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(The author dedicates this paper to the memory of Professor Minoru Sakaguchi
(1926-2009) with great respect for his many contributions to the fields of optimal

stopping and game theory that have inspired generations of students and scholars.)

Abstract The optimal stopping problem of maximizing the probability of stopping
on the last success of a finite sequence of independent Bernoulli trials has been
studied by Hill and Krengel (1992), Hsiau and Yang (2000)and Bruss (2000).The
optimal stopping rule of Bruss stops when the sum of the odds of future successes
is less than one. This Sum-the-Odds Theorem is extended in several ways. First, an
infinite number of Bernoulli trials is allowed. Second, the payoff for not stopping
is allowed to be different from the payoff of stopping on a success that is not the
last success. Third, the Bernoulli variables are allowed to be dependent. Fourth, the
model is generalized to allow at each stage other dependent random variables to be
observed that may influence the assessment of the probability of success at future
stages. Finally, application is made to a game of Sakaguchi (1984) in which two
players vie for predicting the last success, but in which one of the players is given
priority of acting first.
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1. Description of the Problem. Fix a positive integer n, and let
X1, X2, . . . , Xn be Bernoulli random variables. The Xi are observed sequen-
tially. The problem is to find a stopping rule N to maximize the probability
of stopping at the last success. In Hill and Krengel (1992), Hsiau and Yang
(2000)and Bruss (2000), the Xi are taken to be independent. Here we inves-
tigate the problem for dependent Xi.

Suppose that the Xi are independent, and let pi = P(Xi = 1). The
optimal stopping rule of Bruss (2000) is simply

N∗ = min{k ­ 1 : Xk = 1 and
n∑

i=k+1

pi
1− pi

¬ 1}. (1)

(If pi = 1, pi/(1 − pi) is taken to be +∞.) In other words, stop at the
first success (Xk = 1) for which the sum of the odds of success for future
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Xi is less than or equal to 1. If the sum of the odds is equal to 1, we are
actually indifferent between stopping and continuing. This result is referred
to as the Sum-the-Odds Theorem. The Classical Secretary Problem occurs if
pi = 1/i for i = 1, . . . , n, and in this case it is known that k/n→ e−1, where
the optimal rule selects the first success after stage k. More remarkable, in
Hill and Krengel (1992) and in Bruss (2003), it is seen that the optimal
probability of stopping on the last success is at least e−1 whatever be the
values of the pi, provided that the probability of at least one success is 1
(Hill and Krengel), or that the sum of the odds is at least 1 (Bruss). See
also Bruss and Paindaveine (2000). Bruss and Louchard (2009) propose a
model for unknown odds and study the impact of sequential estimation in the
corresponding odds algorithm. Newer developments surrounding the Sum-
the-Odds Theorem, including the notion of multiplicative odds studied by
Tamaki (2010) as well as multiple selection chances (see Ano et al. (2010) are
summarized in Dendievel (2013). A related problem of stopping in continuous
time, called the last arrival problem, has a fascinating solution presented by
Bruss and Yor (2012).

There are two small improvements one may make on the original Sum-the-
Odds Theorem. First, we may set the payoff for not stopping to be different
from the payoff of stopping on a success that is not the last success. For the
classical secretary problem, this generalization is due to Sakaguchi (1984).
Let ω represent the payoff for not stopping. If ω ­ 1, it is clear that it is
optimal never to stop. So for simplicity, we take ω < 1, though ω may be
allowed to be negative provided it is forbidden to stop on a failure.

Secondly, we may allow an infinite number of Bernoulli variables. The
same rule (1) is optimal if n is replaced by ∞. However, with an infinite
number of Xi, it may happen that there is no last Xi = 1. By the Borel-
Cantelli Lemma, this happens with independent Xi if and only if

∑∞
1 pi =∞.

In this case the sum of the odds is infinite so that the rule N∗ never stops
and the payoff is assumed in that case to be ω. If

∑∞
1 pi < ∞, the rule N∗

eventually stops, and is optimal.
With both these features added to the problem, the optimal stopping rule

in the case
∑∞

1 pi <∞ becomes

N∗ = min{k ­ 1 : Xk = 1 and
∞∑

i=k+1

pi
1− pi

¬ 1− ω}. (2)

This result follows from the main theorem below. If
∑∞

1 pi =∞, the optimal
rule is trivial, namely: if ω ­ 0, one never stops, and the payoff is ω; if ω < 0,
one might as well stop at the first success, and the payoff is zero.

The objective of this paper is to extend this result to the case where
the Xi are dependent. In addition, we generalize the problem to allow more
information to be given to the decision maker at each stage. At stage i, in
addition to observing Xi, the decision maker observes other random variables



T.S. Ferguson 47

that may influence his assessment of the probability of success at future
stages.

Hsiau and Yang (2002) explore the problem of maximizing the probability
of stopping on the last success when the observations form a Markov chain of
Bernoulli random variables. The problem is solved completely when the chain
is homogeneous and in some nonhomogeneous cases as well. The method of
derivation differs from the method given here, and some of their results are
not obtainable from the general theorem given here.

2. A General Model for Best Choice Problems. The method we use
to solve the problem is as follows. First we modify the problem, as was done
by Dynkin (1963)in his treatment of the secretary problem, by not allowing
stopping on a failure. This seemingly innocuous modification changes the
secretary problem into a monotone stopping problem. Then we may apply
a simple result that gives conditions for the one-stage look-ahead rule to
be optimal in a monotone problem. See for example Chow et al. (1991) or
Ferguson (2006).

