration problems for the full-information case. The second
group of models in [6] are those related to the full-information best choice
problem. We observe sequentially i.i.d. random variables from the known dis-
tribution. Without the loss of generality we can assume that they come from
the uniform distribution on the interval [0, 1]. Suppose that we want to max-
imize the time in which the selected object maintains its quality (e.g. being
the relatively best one). In many cases we see that the reward is related with
the win probability. A typical optimal stopping problem in full information
case was first studied by Gilbert and Mosteller [9]. The comparison of results
was derived by Gnedin [10].

The paper is organized as follows. In Section 2 the solution of the prob-
lems formulated in the section 1.1 is presented. A Markov chain optimal
stopping problem equivalent to the duration problem and the optimal strat-
egy will be formulated in Section 2.1 and derived in Section 2.2. This section
is based mainly on the suggestion from [5] and the results by [25] and [24].
In Section 2.3 the problem of stopping on the relatively best or second best
is shown. The discounted no-information duration problem is described in in
Section 2.4. In the Section 3 we consider full information duration problem
(FIDP) in finite horizon with and without recall possibility. The duration
problem is transformed to the optimal stopping problem for the Markov pro-
cess similar to this applied by Bojdecki [2] and Prosiński and Szajowski [19]
(see Section 3.1). In Section 3.2 we present results related to the best-choice
duration problem (BCDP) with and without recall possibility. In section 3.3
we switch into random horizon full information duration problem (RHFIDP).
In Section 3.4 there is a description of the full information duration problem
with the unbounded horizon. We extend FIDP into duration of owning the
relatively best or second best object in Section 3.6. We show some results
for the unbounded horizon. Various directions of the extensions based on the
main idea of the duration problem are the subject of the conclusion section.

2. Markov model for no-information duration problems. The
models which are considered in this study are the so called no information
models where the decision to select an object is based only on the relative
ranks of the objects observed so far. Let S = {1, 2, . . . , N} be the set of
ranks of items {x1, x2, . . . , xN} and {X1, X2, . . . , XN} their permutation. We
observe sequentially the permutation of items from the set S. The math-
ematical model of such an experiment is the probability space (Ω,F ,P).
The elementary events are permutations of the elements from S and the
probability measure P is the uniform distribution on Ω. The observation
of random variables Yk, k = 1, 2, . . . , N , generate the sequence of σ-fields
Fk = σ{Y1, Y2, . . . , Yk}, k = 1, 2, . . . , N . The random variables Yk are inde-
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pendent and P{Yk = i} = 1
k .

We assume that all permutations are equally likely. If Xk is the rank of
k-th candidate we define

Ykj = #{1 ¬ i ¬ j : Xi ¬ Xk} (2)

the running rank of k-th object at the moment j ­ k. The random variable
Yk = Ykk is called relative rank of k-th candidate with respect of the items
investigated to the moment k. Let A ⊂ S. Subsequently, the appearance of
the next candidate after i is the moment SA(i) = inf{k > i : Yk ∈ A} and the
maturity Tr(i) = inf{k ­ i : P{Xk ∈ A|Yik = r} = 0} of the candidate with
the relative rank r at moment i is defined. The maturity can be represented
in the equivalent manner as Tr(i) = inf{k ­ i : Yi = r, Yk ∈ A, Yik /∈ A}.

Remark 2.1 If A = {1, 2, . . . , s} and

SA(i) = inf{k > i : Yk ∈ A} (3a)

then Ts(i) = SA(i), and for any r ∈ A

Tr(i) = inf{k ­ i : Yik 6∈ A}. (3b)

For r < s the duration of the candidate with rank r at the moment i is
dependent on the items appearing between i and k. Changing the rank of a
candidate when a new candidate approaches, does not always mean that one
ceased to be a candidate.

Denote by MN the set of all Markov moments τ with respect to σ-fields
{Fk}Nk=1. The decision maker observes the stream of relative ranks. When
Yi ∈ A = {1, 2, . . . , s} it is the potential candidate for the absolutely rth item,
r ∈ A. Sometimes it is enough to keep such a candidate for a period of time
to get profit which is proportional to the shell file of a candidate (the second
kind of duration of the candidate). The random variable T (i) is defined as the
moment when the keeping candidate stops to be the candidate (the maturity
of the candidate). Let us consider the possibility of recall force to think about
the rejected candidates. We define δr(i) = sup1¬j¬i{Yj = r} the actual posi-
tion of the relative r at the moment i. δr(i) is the random variable measurable
with respect to Fi. The recall option means the possibility of returning to
the last candidate who has the relative rank r? = arg max{s∈A} δs(i) or to
the candidate with the given rank, e.g r = 1. The present history at i and
Yk,s for k ∈ {i, . . . , N}, s = i, i+ 1, . . . , N allows to define the maturity T (i)
for various models. In the next part examples of various definitions of ma-
turity will be shown, and therefore different definitions of duration will be
presented.

2.1. The optimal stopping problem for the embedded Markov
chain.
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2.1.1. Embedded Markov chain. Let a = max(A). The function
ϕ(k, r) defined in (15) is equal to 0 for r > a and non-negative for r ¬ a.
It means that it is rational to choose an item for keeping at the moment k
when the state (k, r) such that r ¬ a. Define W0 = (1, Y1) = (1, 1), γt =
inf{r > γt−1 : Yr ¬ min(a, r)} (inf ∅ = ∞) and Wt = (γt, Yγt). If γt = ∞
then define Wt = (∞,∞). Wt is the Markov chain with the state space
E = {(s, r) : s ∈ {1, 2, . . . , N}, r ∈ A}∪{(∞,∞)} and the following transition
probabilities (see [25])

p(r, s) = P{Wt+1 = (s, ls)|Wt = (r, lr)}

=


1
s , if r < a, s = r + 1,
(r)a

(s)a+1
, if a ¬ r < s,

0, if r ­ s or r < a, s 6= r + 1,

(4)

