MATHEMATICA APPLICANDA
Vol. 42(2) 2014, p. 193-206

doi: 10.14708/ma.v42i2.597

KRzYSZTOF SzZAJOWSKI* (Wroclaw)

An apartment problem

Abstract In the 60 - ies of the last century, several optimization problems referring
to the sequential methods were investigated. These tasks may include the Robbins’
problem of optimal stopping, the secretary problem (see the discussion paper by
Ferguson [18]), the parking problem or the job search problem. Subtle details of the
wording in these issues cause that each of these terms include family of problems
that differ significantly in detail. These issues focused attention of a large group of
mathematicians. One of the related topic has been the subject of Professor Jerzy
Zabczyk attention. Based on the discussions with Professor Richard Cowan' the
model of choosing the best facility available from a random number of offers was
established. In contemporary classification of the best choice problems it is the no-
information, continuous time, secretary problem with the Poisson stream of options
and the finite horizon.
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1. Preliminaries In the problem of apartments selection, mentioned
in the title of this note, the objective is to choose the best apartment at a
sequence, based only on the current rank and at the instant of its evaluation,
when the prospects of apartments arrive in a random order and they are eval-
uated immediately. The successive arrival times form a Poisson process on
[0, 7] with the known intensity A (and 7" is also known). It makes the number
of candidates random with the Poisson distribution, similarly as in the work
by Presman and Sonin [29], but the problem assuming that the arrivals are
at the jumps of continuous time Poisson process is different because, if k can-
didates have arrived by time ¢, the distribution of the number of additional
candidates depends on the remaining time T — ¢ and this parameter was not
included in [29]. These research considerations were performed at the begin-
ning of seventies of the twentieth century. It was only ten years after the
solution of the basic best candidate selection problem by Lindley [24]. For
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the better understanding the role of the Cowan and Zabczyk works [14, 15]
the main results in the area with methods of their solution are presented
first. At the end the research stimulated by and the models referring to an
apartment problem of [14,15] are discussed.

1.1. Five key models

1.1.1. No information best choice problem A known number, let
us say n, of different items is presented one by one in a random order (see [19]
for the review of early results in the topic). All possible orders are equally
likely. The observer is able at any time to rank the items that have so far
been presented according their attractiveness. As each item is presented he
must either accept it, in which case the process stops, or reject it, when the
next item in the sequence is presented and the observer faces the same choice
as before. If the last item is presented it must be accepted. The observer’s
aim is to maximize the probability that the item he chooses is, in fact, the
best of the n items available. The first published solution of this problem
was given by Lindley [24]. He defined the state of the search process at any
time by two numbers (r, s), where r is the number of items presented so far
and s the current rank of the r-th, the last presented item. Letting V (r, s)
denote the maximum expected probability of choosing the best item when
the state of the process is (r, s), the principle of dynamic programming yields
the solvable equations.

A more rigorous formulation one can find in Dynkin & Yushkevich [16].
With a sequential observation of the applicants we connect some natural
probability space (2, F,P). The elementary events are the permutation of
all applicants and the probability measure P is the uniform distribution on
Q). The observable sequence of the relative ranks Yj, k = 1,2,..., N, defines
the sequence of the o-fields F, = o{Y1,..., Y}, £ = 1,2,..., N (further
the convention is adopted for the sequence Xj, ..., X,, = X1 ,. The random
variables Y} are independent and P(Yj = i) = 1/k. Denote SV the set of all
Markov times 7 with respect to the o-fields {F;}Y_, bounded by N. Now,
the problem can be formulated as follows: we are searching 7* € SV that

P{Z =1} = sup P{Z, =1}.

TeSN

The problem can be reduced to the optimal stopping problem for a homoge-
neous Markov chain with suitable payoff functions.

