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Abstract We consider a queuing system where the number of active servers changes
depending on the length of the queue. As a practical example of such a system, we
consider the security check queue at airports. The number of active servers increases
when the queue grows by k customers and decreases accordingly. This allows to save
server resources while maintaining acceptable performance (average queuing time
and its variation) for customers. We obtain a closed-form solution for the serving
time, queue length and average number of servers.

To validate the model we selected data from Dallas — Fort Worth International
Airport, the eighth largest in the world in terms of passenger traffic. Our simulation
model shows a close match with analytic results. Cost savings in the number of open
servers are achievable while providing acceptable waiting time for the customers.
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1. Introduction

Traditionally, queuing theory considers models with a fixed number of
servers [10,15,19]. The main performance metrics there are the queue length
and waiting time. However, it makes sense to consider queuing systems with a
changing number of servers depending on the queue length [1]. In this paper,
we propose a new queuing discipline which allows to save server resources by
deploying new servers only when needed. Having only the minimum number
of servers sufficient to provide the required performance with high proba-
bility saves costs. To the best of our knowledge, this problem has not been
considered yet in such a setting. Such queuing systems could be readily used


http://dx.doi.org/10.14708/ma.v40i2.358

2 Queuing System

for example at airports, where a passenger should have a known upper bound
for the waiting time at a security check [24].

Related work can be divided to two groups. In the first group, servers have
different service rates and researchers aim at allocating the incoming cus-
tomers to optimize the load of the system [I,1%]. In this case, some customers
can move from a long queue to a shorter one [17]. In the paper [23] the author
proposes that the optimal number of servers is of the form A+~+v/\ depending
on the total arrival rate A for a given grade of service . For optimal control
it is suitable to use multi-threshold strategies; when the queue to a given
server exceeds a certain threshold, customers move to other servers [, 16,22]
or leave the system [2].

In the second group of works, the servers are identical and the researchers
aim to distribute customers among servers, which can become active or in-
active [8,12,21], [11].

The closest to this paper is work by Solovyev [20] that considers the
birth-death process with a system of parameters {\,,} — arrival intensity and
{pn} the service rate. The arrival rate is fixed, but the service rate can be
set arbitrarily. The goal is to find such service rates p,, given the arrival rate,
that the system costs, consisting of waiting time of all the customers in the
queue and the average cost of the server’s work, are minimal. The model that
we are considering differs in the minimization criteria and service discipline.

Other relevant work to this paper [3,7] is where multi-level strategies are
used for controlling queues in retrial models, and also work [13] where the
number of active servers is determined periodically depending on the state
of the system in the previous time interval.

Consider a queuing system with one server. The queue grows and at
some point reaches k customers. If one more customer arrives, we deploy
a second server. If the queue exceeds 2k at some point, we deploy a third
server and so on. A practical example of such a system is security checks at
airports, where the waiting time for customers cannot exceed a certain limit
to avoid being late for the departing flights. Later in the paper, we validate
our queuing model using the parameters from a report of Dallas — Fort Worth
International Airport [9].

Such a queuing system is illustrated in Figure 1. All servers, the security
checkpoints in our case, share the same queue and are shown as circles. The
queue is organized in a series of lines, separated by barriers on each side. We
can assume that each line can hold k customers, and a new server becomes
active if a new line starts getting filled. In Figure 1, we see three active
servers and one inactive, because three lines in the queue have customers.
Such arrangements are often found at airport security, fast food restaurants,
ticket vendors, and many other real life scenarios. The management goal
is to minimize the number of active servers while providing an acceptable
level of service depending on the current queue length. Due to the real-life
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importance of this scenario, any novel models studying such queues from new
angles are of high interest.

The rest of the paper is organized as follows. In Section 2, we formu-
late the queuing system with a variable number of servers. In Section 3, we
derive the main characteristics of the system, such as queuing time, analyti-
cally. In Section 4, we present simulation results. Finally, Section 5 presents
conclusions and plans for future work.

2. Queuing model with a variable number of servers

Consider a classic queuing system model M /M /N with incoming Poisson
arrivals with intensity A, exponential serving time p and number of servers N.
Assume that N is a random variable that can take natural values. It is fully
defined by the following serving system, which we call the serving protocol.