with p(∞,∞) = 1, p(r,∞) = 1− a
∑N
s=r+1 p(r, s), where (s)a = s(s− 1)(s−

2) . . . (s − a + 1), (s)0 = 1. We denote Tϕ(k, r) = E(k,r)ϕ(W1) the mean
operator for the function g : E → <. Let Gt = σ{W1,W2, . . . ,Wt} and M̃N

be the set of stopping times with respect to {Gt}Nt=1. Since γt is increasing,
then we can define M̃N

r+1 = {σ ∈ M̃N : γσ > r}.
Let P(k,r)(·) be the probability measure related to the Markov chain Wt,

with the trajectory starting in the state (k, r) and E(k,r)(·) the expected value
with respect to P(k,r)(·). From (4) we can see that the transition probabilities
do not depend on relative ranks, but only on the moments k where the items
with the relative rank r ¬ min(a, k) appear. Based on the following lemma
we can solve the problem (1) with the gain function (14) using the embedded
Markov chain (Wt,Gt,P(1,1))Nt=0.

Lemma 2.2 (see [25])

EwN (k + 1, Yk+1) = E(k,r)wN (W1) for every r ¬ min(a, k). (5)

2.1.2. The optimal stopping problem. Let T (i) = ζiT1(i) and ξi is
an additional restriction (the requirement on the chosen item). The aim is to
find τ? ∈MN such that:

E
[
T (τ?)− τ?

N
ξτ?

]
= sup

τMN

E
[
T (τ)− τ

N
ξτ

]
. (6)

Let us observe that for any τ ∈MN

E
[
T (τ)− τ

N
ξτ

]
=

N∑
r=1

∫
{τ=r}

E{Tr − r
N

ξr|Yr}dP = Eϕ(τ, Yτ ).
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2.1.3. Recursive algorithm. Let MN
r = {τ ∈ MN : r ¬ τ ¬ N} and

w̃N (r) = supτ∈MN
r
Eϕ(τ, Yτ ). The following algorithm allows to construct the

value of the problem vN = wN (1, 1).

w̃N (N) = Eϕ(N,YN ) (7)

Let

wN (N, r) =

{
1, if r ∈ A,
0, otherwise,

(8a)

wN (k, r) = max{ϕ(k, r),EwN (r + 1, Yr+1)}, (8b)

w̃N (k) = EwN (k, Yk) =
1
k

k∑
r=1

wN (k, r). (8c)

We have then vN = w̃N (1). The optimal stopping time τ∗ is defined as follows:
one has to stop at the first moment k when Yk = r, unless wN (k, r) > ϕ(k, r).
We can define the stopping set as Γ = {(k, r) : ϕ(k, r) ­ w̃N (k)}.

2.2. Classical no-information BC duration problem. It is not diffi-
cult to formalize the duration problem for BC as with recall as without recall
and also when the additional requirement concerning the absolute rank of
the selected object is added. In order to present the problem of the duration
time for BCP considered in [6] we assume that A = {1}, ζn(ω) = I{Yn∈A}(ω)
and ζ?n(ω) = I{Xn∈A}(ω).

2.2.1. Finite horizon duration problem of BCP without recall
( [6, Sec. 2.2]). Let T (i) = ζiT1(i) and ξi = 1. The aim is to find τ? ∈MN

such that:

E
[
T (τ?)− τ?)

N
ξτ?

]
= sup

τMN

E
[

(T (τ)− τ)
N

ξτ

]
. (9)

It is the first setting of the problem. In [6] the authors observed that the
pay-offs in the problem for the threshold rules are exactly there same as the
pay-offs for the threshold rule for the best choice secretary problem with an
unknown, random number of options that has the uniform distribution on S
(see the results by Presman and Sonin [20], Rasmussen and Robbins [21] and
a general method of Samuels [23] showing the relation of the random horizon
problems to the problems with cost ). The single threshold r?N strategy is

optimal having the asymptotic limN→∞
r?N
N
∼= e−2 and the problem value

2e−2.

2.2.2. Finite horizon duration problem of BCP with recall ( [6,
Sec. 2.2]). Let T (i) = T1(i) and ξi = 1. The aim is to find τ? ∈ MN in
the problem of (6) with this new definition of the maturity moment. This
second setting of the problem has the solution which has a simple relation
with the solution of BCP. Namely, if k?N is the optimal threshold for BCP
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then the optimal threshold for the duration problem of BCP with recall is
KN = r?N − 1 for N ­ 2. It is also the optimal rule for the BCP with an
unknown, random number of options having the uniform distribution on S
and possible recall.

2.2.3. Duration problem without recall with choice of the best
( [6, Sec. 2.3]). Let us define the maturity moment as T (i) = ζiT1(i) and
ξi = ζ?i . The positive pay-off is when T (i) = N+1 only. The expected fraction
of duration vk for the threshold strategy k is equal vk = N+1−k

N P{T (k) =

N+1} = N+1−k)k
N2 which is unimodal with mode at LN =

⌊
N+1

2

⌋
. Thus the op-

timal rule is among the threshold rules with k lower than LN . The asymptotic
α = limN→∞

r?N
N
∼= 0.20388 is the solution of the equation − log(x)−2+2x =

0. The limiting value of the expected pay-off is 0.1618.

2.2.4. Duration problem with recall and choice of the best ( [6,
Sec. 2.3]). Let us define the maturity moment as T (i) = T1(i) and ξi = ζ?i .
The positive pay-off is when T (i) = N + 1 only. The optimal rule is the fixed
sample size rule that stops at LN . The asymptotic optimal return is 0.25.

2.3. The duration of the best or the second best.

2.3.1. Distribution of a maturity moment. Let A = {1, 2}. The
model without recall is considered. The maturity of the candidate at i is
equal:

T (i) =
2∑
r=1

I{Yδr(i)=r}Tr(i), (10)

where δr(i), the position of the relatively rth at the moment i, is equal i for
r = 1, 2. The conditional distribution of T (i) is following:

Yi = 2 : In this case T (i) = k when Yi = 2, Yi+1 > 2, Yi+2 > 2, . . . , Yk−1 >
2, Yk ∈ A. We have for i < k ¬ N :

P{T (i) = k|Yi = 2} =
2(i− 1)i

(k − 2)(k − 1)k
; (11a)

P{T (i) = N + 1|Yi = 2} = 1−
N∑

s=i+1

2(i− 1)i
(s− 2)(s− 1)s

=
i(i− 1)
N(N − 1)

.