Let W1 = 1. Define Wy = inf{r > W1 : Y, = 1}, t > 1, (inf ) = o0).
(Wt,]-"t,P(Ll))i\Ll is the homogeneous Markov chain with the state space
E={1,2,.,N}U{oo}, Fr = a(Wyi,Ws,..., W) and the following one-step

transition probabilities: p(r,s) = P{W;41 =s | W, =r} = oy H1<r<

s < N, p(ryo0) =1 — Zévzr_u p(r,s), p(co,00) = 1 and 0 otherwise. The

payoff function for the problem defined on E has a form f(r) = .
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Let TN = {1 € SV : 7 =r =Y, = 1}. It is the set of stopping times with
respect to Fy,t = 1,2,.... We have P{Z« = 1} = sup, 7~ E1 f(W,) and let
o* be such that P{Z.+ =1} = E; f(W,~). Denote é(r) = sup,., P{Z, = 1}.
We have

E('r):{ ci(r) ifrg<r<N
ci(rg) i 1<r<r,,

where ¢;1(r) = %Zé\fzrﬂs%p r=12...,Nand r, = inf{l <r < N :
Zé\[:rﬂ - < 1}. When N — oo such that & — x we obtain & (z) =
my o0 c1(r) = —zlnw, a = imy 00 [ = e~ = 0.3679 (cf. Shiryaev [45],
Freeman [19], Rose [31]).

A deeper analysis of the presented key problem in the field and its solution
led to the basic question on the origin and nature of the compared values of
the studied objects. The mathematical model should take this into account.
The discussion in this direction one can find in Ferguson’s paper [18]. In no
information case it is assumed that the assigned labels are different and the
decision maker has no idea about them before investigation. Just like the
guest which has came for the first time to the city and is looking for a place
to live.

1.1.2. The full information secretary problem In contrast to the
model described in the section 1.1.1 let us consider the case where the statis-
tician’s knowledge about the evaluated properties is much wider. The origins
of this secretary problem version lie with Cayley [10], where values are ob-
served sequentially. Their values are a realization of an independent random
variable with a continuous distribution function (c.d.f.) F. Following the de-
scription of the problem given by Bojdecki [3] let N be a fixed natural number.
The results of items evaluation are the realization of the random variables
X1, Xo,...,Xn. They are observed. Let us define G,, = 0{X1, Xo,..., Xy}
and & the set of all stopping times with respect to the family {G,}N_,. The
elements of & can take oo which means that it does not take value less than
N (we do not stop at all). The aim is to find a stopping time 7% € & such
that

P(m" < 400, X;» = max{m}) = sup P(1 < 400, X, = max{)m}). (1)

TS

Define 7, = P(X,, = max(Xy,...,Xn)|Gn), n = 1,2,...,N. Clearly n, =
]I{Xn:max(Xl,W’XN)}X,]@V_”, where ;.1 (w) is the indicator function of the event.
If we assume that 7o, = 0 then we have En, = P(7 < o0, X; = max(Xy,..., Xy)),
for any 7 € &. It reduces the problem to the classical optimal stopping prob-
lem for the sequence {n,}»_,. In this case it is possible to reformulate it as
the optimal stopping of a Markov chain. To this end, let &y denote the set
of all o € & such that X,, = max(Xy,...,X,) on{oc =n} forn=10,2,...,N.

If 7 € &, then 7" defined as 7 if X, = max(X1,...,X,), and as +oo oth-
erwise is in &g. It is clear that En, < En,/, so it suffices to consider stopping
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times belonging to &g only. Define the moments when the consecutive max-
ima appear, i.e. 71 = 1, Tp11 = inf(n: N > n > 7, X,, = max(Xy,...,X,)),
for k =1,2,..., N—1. This sequence of stopping times belongs to Sy. Define
& = (Tk, X7,) on {1 < 400} and & = 0 on {7, = +o0} (0 is a label for the
final state and denotes that after 7,1 < +00 there were no ”leaders”). The
sequence {&}4_; is a Markov chain with respect to {G,, }2_, with the state
space ({1,2,..., N} x [0,1] and the transition probabilities

P(n,z;m,B) = P(&41 € (m,B)|& = (n,x))
= H{n<m} (n, m)xn_m_lﬂ((xv 1] N B)’

forn,m=1,2,...,N, x € [0,1], B a Borel subset of [0, 1], where pu(-) is the
Lebesque measure.

For any 7 € &g define 0 = k on the set {7 =7, < 400}, k=1,2,...,N
and ¢ = 400 on {r = +oo}. Let f(n,z) = 2N~" for n = 1,2,..., N,
x € [0,1] and 0 otherwise. If o is a stopping time with respect of {G,, W
then 7, = H{T<+OO}X7]'V_T = [(&)-

The solution of this reformulated optimal stopping problem for Markov
chain is based on the observation that the problem is the monotone case
(cf. [12] Sec. 3.5, p. 54). For such a case the construction of the optimal
strategy is relatively simple. It is so often used in the investigation of the
secretary problem extension that it is worth recalling the lemma formulating
the solution of the optimal stopping problem for this class.