Assume that the queue at each server cannot exceed k customers. This
is a parameter in our protocol which is now fixed, but will be varied later.
Denote by z(t) the common queue length at time t. Note that if at moment
t the following condition holds: k(n — 1) < z(t) < kn for some natural n, the
system has n active servers. Denote by P;(t), i = 0, 1, ... the probability
that at time ¢ the common queue has i customers. For these probabilities we
can write down a system of Kolmogorov equations.
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Figure 1: The airport queuing system with on-demand number of servers.
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Pppyj(t) = =(A+ (n+ D)) Peny (8) + APinsj—1 () + (0 + DpPrnjia (t),
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with P_1(t) =0forn=0,1,...,5=1,..,k— 1.
This system of equations is a special case of a general system of equations
for a birth-death process

Pl (t) = NP (t) — (N + ) Pi(t) + g1 P (t),

fori=0,1,...,where A\_y = o =0, =X\, I =1,2, ..., fgnyj = (n+1)p,

form=0,1,...,j=1,..., k—1land ppp =npuforn=1,2, ....
It is known [14], that such a process has a steady state if and only if the

following holds

o0 oo 1

Zel<00, 272007 (1)

1=0 = M
where \ N

o =1, gl:u7 I>1.
M1

In our case, the values 6; are of the form

pkn+i

9kn+i:m7 t=1,...

where p = A\/u is the system load. It is easy to see that the conditions (1)
for the existence of steady-state hold, since the series

iiakn+i = i ('::)kzzk:l <ni1)l

n=01i=1 n=0 :

converges, and
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since, according to Stirling’s formula n! = (n/e)"v27n(1 + O(1/n)). We
obtain a system of equations for the steady state (P;(t) = P; = const), which
contains several groups of similar recurrent equations.

The first group of k£ equations:

PlszO) PZ+1:(1+p)PZ_pR—17 22177k_]-

The second group of equations:

L+p, »p 14 14 ,
Per = —5 D=5 k-1, Dotitn = (1 +5 ) Derim g Phviz, i =1, . k=1
The general formula for P;:
pkn+i
i=1, ...,k n=0,1,.... (2)

Prnti = WPO,



V. V. Mazalov, A. Gurtov 5

We find P from the condition

oo
> P=1
1=0

From the general formula (2) we obtain the equality

o k
Py+ ) Y Puri=1

n=0i=1
or
oo k pkn—i-i
Py(1+ — | =
(55 )
Simplifying, we obtain

jlkk -1
P():(-i—pz p) .

! —p

Now we can calculate all the Pjs and consequently all the main charac-
teristics of the queuing system.

3. Main characteristics of the queuing system
An important parameter of the system is the average number of active
servers

oo k
E{N} = Z Z(” + 1) Prngei-
n=01i=1
Simplifying, we obtain

oo k—1
E{N}_Z n+1 Zpkn-i-z—pzzpkn-i-z:
n=0 n=0 i=0
:p<1_P0_ZPk(n+1)+ZPkn> =P
n=0 n=0

i.e. the average number of active servers for any k will be equal to the system
load E{N} = p. That does not depend on the maximal queue length of any
server.

However, the variance of N depends on k. First we calculate

0o k
E{N*} =) (n+1)*Y Pinyi =
n=0 =1
0o kn+1n+1 oo k—2
:Zp ( P0+ QZZPknJﬂ:
n=0 ( ) n=0 i=0

o0 pkn—H(n—l—I)

= Z TPO +p (1 - Z Pk(nH)l) :

n=0 n=0
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Simplifying, we obtain

o0 pknJrl
E{N*}=p"+ P> “r-
= (nl)

Hence, the variance of the number of active servers is
2 2 — (" g
Var(N} = B(N*} — (B{NDE = P 3 (2]
n=0 !

Hence, the variance is a decreasing function of k. It is an important char-
acteristic in practice, since it shows the variance of the necessary number of
servers around the mean value. If this variance is large, the system might
need many additional servers at some point of time for serving customers.

In Figure 2, the solid line shows the standard deviation o (k) (square root
of variance) of the number of active servers for different values of parameter
k. To aid the reliable functioning of the system, we can construct confidence
intervals [0, M| for the number of active servers with high significance ¢ such
that

P{N<M}>1-06.

Then the proportion of time for which at most M servers are needed is
at least 1 — 4.

In Figure 2, the black circles show the value of M such that at most M
servers are required at least 99 % of the time. We see a good match of the
graphs of this level and the standard deviation. To choose an optimal value
k, we have to compute other important characteristics of the queuing system,
such as the average queue length and more importantly average waiting time
in the queue.

The average number of customers in the system will be less than kp.

oo k oo k
E{q} =Y (kn+i)Popyi = kp— D> > (k— i) Prnsi < kp.

n=01i=1 n=01i=1

Let us find an upper bound on the mean waiting time. It is important
that the number of active servers can change depending on the current queue
length. We can definitely say that the worst case for a customer entering
the queue at position nk + ¢ (i.e. when n + 1 servers are active) is when
no customers arrive afterwards. Then, during the service the number of ac-
tive servers will gradually decrease and the expected waiting time for that
customer will be

S S SR B— +k—i+k<1+1+ +1>
(n+Dp np - (n=Dp g (n+Dp p 2 n/)
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Table 1: Optimal value of k* for different criteria weights.
[ [T [2[3[4[5]6]7][8 ]9 10]2 [ 30]40]50]60] 708 [90] 100
[k [ 23455677 8] 8 | 13|18 ]2 | 23| 26| 29 |31 |33 35 |

Hence, the following is an upper bound for the average waiting time in
the queue

> & i k
E{t} = Z Z <(TL+1>,M + MSTL) Pkn-i—ia

n=01i=1

where s, = 1 + % + ...+ % is a harmonic series.