(11b)

Yi = 1;T(i) ¬ N : the random variable T (i) = k if there exists s ∈ {i +
1, . . . , k − 1} such that Yi = 1, Yi+1 > 1, Yi+2 > 1, . . . , Ys−1 > 1, Ys =
1, Ys+1 > 2, . . . , Yk−1 > 2, Yk ∈ A. We have for i < k ¬ N

P{T (i) = k|Yi = 1} =
2i(s− i+ 1)

(k − 2)(k − 1)k
. (12a)
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Yi = 1,T(i) = N+ 1,YkN = 1 or 2 : We have

P{T (i) = N + 1, YiN = 1|Yi = 1} = 1−
N∑

s=i+1

i

(s− 1)s
(13a)

=
i

N
;

P{T (i) = N + 1, YiN = 2|Yi = 1} =
N∑

s=i+1

i

(s− 1)s
(13b)

(1−
N∑

k=s+1

2(s− 1)s
(k − 2)(k − 1)k

)

=
i(N − i)
N(N − 1)

P{T (i) = N + 1|Yi = 1} =
i

N
+

i(N − i)
N(N − 1)

(13c)

=
i(2N − i− 1)
N(N − 1)

Remark 2.3 The solution of the problem (1) with T (i) given by (10) will be
performed by its change to the optimal stopping problem for the embedded
Markov chain. In the case without recall there are no additional restrictions
and ξn = 1 for n = 1, 2 . . . , N . However, there is the obvious and interesting
problem of taking into account the value of a candidate who is kept until
moment n (see [11]). Especially, when the value of the candidate is changed
over time.

Remark 2.4 The possibility of recall requires an additional clarification.
The natural models are as follows:

(i) the possibility of returning to the best so far candidate means T (i) =
T1(i);

(ii) the possibility to return to the last candidate is defined as T (i) =
I{Yδr? (i)=r?}Tr?(i), where r? = arg max{s∈A} δs(i).

Both approaches require access to the history of the observed random vari-
ables during the selection process, each at a different extent.

The duration problem which requires the selected object to be of the
prescribed absolute rank (which is not higher than a) and matching the
expectations also needs further investigation.
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2.3.2. The optimal stopping problem for the best or the second
best duration problem. In the following lemma the function ϕ(·) is cal-
culated. The final form of it is using the the digamma function (z-function)
ψn(z) (see Abramowitz and Stegun [1] p. 260). For n = 0 we will use the
denotation ψ(z). This function is defined as nth logarithmic derivative of the
Euler gamma function Γ(z)

ψn(z) =
dn+1

dzn+1 ln Γ(z) =
dn

dzn
Γ
′
(z)

Γ(z)
.

Lemma 2.5 The payoff function ϕ(k, r) has the form

ϕ(k, r) =



k
N2 (1 + k −N − 2Nψ(k) + 2Nψ(N)) for r = 1,

k(N−k+1)
N2 for r = 2,

0 otherwise.

(14)

Proof Based on the distribution of the random variable T (k) and the equal-
ity ψ(p+ 1)− ψ(p) = 1

p for the digamma function we get

ϕ(k, 1) = E{T (k)− k
N

|Yk = 1} (15a)

=
k

N2 (1 + k −N − 2N(ψ(k)− ψ(N)))

ϕ(k, 2) = E{T (k)− k
N

|Yk = 2} =
k(N − k + 1)

N2 (15b)

2.3.3. Solution of the optimal shelf life problem for the best and
the second best. First of all the form of Tϕ(k, r) for (k, r) ∈ E will be
given.

Lemma 2.6 The expected payoff of the function ϕ(·) with relation to the em-
bedded Markov chain {Wt} has the following form:

Tϕ(k, r) =
(N − k)((2N − 1)k +N − 1)

N2(N − 1)
+ 2

k

N2 (ψ(N)− ψ(k)). (16)
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Proof The definition of the embedded Markov chain (4) and the payoff
function ϕ(·) in the lemma 2.5 give

Tϕ(k, r) =
N∑

j=k+1

2∑
r=1

p(k, j)ϕ(j, r)

=
N∑

j=k+1

k(k − 1)
j(j − 1)(j − 2)

(j(2N(ψ(N)− ψ(j)) +N − j − 1)
N2

+
j(N − j + 1)

N2

)
=

N∑
j=k+1

k(k − 1)
j(j − 1)(j − 2)

(
j(N − j − 1)

N2 (j +N +
2N
j
− 2N
N − 1

)
)

=
(N − k)((2N − 1)k +N − 1)

N2(N − 1)
+ 2

k

N2 (ψ(N)− ψ(k)).

Let us denote Ak(r) = {(s, r) : s > k}.

Theorem 2.7 There are constants k?1 and k?2 such that the optimal stopping
time for the problem (1) has the form

τ∗ = inf{t : Wt ∈ Ak?1 ∪Ak?2}.

The value function is

ṽN (k?1, k
?
2) =

(N(3N − 4)− 3) + k?1(N − 3)ψ(k?1)
(N − 1)N

+k?1(2(N2 − 1)(ψ1(k?2 + 1)
(N − 1)N

− ψ1(k?1 + 1)))
(N − 1)N

+
k?1 (2(N − 1)ψ(N) + (5− 3N)ψ(k?2))

(N − 1)N

−
k?1

(
3N3 + (2k?2 − 3)N2 − 2

(
k?2

2 + k?2 + 2
)
N + k?2

2 + k?2

)
(N − 1)N2k?2

Proof The payoff function ϕ(·, r) for r ∈ A is unimodal. It can be seen fol-
lowing the analysis of the differences ϕ(k+1, 1)−ϕ(k, 1) which are decreasing
when k ¬ N−1. The comparison of events related to T (k) = j on Yk = 1 and
Yk = 2 leads to the conclusion that ϕ(k, 1) ­ ϕ(k, 2) for k ∈ {1, 2, . . . , N}.
The value function w̃(k) is no-increasing due to the fact of decreasing number
of stopping times in MN

k . At k = N−1 both payoff functions are greater than
w̃N (N − 1). Let us assume k?2 = inf{1 ¬ k ¬ N : Tϕ(k, i) ¬ ϕ(k, 2)}− 1. We
have for k > k?2 and r = 1, 2 that wN (k, r) = ϕ(k, r) and w̃N (k) = Tϕ(k, r).