LEMMA 1.1 Let € be a homogeneous Markov chain with state space S, and

f S — R, be a bounded function. Denote Z. = {s € S : Tf(s) < f(s)}.

Assume that (i) Vses P(Fi& € Z) = 1; (ii) Vsez P(Fpéx ¢ Z) = 0. Then
*

o* = inf{k : & € Z} is a solution of the problem of optimal stopping of &
with the reward function f.

In the full information secretary problem the set Z = {0} U Uﬁ;l({n} X
[z, 1]) where xy = 0 and x, is the solution of the equation Tf(n,z) =
f(n,z) in [0, 1] which for n < N has the following explicit form

xN—k—‘rl -1

po N-k+1

=1 2)

The sequence {z,} is decreasing and the Markov chain &, is going to the
right and upwards. This implies that the assumptions of the lemma are
satisfactory. Hence the solution comes in the form:

THEOREM 1.2 The solution of the full information secretary problem has the
form:
™ =inf{n < N: X, =max{X1,...,z,}, F(X,) > x,}, (3)

where xny = 0 and x,, for n < N are the unique roots of the equations (2).
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Before the precise model of the full information secretary problem was
formulated by Bojdecki [3], the solution has been presented by Gilbert &
Mosteller [20] based on heuristic arguments. Sakaguchi [35] published his
solution also. The references of early papers on the topics can be found
in [19].

1.1.3. The partial information secretary problem Let D be a
family of continuous distribution functions. The formulation of the problem
is the same as in the full information case in the section 1.1.1. There are
two extreme cases: (i) when D contains all continuous distribution functions
(the secretary problem) and (ii) when D contains a single c.d.f. (the full
information case). When D is neither the class of all continuous distribu-
tion functions nor a single c.d.f. it is the partial information case which
was investigated e.g. by Petruccelli [28]. In his paper, for an arbitrary lo-
cation, the scale and location-scale parameter family D, he gave sufficient
conditions for the existence of stopping rules 7,y having asymptotic proba-
bility of choosing the largest as in the full information case. On the other
side Samuels [33] showed that for the family D of all uniform continuous
distribution functions the minimax stopping rule is the same as in the no
information case. Petruccelli [27] proved that for D containing all uniform
Ul6 — 1/2,0 + 1/2] continuous distribution functions the minimax stopping
= max{X1n}) = 0.43527

rule 7 gives lim,, o0 P(X7y

1.1.4. Minimizing the expected rank in the no information sec-
retary problem If as in the case of the problem of the section 1.1.1 the aim
of the decision maker is to minimize E(Z,) by 7 € &~ . This topic was the sole
problem of the paper by Chow, Moriguti, Robbins, and Samuels [11]. First
of all probabilistic properties of relative rank vs. absolute rank should be
recalled. The relative ranks {Y;,,})_; are independent and they have uniform
distribution on the set of their values: P(Yy = j) = %, for j =1,2,...,k.
The conditional distribution of the absolute rank Z,, given history is the
following:

(G-1) ()

P(Zy=k|Yi=j1,.... Yy =7) =P(Z, = k|Y,, = j) = j‘l(N) :

for j <k <n < N. EZ,|Y, =7 = %j. With backward induction

the solution of the minimization problem of the expected rank was solved.
Let ¢, = inf;>, E(Z;) = inf;>, E(%YT). The sequence {cn}ﬁfz_o1 is non

n+1
N+1 C”}'

(4)

decreasing. Define s, = [

THEOREM 1.3 The optimal stopping time in the expected rank minimization
problem for the no information secretary problem

v= inf E(Z;) (5)

TeGN
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has the form 7 =inf{l <n < N :Y, < s,} and the value v = cy.

[e%e) . l.+1
2
lim ¢ =[] (JJF )J =~ 3.8695.
N—o0 jaie 7

The form of the optimal stopping time for the problem is typical. It is so
suggestive that it leads to errors in some heuristic investigations (cf. the sec-
tion 1.2.2). The rank minimization problem for no information case returned
as a stimulation for further research up to contemporary works.