4. Simulations

To validate the model we have selected Dallas — Fort Worth International
Airport. According to Wikipedia, it is the fourth busiest airport in the world
in terms of aircraft movements; in terms of passenger traffic, it is the eighth
busiest airport in the world. The choice of this particular airport is motivated
by the availability of public data on its security checking process.

According to the airport authorities, it serves on average 54 passengers
per minute. The security checks are performed by a maximum of 18 lines each
with a peak throughput of 260 passengers per hour (for computer simulation
we chose parameters A = 54 and p = 4.25).

Figure 2 and Figure 3 show simulation results for the queuing system
using the Mathematica software package. Figure 2 shows the necessary num-
ber of servers versus the parameter k& (maximum queue length per server).
Figure 3 shows the average waiting time in minutes versus the parameter k.

As we can see in the figures, if we fix the parameter k e.g. equal to 15
(the maximum queue per server) then for Dallas — Fort Worth International
Airport the maximum number of active servers will be approximately 14.
Then, the average waiting time in the queue for a passenger will be 11 min-
utes. That matches the real world data from the airport report. However, our
results permit keeping 4 lines out of 18 closed while providing the necessary
performance, therefore saving costs.

We can combine the penalty of the waiting time of passengers and cost
of servers into one weighted criterion

H(k) = E{t} + C(E{N} +o(k)) = E{t} + C(p + o(k)),

where C' is some weight. We can now look for the optimal value of k£ giving
the minimum average weighted costs.

For Dallas — Fort Worth International Airport, we computed the values
given in Table 1. We can see that if the costs of servers exceed the costs of
customers waiting by an order of magnitude, then the parameter k should be
made equal to 8; if by two orders of magnitude then 35.

5. Conclusion



8 Queuing System

:-
20
19 -
15| 1
3 -
I -
17
[ -
3 -
[ -
[ -
15k -
[ -
--
-,
-
15| IBEE T
r Y S N N [ N N S S N Y e e . O DO T
5 1] 1= il = 30

Figure 2: The necessary number of servers versus the parameter & (max queue
length per server).

Figure 3: Average waiting time in minutes versus the parameter k£ (max queue
length per server).
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We proposed a queuing system where the number of active servers is
dynamically adjusted based on the queue length. We analyzed the system
using the Kolmogorov differential equations and obtained upper bounds on
the average waiting time, queue length and number of active servers.

The proposed system can model the security check procedure at airports.
Our simulation model shows a close match with analytic results using real-
world data from Dallas — Fort Worth International Airport. Using our model
permits costs savings by limiting the number of active servers (security check-
points) while providing an acceptable waiting time for the customers with
high probability.

A more generic threshold queuing discipline was considered by Solov-
jev [20] and in a more specific variant, close to the one considered in our
paper, but for a more general arrival process (MAP) by Chakravarthy [0]. In
this paper, we considered a particular queuing mechanism in use by airport
security checkpoints. It allowed us to simplify the problem and formulate it
using just one parameter k, the queue segment length. This allowed us to
find a solution analytically in closed form that facilitates the application of
results in practice.

In future work, we plan to consider a queuing system in supermarkets,
where each server has their own queue. A cashier closes when their queue
becomes empty. When the queue to any cashier reaches k, a new cashier
opens, which attracts customers from different queues.
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Streszczenie. W pracy rozwazany jest system kolejkowy ze zmienng liczba
serweréw zalezna od dlugosci kolejki. Przyktadem takiego systemu jest sys-
tem kontroli bezpieczenstwa na lotniskach. Liczba aktywnych serweréw zwiek-
sza sie, gdy kolejka pasazeréw rosnie i zmniejsza si¢, gdy zgloszenia do od-
prawy maleja. Pozwala to zaoszczedzié¢ zasoby przy zachowaniu odpowiedniej
wydajnosci (Srednim czasie przebywania w kolejce) dla klientéw. Otrzymano
w zamknietej formie czas obshtugi, dtugos$é kolejki i érednia liczbe wykorzy-
stanych serwerow. Dla sprawdzenia poprawnosci modeli postuzono sie da-
nymi z portu lotniczego Dallas - Fort Worth International, 6smego na swiecie
pod wzgledem wielko$ci ruchu pasazerskiego. Badania symulacyjne potwier-
dzity rezultaty analityczne. Pozwala to zmniejszenie liczby otwartych serwe-
row przy jednoczesnej kontroli dopuszcezalnego czasu oczekiwania na odprawe
przez pasazera.

Stowa kluczowe: teoria kolejek, dynamiczna kolejka, kontrola bezpie-
czenstwa na lotniskach, planowanie przepustowosci
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