Z. Porosiński, M. Skarupski, K. Szajowski 97

Let us denote k?1 = inf{1 ¬ k ¬ k?2 : w̃N (r) < ϕ(k, 1)}, where w̃N (k) =
ṽ(k, k?2) and for k < s we have

ṽN (k, s) =
s∑

j=k+1

k

j(j − 1)
ϕ(j, 1) +

k

s
w̃N (s)

=
(N(3N − 4)− 3) + k(N − 3)ψ(k)

(N − 1)N

+
k (2(N − 1)ψ(N) + (5− 3N)ψ(s))

(N − 1)N

+
k
(
2(N2 − 1) (ψ1(s+ 1)− ψ1(k + 1))

)
(N − 1)N

− k
(
3N3 + (2s− 3)N2 − 2

(
s2 + s+ 2

)
N + s2 + s

)
(N − 1)N2s

.

2.4. Discounted no-information duration problem (DNIDP). The
discounted model for no-information duration problem was formulated by
Ferguson et a. [6]. Methods of discounting applied in their paper assume that
the horizon is infinite but the future payoffs are discounted by coefficient
β ∈ (0, 1) in such a way that an amount of 1 received at the moment k is
worth (1− β)βk−1 at moment 0. If the k-th object is relatively the best, and
if the decision maker selects it, the payoff is equal to the discounted maturity
moment of the object chosen. The conditional expected return is then

E(1− β)βT1(k)−1T1(k) =
∞∑

j=k+1

(1− β)βj−1jp(k, j) = (1− β)k
∞∑
j=k

βj

j
.

HenceE(1−β)βT1(k)−1T1(k) = (1−β)
∑∞
j=k β

jP(T1(k) > j) becauseP(T1(k) >
j) =

∑∞
s=j+1

k
s(s−1) = k

j . The problem is to find τ? such that

E(1− β)βT1(τ
?)−1T1(τ?) = sup

{τ∈S}
E(1− β)βT1(τ)−1T1(τ) (17)

The unimodality of the conditional expected return allows to formulate the
optimal stopping time maximizing the expected discounted duration in model
formulated in this way.

Theorem 2.8 (Ferguson et al. [6] ) In the discounted duration problem (17),
the optimal rule has the threshold form defined by

r?(β) = min{r ­ 1 :
∞∑

j=r+1

βj

j

j∑
k=r+1

1
k − 1

¬
∞∑
j=r

βj

j
}. (18)
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The solution of the problem is closely related to the BCP with the random,
geometric number of objects.

3. Markov model for full information duration problem. In full
information duration problem our aim is to chose the object and hold it as
long as it is in its position, and we may base our choice of the stopping time
on the true values of the object.

We introduce a Markovian approach (cf. Bojdecki [2]). Let N ∈ N be a
fixed number and {Xn}Nn=1 be a sequence of i.i.d random variables uniformly
distributed on the interval [0, 1]. For n = 1, ..., N define Fn = σ(X1, ..., Xn)
and let T denote a set of all stopping times with respect to the family
{Fn}Nn=1. Let T0 denote a set of all stopping times τ ∈ T such that

Xn = max{X1, ..., Xn} on {τ = n}, n = 1, ..., N.

Define the moments with the highest number of the observed value, i.e.

τ1 = 1, τk = inf{n : τk−1 ¬ n ¬ N,Xn = max{X1, ..., Xn}} for k = 1, ..., N.

We observe that the sequence τ1, τ2, ... ∈ T0. Now let us consider the following
chain

Yk = (τk, Xτk) on {τk < N + 1}, Yk = (τN+1, ξ),

where ξ is a special absorbing state. It is easy to see that {Yk}N+1
k=1 is a Markov

chain with transition probabilities

p((n, x), (m,B)) = P (τk+1 = m,Xm ∈ B|τk = n,Xn = x)

= xm−n−1
∫
B
dy,

(19)

m > n and 0 otherwise, with B ⊆ (x, 1].

3.1. Full information duration problem (FIDP) - the classical
version. In classical FIDP we stop at the relatively best object and hold it
as long as it is the relatively best one. Let w(n, x) denote the expected payoff
given that the n-th object is the relatively best object of value Xn = x and
we select it. It is easy to see that

w(n, x) =
N+1∑

m=n+1

p((n, x), (m,B))(m− n). (20)

In our problem we assume that B = (x, 1] and B = ξ for m = N + 1.
Therefore (20) has the form

w(n, x) =
N+1∑

m=n+1

xm−n−1 =
N−n∑
m=0

xm =
1− xN−n+1

1− x
. (21)
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Let us denote s := N − n + 1, and w̃(x, s) := 1−xs
1−x . This notation we can

understand as a stopping on s-th object from the end. Using the backward
induction method the optimal rule can be found. The optimal expected return
when there are s objects yet there is to be observed knowing that the present
maximum value of the past observations is x is defined by

v(x, s) = xv(x, s− 1) +
∫ 1

x
max{w̃(y, s), v(y, s− 1)}dy (22)

with the initial point v(x, 0) ≡ 0. The following theorem gives the optimal
stopping rule.