1.1.5. Minimizing the expected rank in the full information
secretary problem Let us observe sequentially the sequence {X,}_;,
like in the full information secretary problem presented in the section 1.1.2,
and one must stop on exactly one of them at the instance when it appears.
The aim is to choose the stopping rule 7 with respect to the filtration G,
which minimizes the expected rank of the selected observation. Let us denote
MY the set of stopping times with respect to the filtration {G,}Y_;. The
formulation is as in (5) but with respect to the stopping times from 9. This
full-information expected-rank minimization problem is known as Robbins’
problem (cf. [5]). The general solution is still unknown, and only some bounds
are known for the limiting value as IV tends to infinity. Recent work on the
topic was published by Bruss [7] and Gnedin & Iksanov [21]. The problem
was posed by Robbins at the Amherst conference in 1990. An amazing story
about the history of it one can find in [5].

The problems formulated in the sections 1.1.1-1.1.5 show the role in the
theory of optimal stopping and the respective difficulties. However, the im-
portance of the Cowan-Zabczyk problem is mostly related to the models of
the secretary problem with an unknown number of options. The aim of this
note is to reopen awaken interest in this problem and by simply viewing it
from what modification of the primary setting was formulated, to increase
the probability that a reader may see the importance of the basic formulation
and an unsolved question related to it.

1.2. An unknown number of options

1.2.1. Asymptotic behavior of the solution when the number
of options tends to infinity In the formulated problems the number of
available items is finite and known. An interesting question concerns the
behaviour of solution when the number of options tends to infinity. In the
no-information case both the threshold and the value of the problem, when
the number of the option tends to oo, get a = limy 400 ¢ = e ! 2 0.3679
and ¢é(a) = imy_00c1(ry) = e~ 1. In the analysis of this question con-
cerning extended problems an interesting technique was applied based on
the approximation of difference equations by the differential equations (see

paper by Mucci [25, 26]).
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In the full information case the exact asymptotic value was the subject of
research by many mathematicians. The rigorous explanation of the asymp-
totic behavior belongs to Samuels [37] (cf. also [2] p. 58-60). The proof is
formal, without deeper probabilistic intuition. The asymptotic value is close
to 0.58.

1.2.2. Discrete distributions of the number of options Let N
denote the unknown, true number of items in the no—information secretary
problem as in the section 1.1.1. The distribution p; = P(N =1i),i=1,2,...
is known to the observer. Write

m=P(NER= 3 (6)
j=k+1
Presman & Sonin [29] provided a treatment of the standard problem, using

the Dynkin approach. The transition probabilities of the imbedded Markov
chain are

Ts T
r,s)=p(r,s)— = ———— forr < s < oo, 7

() = plros) = = T )

q(r,00) = > 232, z 2. The oo as in the section 1.1.2 denote the absorbing

state to cover the possibility that r < N < s. In this case, the k-th item
is the actual best, and the probability of this, given that it is relatively
best, is just ¢(k,o0). The problem is much harder than when the horizon
is given. The one-step-look-ahead (OLA) policy is no longer optimal even
for the bounded N. The set Z of states r at which it is optimal to stop
may be thought of, trivially, as a succession of islands separated by a sea of
continuation states. It was not obvious for Rasmussen [31] and Rasmussen &
Robbins [32] where the analysis of the problem is not correct and results are
wrong. Both papers are using the erroneous theorem 3.1 of [31]. Irle [23] gives
a counter-example distribution of N for their result and using the method
obtained by Rasch [30] based on the Howard’s policy iteration method he
repeated the results of Presman & Sonin [29].

The minimax problems against the set of distribution of the horizon N
were the natural extensions and they were also investigated. The analysis
for the bounded horizon can be found in [22]. Let D be the set of all such
distributions. The problem of section 1.1.1 with the infimum over D and the
supremum over all stopping times was solved there. The authors derive the
explicit value, give the minimax-optimal stop rule and the distribution yield-
ing the value. The minimax distribution of N (which puts, except for bound
n, no probability mass on the unique stopping island for the deterministic
N = n case) is seemingly a new distribution on {1,2,...,n}.