Theorem 3.1 (Ferguson, Hardwick, Tamaki [6]) In the FIDP it is optimal
to select the relatively best object of value Xs = x at s stages from the end if
x ­ xs, where x1 = 0 and for s > 1, xs is the unique root of the equation

s∑
i=1

xi−1 =
s−1∑
i=1

xi−1
s−i∑
j=1

1− xj

j
. (23)

Since this problem is monotone then one-step-look-ahead rule is optimal. We
do not write here a proof. This problem is related to the full information
random horizon best choice problem of Porosiński [18]. The optimal rules
in this two problems are the same. In [18] the author gives an asymptotic
approximation for the xn as n → ∞. Substituting xn := 1 − zn

n to (23) and
keeping this equation stay zero zn must converge to some constant z, where
z satisfies the equation∫ z

0
et(1−

∫ t

0

1
u

(1− e−u)du)dt = 0. (24)

Using numerical methods it can be found that z ≈ 2.1198. Therefore xn ≈
1− 2.1198

n . Determining the value of the problem as

V (n) = v(0, n)

in [16] there is an approximated win probability given by

V (n)
n
→ C

as n→∞, where C is constant given by

C =
∫ 1

0
e−

z
u (
∫ u

0
(
e
zt
u − 1
t

+
e
zt
u

1− t
)dt− 1)du

using the numerical methods C ≈ 0.435171. The payoff function in this prob-
lem is almost the same as the payoff function in the full information best
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choice problem with the random, uniformly discrete distributed on {1, ..., n}
horizon. The relation is that the payoff in FIDP is n times greater than in
corresponding best choice problem (see: Gnedin [10]).

In the problem where recall is possible to find the optimal strategy we
use 1-Step-Look-Ahead method. If we stop at s stages from the end with an
object of value x, then our expected payoff is w̃(x, s). Continuing one step
we expect to receive

xw̃(x, s− 1) +
∫ 1

x
w̃(y, s− 1)dy.

After the simple calculation we get the optimal rule. The result is in the
following

Theorem 3.2 (Ferguson, Hardwick, Tamaki [6]) In the FIDP with recall it
is optimal to stop at s stages from the end if the largest of the values observed
is at least xs, where xs ∈ [0, 1] is the root of the following equation

s−1∑
j=1

1− xj

j
= 1. (25)

This is also the solution of the full information random horizon best choice
problem with recall. Substituting x := 1 − z

n to (23) and taking the limit
n→∞ we need to find the solution of the following integral∫ 1

0

1− e−zy

y
dy = 1. (26)

Numerical methods give us xn ≈ 1− 1.345
n .

3.2. Best choice duration problem (BCDP). In BCDP we win the
duration of owning the relatively best object only if it is the best object
overall.

Once again we introduce Markovian approach as in Section 2. In looking
for the best object we need to stop at the last stage before the process ter-
minates. Let w(n, x) denote the expected payoff given that the n-th object is
the relatively best object of value Xn = x, we select it and it is the maximum
value overall. It can be observed that

w(n, x) =
N+1∑

m=n+1

p((n, x), (N + 1, ξ))f(m,B). (27)

where B = (x, 1] and B = ξ for m = N + 1. Therefore (27) has the form

w(n, x) =
N+1∑

m=n+1

xN−n = xN−n
N+1∑

m=n+1

= xN−n(N − n+ 1).
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Let us denote s := N − n + 1, and w̃(x, s) := sxs−1. Once again we can
think about this notation as a stopping at sth candidate from the end. In
this problem recursion (22) can be used. As a result we get the following

Theorem 3.3 In the full information BCDP it is optimal to select the rel-
atively best object of the value Xs = x at s stages from the end if x ­ xs,
where x1 = 0 and xs, s > 1 is the unique root of the equation

s−1∑
j=1

xj−1 = sxs−1. (28)

The value of the problem was found by Tamaki in [29]. It can be shown that
the optimal limiting payoff is given by

v∗ =
∫ 1

0

1
x

[∫ x

0
e
− c∗x
1−y dy

[
dx− 2

∫ 1

0
ye
− c
∗
y dy ≈ 0.31096, (29)

where c∗ ≈ 1.2564 is a unique solution of the equation

ec = 1 + 2c.

With recall the optimal limiting payoff is given by

u∗ =
1− log(2)

2
+ (log(2))2I(log(2)) ≈ 0.33536, (30)

where I(·) is given by

I(c) =
∫ ∞

1

e−ct

t
dt.

3.3. Random Horizon Full information duration problem (RHFIDP).
Let us assume that the number of actually available objects N is random.
This additional uncertainty in the FIDP will cause the necessity of a clarifica-
tion of the very concept of the duration. The random horizon duration prob-
lem (RHDP) for the no-information case was investigated by Tamaki [27].
He extended the research on RHDP for the full-information case in [28].
Let N be assumed a bounded random variable, independent of the sequence
X1, X2, . . . , Xn, and having a prior distribution ~p = (p1, p2, . . . , pn), where
pk = P{N = k} are such that

∑n
k=1 pk = 1 and pn > 0 for a known upper

bound n. In [28] the RHDP was distinguished into two models according to
whether the final stage of the planning horizon is N or n. This distinction is
related to the last relative maximum. That is, if the chosen object is the last
relative maximum prior to N , we hold it until the stage N in the first model,
whereas until the stage n in the second model. The classical, finite determin-
istic horizon FIDP occurs as a special case of the RHDP if N degenerates
to n. In this case there is no difference between these two approaches. The
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performance measure is the proportional duration of holding the candidate
(the relative maximum of the observed sequence).