1.2.3. The Poisson stream of options The problems posed in the
previous section are provoking the extension for modeling the stream of op-
tions in the continuous time. The good model for that is the point process.
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The simplest one is the Poisson process with the known intensity. The real
search time should be bounded to a fixed or random interval. In the sixties of
XX-th century, when the theory of Markov decision processes arose and the
development of the theory of optimal stopping grew, the problem of selling
houses was the perfect training ground for creating algorithms’ applications.
The examples of the contribution in the area are Elfving problem [17] (see
also Breiman [1] for systematic presentation of the known models at that
time). The Elfving problem is not the secretary problem. The full infor-
mation secretary problem with Poisson stream of option was considered by
Sakaguchi [30] (it is one of the four models investigated in the paper).

2. The Cowan-Zabczyk model

2.1. Lead-in Taking into account preliminaries, let us recall Tom Fer-
guson’s claim that the Secretary Problem ”has been extended and general-
ized in many different directions so that now one can say that it constitutes
a field within mathematics—probability—optimization”. Further, this paper
will recall a list of extensions related to the model presented by Cowan and
Zabczyk [14,15] which motivated to very deep question and investigation.
The story is not finished yet. The original formulation of the problem is
following:

It is the continuous time, no information best choice problem. The Pois-
son stream of option with bounded horizon is observed by a decision maker.
Each option is evaluated by comparison to the past option and the rank is
assigned. All options have different value. The total number of options is
random. At the moment of evaluation the decision maker can accept it or
reject. Recall is not possible. The investigation stops when the item is chosen
or the epoch T is reached.

The solution of the original problem is complicated. The natural ques-
tions are related to parameters of the model:

1. the horizon T' (e.g. unknown, random, asymptotic solution when 7" —
00);

2. the parameter A (e.g. unknown, the a priory distribution is known);

3. another information about the options.

2.2. Description of the model Cowan and Zabczyk [, 15] proved,
using the standard theory of optimal stopping of a Markov chain, that the
optimal rule is to select the i—th candidate (the best so far), where i is the
smallest k for which the k—th candidate is a leader and \(T" —t) < yi, where
the {yx} are the increasing sequence of numbers such that, if A\(T' —t) = yy,
then the success probabilities for the rules stop now and stop at the next leader
are equal. These probabilities were derived and the g are the solutions to
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the equations

00 0o n—1

Yn _ Yn 1
P i Db v DY e

n=0 n=1 7=0

The presented issue became the basis for further research. Many of the
questions that are typical for this matter, lived to see the answer. It is
worth mentioning that some of them here, and others will be included in the
paper. The work also inspired research on a similar model related to the
full information secretary problem but the papers that treated the issue not
always quoted the formulation of [14, 15].

The asymptotic behavior of the thresholds y;, was investigated by Ciesiel-
ski and Zabcezyk [13]. It was shown that limy . ¥ tends to e — 1. The
Bayesian approach to the stream of option leads Bruss [9] to the observation
that under some priors for A, the non-informative priors, the optimal thresh-
olds are stationary. This result is followed by Bruss [8] who gives a solution
to the minimax version of the best choice problem with random number of
options.

The full list of the papers related to the Cowan-Zabczyk problem is diffi-
cult to collate. Directly this model cites more than twenty works, and many
more secondary results. It is obvious that [14,15] stimulated Bruss & others’
research on the version with the random horizon 7' (see Bruss [3], Bruss &
Samuels [0]), the unknown intensity of the stream of options (see Bruss [9])
when the other aim than choosing the best considered [11]) and the bilateral
problem on the Poisson stream of the options [12]. There are experimental
research reported e.g in [44], [39] which are also stimulated by this seminal
Cowan-Zabczyk problem.

3. Extenstions of the Cowan-Zabczyk models® It is the subjective
selection of such problems. The main stream of questions recalls that the
number of items under investigation is unknown and random. On the list
there are results published before and after Cowan-Zabczyk’s seminal papers
(cf. the preliminaries in section 1.1). However, the Poisson stream of options
as natural model for real time apartment search problem, considered as the
optimal stopping problem, was appealing idea at the time. The secondary
ideas were related to the unknown or random parameter of the Poisson pro-
cess. Also the game version of the secretary problem with the Poisson stream
of options is before hands.