In this paper the extension to the unbounded random horizon FIDP will
be treated. For further consideration let us formulate first the main elements
of the Tamaki’s model with planning horizon N investigated in [28]. For
a given prior ~p let πk = P{N ­ k}. Let (k, x) be the state, where it is
just observed, k-th observation to be a candidate having the value x, i.e
Xk = max{X1, . . . , Xk} = x, 1 ¬ k ¬ n, 0 < x < 1. Denote by sk(x) the
payoff earned by stopping with the current candidate in state (k, x). It is
the expected value of the proportional duration Dk(x) when the candidate
is the state (k, x) (see Lemma 2.1 in [28]). Let Ij(x) = χ{ω:Xj(ω)<x}(ω) for
1 ¬ j ¬ n, 0 < x < 1. The proportional duration (see Appendix A of [28]) is

Dk(x) =
1
n

1 +
N∑

i=k+1

i∏
j=k+1

Ij(x)

 (31)

and the payoff has the form:

sk(x) =
1
n

1
πkxk

n∑
i=k

πix
i. (32)

Also let ck(x) denote the payoff earned by continuing observations in
an optimal manner. Then vk(x) = max{sk(x), ck(x)} is the optimal payoff
provided that we start from the state (k, x). If the decision maker decides to
proceed to the next stage after leaving the state (k, x), the (k + 1)-th object
can be observed only with probability P{N ­ k + 1|N ­ k} = πk+1

πk
and it

gives the state (k+ 1, y) if this new observation is a candidate with the value
y, which is bigger than x, while it pretends to leave the state (k + 1, x) if it
is not a candidate. It leads to the recursive equation:

ck(x) =
πk+1

πk

[
xck+1(x) +

∫ 1

x
vk+1(y)dy

]
, 1 ¬ k < n, (33)

with the boundary condition cn(x) ≡ 0. The repeated use of (33) yields

ck(x) =
n∑

i=k+1

πi
πk
xi−k−1

∫ 1

x
si(y)dy. (34)

Since, for the given k, sk(x) is an increasing function of x by (32) while
ck(x) is a non-increasing function in x from its definition, then there exists a
sequence of thresholds ~a? = (a?1, . . . , a

?
n) such that, when in the state (k, x),

the optimal rule stops with the current candidate iff x ­ a?k i.e. τn(~(a)?) =
min{k : Xk = max{X1, . . . , Xk} ­ a?k} ∧ n.

3.4. The unbounded horizon full-information duration problem.
Let us consider the duration problem when the horizon N is unbounded.
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The equations (31) and (32) depend on the tail probabilities of the horizon
distribution. They allow to formulate the equation for the value function
of the problem in the form (33) with an additional requirement that the
solution vk(x) should be a continuous function of x (a smooth fit condition).
The methods of solving such an equation are well known in MDP theory. The
special case of the horizon with the geometric distribution is worth be solved
due to many reasons. Let us observe that sk(x) is independent of k because
the duration of the candidate at the state (k, x) is s by two exclusive ways:

1. N ­ k + s and Xk+1 < x, . . ., Xk+s > x;

2. N = k + s− 1 and Xk+1 < x, . . ., Xk+s < x.

It leads to

sk(x) = E[nDk(x)] =
∞∑
j=1

j[(1− x)xj−1πk+j

πk
+ xj−1πk+j−1

πk
] (35)

= [(1− x)q + p]
∞∑
j=1

j(qx)j−1 = [(1− x)q + p]
1

(1− qx)2

=
1

1− qx

for the geometric distribution. There same result is given by (32) when the
geometric horizon is applied.

Given that the payoff function does not depend on k and the lack of
memory properties of the geometric distribution also the payoff earned by
continuing observations in an optimal manner ck(x) = c(x) and the optimal
payoff vk(x) = v(x) provided that we start from state (k, x) do not depend
on k. We have

c(x) = q[xc(x) +
∫ 1

x
v(y)dy], (36)

which gives c(x) = q(1− qx)−1 ∫ 1
x v(y)dy. The optimal payoff

v(y) = max{c(x), s(x)} = (1− qx)−1 max{1, q
∫ 1

x
v(y)dy}. (37)

For x enough close to 1 we have v(x) = s(x). It means that the stopping region
contains {(k, x) : x ­ x0}, where x0 fulfils the condition

∫ 1
x0
v(y)dy = 1

q . For
x ¬ x0 the optimal payoff fulfil eqution:

(1− qx)v(x) = a[
∫ x0

x
v(y)dy +

∫ 1

x0

1
1− qy

dy]. (38)

It implies that v(x) = const for x ∈ (0, x0]. The continuity condition forces
v(x0) = (1− qx0)−1. If such x0 ∈ (0, 1) exists then by (38) we get ln 1−q

1−qx0 =
−1. The function ϕ(t) = 1 + ln p

t is well defined for t ∈ (p, 1). It is non-
increasing in this domain, ϕ(p) = 1 and ϕ(1) < 0 when p < exp(−1).
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Conclusion 3.4 If p ¬ exp(−1), then there is x0 = 1−ep
q ∈ (0, 1) such

that {(k, x) : x ­ x0} is the optimal stopping region for RHFIDP with the
geometric horizon. The expected optimal payoff is v? = x0

1−qx0 −
1
q ln 1−q

1−qx0 .
If p > exp(−1) then the optimal stopping region for RHFIDP is the hole

state space. The decision maker should stop at the first observation obtaining
the expected payoff v? = −1

q ln(1− q).

Remark 3.5 The definition of the duration depends on the context. In the
seminal paper by Ferguson et al. [6] there are various models. In most of
them the maturity of the accepted object is the moment when it stops to
be the candidate. There are other cases when the maturity is related to
the approach of the horizon. In the finite horizon case it is assumed that
the duration is expanded by adding 1. When the horizon is random, as in
this section, the same understanding of the maturity is applied. However, in
various applications such a definition of the maturity should be corrected. If
we buy obligation then it has an additional value to the prescribed moment.
If this maturity moment is random we can consider the case when the random
horizon is observed immediately or we learn about the maturity by symptoms
like an absence of new observations.

Assuming the maturity as an immediate close when the decision maker
reaches the last observation the expected payoff defined by (35) is changed
to

s̃k(x) = E[nD̃k(x)] =
∞∑
j=1

j[(1− x)xj−1πk+j

πk
+ xj

πk+j

πk
] (39)

= [(1− x)q + pqx]
∞∑
j=1

j(qx)j−1 = [(1− x)q + pqx]
1

(1− qx)2

=
q

1− qx
.

The optimal strategy does not change with respect to the previous model
but the expected optimal payoff does.

3.5. Duration of owning relatively best or second best object.
This problem was firstly considered by Kurushima and Ano. The objective is
to maximize the time period of owning the relatively best and the relatively
second-best object. Here we consider the class of the stopping rule restricted
only to stop at the relatively best object. Let Un(x) denote the expected
duration of the relatively best object whose rank remains within the two
when the time to go is n and the decision maker accepts the relatively best
applicant whose value x is the maximum value among that of the applicants
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arrived so far, that is Xn = x. Un(x) is given by

Un(x) = 2
n−1∑
k=1

xk−1 − nxn−1. (40)

Let Gn(x) define

Gn(x) = Un(x)−
n−1∑
k=1

xk−1
∫ 1

x
Un−k(y)dy. (41)

The 1-SLA calls for a stop in the region B which is described as B = {(n, x) :
Gn(x) ­ 0}, where (n, x) is represented by the state when the time to go is
n and the present applicant is the relatively best one whose value x is the
maximum value among the applicants arrived so far. To show that the 1-SLA
stopping rule is optimal, it is sufficient to show the next two statements:

1. Gn(x) ­ 0⇒ Gn−k(x) ­ 0, k = 1, 2, . . .

2. Gn(x) ­ 0⇒ Gn(y) ­ 0, y ­ x.

The first statement is presented in the mentioned paper. The second remains
as an open problem. This problem is concluded by

Conjecture 3.6 (see: [15]) For the full-information case of the duration
problem where the objective is to maximize the duration of owning the rela-
tively best or the second-best object, we assume that the class of the stopping
rule is restricted to that of stopping only at the relatively best object. Then,
the optimal stopping rule is to accept the first applicant who has the max-
imum Xn = x ­ sn among the observed objects so far when the remaining
time is n, where s1 = 1 and sn, n ­ 2 is the unique root of the equation

3
n∑
k=1

xk−1 − 2nxn−1 − 2
n−1∑
k=1

xk−1
n−k−1∑
j=1

1
j

+ 2
n−1∑
k=1

xk
k∑
j=1

1
j

= 0.

3.6. Duration of owning relatively best or second best object for
unbounded horizon.

3.6.1. Applying geometrical horizon in Kurushima and Ano prob-
lem. Our aim is to maximize the duration of owning the relatively best or
the second best object, where the class of stopping times is restricted to
the relatively best objects. We observe N random variables from the known
distribution. We consider a special case where N is a random variable geo-
metrically distributed, i.e.

P (N = k) = pk = pqk−1, 0 < p < 1; q = 1− p. (42)
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Let w(n, x) denote the payoff for stopping at the n-th object whose value is
x.

w(n, x) = E[Tn − n|Xn = x] =
2q

1− qx
− q(1− q)

(1− qx)2 . (43)

If we continue observations we expect to get a reward Tw(n, x):

Tw(n, x) =
∞∑

m=n+1

∫ 1

x
w(n, v)

πm
πn

xm−n−1dv

=
q

1− qx

(
2 log

(qx− 1
q − 1

)
+

1− q
1− qx

− 1
)
.

(44)

Denote G(n, x) := w(n, x) − Tw(n, x). The 1-SLA rule is described by the
following set:

B = {(n, x) : G(n, x) ­ 0}.

To prove the optimality of the 1-SLA rule it is necessary to show two things:
(i) G(n, x) ­ 0 ⇒ G(n + k, x) ­ 0, k = 1, 2, ... and (ii) G(n, x) ­ 0 ⇒
G(n, y), y ­ x. (i) is obvious, because payoffs do not depend on n. Consider
the function g(x) := G(n, x). We will show that if g(x) ­ x for some x then
it will be greater than 0 for y > x. It is an equivalent to the statement if for
a given x inequality

3− 2
1− q

1− qx
− log

(1− qx
1− q

)2 ­ 0,

holds then the same is for every y > x. Calculating a derivative of LHS we
get

−2q(1− q) 1
(1− qx)2 + 2q(1− qx)

1
(1− qx)2 =

2q2(1− x)
(1− qx)2 .

It is non-negative for every x ¬ 1 and in point x = 1 it has the value 1. If
the inequality on LHS is true for the given x then it is true for x < y < 1.
We conclude that the 1-SLA rule is optimal. It is a threshold strategy with
threshold

µ?p− 1
p− 1

, (45)

where µ? is a solution of the equality

µ2e
2
µ = e3, µ > 1.

Numerically µ? ≈ 3.3145. Note that if p ­ 1
µ? ≈ 0.3017046 the threshold is 0

so the 1-SLA rule calls for a stop at the very first observation.

3.6.2. Stopping on the best and the second best object. Assume
that at the moment n we are interested in choosing the relatively best or sec-
ond best object. We choose the object and hold it as long as it is the relatively
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best or second best object. We observe sequentially X1, ..., XN i.i.d. N is as
in (42). Let ζn denote the largest observation of sequence X1, ..., Xn and sim-
ilarly ηn denote the second largest value of the sequence (ζ1 = X1, ζn = Xn:n

for n > 1, η1 = 0, ηn = Xn−1:n for n > 1). Let Tn be a random variable that
denotes the moment after the time n when a better observation occurs. Our
aim is to find such a stopping time τ∗ ∈ T that

P (τ∗ ¬ N,Tτ∗ − τ∗, Xτ∗ = ζτ∗ or Xτ∗ = ητ∗)

is maximized, where T denotes a set of all stopping times with respect to
the family {Fn}∞n=1. Denote Rn the rank of nth observation, i.e. a random
variable:

Rn =

{
1, Xn = ζn

2, Xn = ηn.

Let

τ1 = 1

τk+1 = inf{n : τk < n ¬ N,Xn ­ ητk , k ∈ N}.