A method of selecting the best element from a random sequence of an
unknown length was investigated by Stewart [10]. By assuming that the
arrival times of the elements are the independent and identically distributed
exponential random variables, a procedure was established that maximizes

2Results directly stimulated by the papers [14,15].
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the probability of selecting the best element. Asymptotically, for large values
of the actual length of the sequence, the optimal probability is e~!. It is
shown that the method behaves well even when the actual number of options
is comparatively small, and that it is not particularly sensitive to errors in
the specification of the arrival rate of the process.

Ano and Ando [I]|considered a continuous-time generalization of the sec-
retary problem. A decision maker finds an apartment during a fixed period
(0,T]. Opportunities to inspect apartments occur at the epochs of a homo-
geneous Poisson process of an intensity A. The decision maker can rank a
given apartment among all those inspected to date. The objective is to max-
imize the probability of selecting the best apartment from those available in
(0, T]. It extends Bruss’ problem to the problem in which each owner of an
apartment can accept the offer proposed by an apartment’s searcher with a
fixed known probability p, (0 < p < 1) and the decision maker is allowed to
make at most m > 1 offers. It is shown that the optimal stopping rule for
the problem is to make an offer to the first relatively best option after a time
st = (T 4 a) exp(=C"™(q)) — a, where ¢ = 1 — p. In particular, they give
CO(q)=1,C%(q) =1+¢/2 and C®)(q) =1+ q/2 + ¢*/3 + ¢°/8. Finally,
they consider the case when the probability p depends on m.

In the paper [11] a continuous-time generalization of the secretary prob-
lem that was studied by Bruss [9] was extended. It generalizes the problem
within two frameworks. In the first case the objective is to stop on the best
or on the second best object whilst in the second case the goal is to stop
on the second best object. The optimal strategies and the probabilities of
success are derived.

The unique paper [12] with the game model deals with the continuous-
time two-person game version of the secretary problem. Objects appear
according to a compound Poisson process with unknown intensity A having a
prior exponential density. Each player can choose only one candidate object,
with the aim being to choose the best object before cut-off date T'. If both
players would like to select the same object, priority is randomly assigned to
Player 1 with probability «, or to Player 2 with probability 1 —«. The player
that has been rejected may select any object from those offered later. The
resulting nonzero-sum stochastic game was studied and the Nash equilibria
was constructed. Some explicit solutions are obtained and it is shown that the
structure of the solution undergoes a phase transition based on the value of
«. This extends previous models of Bruss [9] from one side and G. Ravindran
& Szajowski [33] (or Szajowski [13]).
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Sekwncyjne poszukiwanie lokalu do wynajecia.
Krzysztof Szajowski

Streszczenie W latach 60 -tych poprzedniego wieku analizowano wielu matema-
tykéw skupialo swoja uwage na zadaniach optymalizacyjnych nawigzujacych do se-
kwencyjnego przeszukiwania czy obserwacji. Do tych zadan mozna zaliczyé problem
optymalnego zatrzymania Robbinsa, problem sekretarki, (do$¢ obszerna analize tego
zagadnienia przeprowadzil Ferguson [18]), zadanie optymalnego parkowania czy tez
problem poszukiwania pracy. Subtelne szczegdly tych zagadnien powoduja, iz kazde
zagadnienie z wymienionych ma liczne wersje rézniace si¢ szczegétami, ktére powo-
duja, iz mamy do czynienia cala rodzing modeli. Jedno z zagadnien zainteresowato
professora Jerzy Zabczyk. W wyniku dyskusji z profesorem Richardem Cowanem
(w Warszawie ) stworzyli model poszukiwania najlepszego obiektu, gdy dostepnych
obiektéw jest losowa liczba. Wg wspédlczesnej klasyfikacji probleméw wyboru naj-
lepszego obiektu jest to przypadek poszukiwania najlepszego obiektu przy braku
informacji, z czasem ciaglym, gdy strumien zgloszen jest poissonowski a horyzont
jest skoniczony, ustalony.

Klasyfikacja tematyczna AMS (2010): 60G40; 62L15; 90D60; 60K99.

Slowa kluczowe: czas zatrzymania, gry z zatrzymywaniem procesu, proces Markowa,
zlozony proces Poissona, gra o sumie niezerowej, losowy priorytet, randomizowane
momenty zatrzymania.
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