Let us define a sequence

Yk = (τk, ζτk , ητk , Rτk), if τk <∞
Yk = δ, if τk =∞,

(46)

where δ is the special absorbing state. It is easy to verify that (46) is a Markov
chain with respect to Fτk = σ(X1, ..., Xτk , I(N­0), ..., I(N­τk−1)), k = 1, 2....
The transition probabilities are:

p((n, x, y, i), (m, [0, u], x, 1)) =


πm
πn

ym−n−1(u− x), u > x

0, otherwise,
(47)

p((n, x, y, i), (m,x, [0, u], 2)) =


πm
πn

ym−n−1(u− y), y ¬ u ¬ x

0, otherwise,
(48)

for m > n, i = 1, 2, where πk =
∑∞
j=k pj = qk−1. We derive the payoff

function. If we stop at the state (n, x, y, 1) then the duration of the candidate
is k if:

1. if there are two candidates of rank 1: one at the time n + 1 and the
second at some point between n + 1 and n + k − 1 inclusive and the
time horizon is longer than n+ k

2. if there is one candidate of rank 1 between n+1 and n+k−1 inclusive
and the time horizon is n+ k



108 Duration problem: basic concept and some extensions

3. if there is no more better candidates and time horizon is n+ k

If we stop at state (n, x, y, 2) then the duration of candidate is k if:

1. if there is one candidate of rank 1 or 2 at the time n+ k and the time
horizon is longer than n+ k

2. if there are no more better candidates and the time horizon is n+ k

The payoff function is given by:

W ((n, x, y, 1)) = E[Tn − n|Xn = x,Rn = 1, ζn = x, ηn = y]

=
2q

1− qx
− q(1− q)

(1− qx)2

W ((n, x, y, 2)) = E[Tn − n|Xn = y,Rn = 2, ζn = x, ηn = y]

=
q

1− qy

(49)

Note that both functions do not depend on n. This will not be mentioned
later. Let T be an operator Tf(x) =

∫
X f(z)dPx(z) for the bounded function

f : X → R. Then

TW (x, y, i) =
q

1− qy

(
log

((1− qy)(1− qx)
(1− q)2

)
+

1− q
1− qx

− 1
)

i = 1, 2. (50)

We transform our equations in the following way:

s :=
1− q

1− qx
, t :=

1− q
1− qy

, α :=
q

1− q
,

and 1
1+α ¬ t ¬ s ¬ 1, where α ∈ [0,∞). Our payoff function is now given by:

W (s, t, 1) = αs(2− s)
W (s, t, 2) = αt

TW (s, t, i) = αt (− log(st) + s− 1) , i = 1, 2.

(51)

Let us denote F (s, t) := W (s, t, 1) − TW (s, t, 1) and G(s, t) := W (s, t, 2) −
TW (s, t, 2). To find the stopping set we need to find the set that satisfies the
optimality equation. Let B1 = {(s, t) : F (s, t) ­ 0}, B2 = {(s, t) : G(s, t) ­
0}.

Note that the sign of the functions F and G does not depend on the
parameter α. These sets are the same as in [19] (page 685). Using the same
methodology we obtain the optimal strategy: it allows us to stop only in
such a moment, when observed candidate is the largest so far and exceeds
the value x?. This value is independent of the value of the second largest
object. The problem is now transformed into the problem of stopping only
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at the largest observations, as it was in Kurushima and Ano problem with
the geometrical horizon. Even if we observe the value of the second largest
object it does not affect the optimal strategy. We can reduce the problem to
observing only the relatively best objects.

4. Conclusion and acknowledgements. We have presented different
results regarding the duration problem. This is the very first time, when all
results from different papers are collected in one place. The previous results
were presented in a new form and thanks to that it is easy to see connection
between two problems. A very intriguing issue seems to be the problem with
random geometrically distributed horizon. The geometric distribution has
memoryless property and this is the reason why the result is quite simple.

We are grateful to an anonymous referee for the several comments and
improvements of this paper.
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Koncepcja okresu trwania:
podstawowe założenia i pewne rozszerzenia.

Streszczenie Rozważmy ciąg niezależnych zmiennych losowych o znanym rozkła-
dzie. n-ta obserwacja jest wartością pewnej statystyki pozycyjnej, powiedzmy s : n,
gdzie 1 ¬ s ¬ n. W chwilach następujących po n-tej obserwacji może ona pozo-
stać s : m lub zmieni swoją pozycję tak, iż stanie się statystyką pozycyjną r : m
(gdzie m > n jest liczbą obserwacji). Zmiana rangi naszej obserwacji pośród wciąż
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powiększającego się zbioru wszystkich obserwacji jest zjawiskiem, które nie jest ła-
two przewidzieć. Z pewnych względów jest to interesujący problem. Stawiamy zatem
pytanie o moment pojawienia się obserwacji, której ranga się nie zmieni znacząco
aż do czasu, gdy skończymy obserwować zjawisko. Można również postawić pro-
blem w następujący sposób: ”Który obserwowalny obiekt powinniśmy zatrzymać
tak, aby posiadać obiekt dobrej jakości najdłużej jak to tylko możlwe?” Pytanie to
było rozważane przez Ferguson, Hardwick and Tamaki (1991) w problemie, który
został nazwany problem of duration, a który został tu nazywamy problemem okresu
trwania.

Niniejsza praca ma na celu uporządkowanie znanych do tej pory modeli problemu
okresu trwania oraz prezentację kilku nowych rozszerzeń. Zabrane zostały wyniki z
różnych prac na temat okresu trwania dla ekstremalnej obserwacji w przypadku bez-
informacyjnym (nazywanym również modelem rangowym, no-information case) oraz
w przypadku pełno-informacyjnym (full-information case). W przypadkach obser-
wacji nieekstremalnych najczęściej pojawiającym się modelem jest model dla pierw-
szej i/lub drugiej statystyki pozycyjnej. Model bez-informacyjny mówi o maksyma-
lizacji okresu trwania dla pierwszego lub drugiego najlepszego obiektu. Idea ta zo-
stała sformułowana przez Szajowski i Tamaki (2006). Przypadek pełno-informacyjny
z pewnymi ograniczeniami został zaprezentowany przez Kurushima i Ano(2010).

2010 Klasyfikacja tematyczna AMS (2010): 60G40, 62L15.

Słowa kluczowe: optymalne zatrzymanie, problem okresu trwania, problem sekre-
tarki.
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