When stopping on failures is forbidden, we must change the notion of a
“stage”. A stage is defined to contain all the observations up to and including
the next success, if any. We model this as follows. For i = 1, 2, . . ., let Zi
denote the set of random variables observed after success i − 1 up to and
including success i. If there are less than i successes, we let Zi = 0, where 0
is a special absorbing state. Thus we treat the following general model.

Let Z1, Z2, . . . be a stochastic process on an arbitrary space with an ab-
sorbing state called 0. We make the assumption that with probability one the
process will eventually be absorbed at 0. We observe the process sequentially
and we wish to predict one stage in advance when the state 0 will first be hit.
If we predict correctly, we win 1, if we predict incorrectly we win nothing,
and if the process hits 0 before we predict, we win ω, where ω < 1. This is a
stopping rule problem in which stopping at stage n yields the payoff

Yn = ω1(Zn = 0) + 1(Zn 6= 0)P(Zn+1 = 0|Gn) for n = 1, 2, . . . (3)

Y∞ = ω (4)

where 1(A) represents the indicator function of the event A and Gn =
σ(Z1, . . . , Zn), the σ-field generated by Z1, . . . , Zn. The assignment Y∞ = ω
means that if we never stop, we win ω. To find the one-stage look-ahead rule
(the 1-sla), we evaluate

E(Yn+1|Gn) = ωP(Zn+1 = 0|Gn) +P(Zn+1 6= 0, Zn+2 = 0|Gn)

The 1-sla calls for stopping at stage n if Yn ­ E(Yn+1|Gn). On the set {Zn =
0}, this reduces to ω ­ ω which is always true. On the set {Zn 6= 0}, this
reduces to

(1− ω)P(Zn+1 = 0|Gn) ­ P(Zn+1 6= 0, Zn+2 = 0|Gn)
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Therefore the 1-sla is

N1 = min{n : Zn = 0 or (Zn 6= 0 and
P(Zn+1 6= 0, Zn+2 = 0|Gn)
P(Zn+1 = 0|Gn)

¬ 1− ω)}

(5)
If P(Zn+1 = 0|Gn) = 0 on {Zn 6= 0}, then it is a mistake to stop at n
since we can do at least as well by continuing one more step. Therefore
in this and subsequent formulae, we take the ratio in (5) to be +∞ when
P(Zn+1 = 0|Gn) = 0, even if the numerator is zero as well.

The problem is said to be monotone if, when the 1-sla calls for stopping
at any stage, then it will continue to call for stopping at all future stages no
matter what the future observations turn out to be. Specifically, the problem
is monotone if

A1 ⊂ A2 ⊂ A3 ⊂ · · · a.s.

where for all n, An = {Yn ­ E(Yn+1|Gn)}. From this we see that a sufficient
condition for the problem to be monotone is

P(Zn+1 6= 0, Zn+2 = 0|Gn)
P(Zn+1 = 0|Gn)

is nonincreasing in n a.s. (6)

One of the basic theorems in the theory of optimal stopping gives condi-
tions under which the 1-sla is optimal for monotone stopping rule problems.
In the present context, we may use the result that for a monotone stopping
problem with observations Z1, Z2, . . . and payoff functions, Y1, Y2, . . . , Y∞,
the 1-sla is optimal if supn |Yn| has finite expectation and limn→∞ Yn = Y∞
a.s. (See the electronic text of Ferguson (2006), Chapter 5, Theorem 2 and
its Corollary.) In the problem we are considering, |Yn| is bounded by 1 + |ω|,
and limn→∞ Yn = ω = Y∞ a.s., since we are assuming that the process is
absorbed at zero with probability one. Thus,

Theorem 2.1 Suppose that the process Z1, Z2, . . . has an absorbing state,
0, such that P(Zn is absorbed at 0) = 1. Suppose the stopping problem with
reward sequence (3)-(4) satisfies (6). Then the 1-sla (5) is optimal.

3. Application to the Sum-the-Odds Theorem. We return to the
original problem of stopping on the last success of a sequence of possibly
dependent Bernoulli trials, X1, X2, . . .. We model the information given to
the decision maker through an increasing sequence of σ-fields, F1,F2,F3, . . .,
and allow him to use a stopping rule adapted to this sequence. We assume
that for every j the event {Xj = 1} is in Fj . In the formulation of Section 2,
if the nth success occurs at stage k, then Gn = Fk.

The problem for the theorem of Bruss deals with the special case where
the Xj are independent and Fj is equal to σ(X1, . . . , Xj). This means that
nothing other than the Xj ’s are observed.
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Let us find the 1-stage look-ahead rule for the dependent case with the
Sakaguchi extension. Suppose we are at stage k and that Xk = 1. If we stop
at this stage, the probability we have selected the last success is

Vk = P(there are no successes after stage k |Fk) (7)

= P(Xk+1 = Xk+2 = · · · = 0 |Fk).

This is the denominator of the ratio in (6). If we continue and stop at the
next j > k for which Xj = 1, if any, our expected return is Wk + ωVk, where

Wk = P(there is exactly one success after stage k |Fk) (8)

=
∞∑

j=k+1

P(Xk+1 = · · · = Xj−1 = 0, Xj = 1, Xj+1 = Xj+2 = · · · = 0 |Fk),

the numerator of the ratio in (6). Thus, the 1-sla is

N1 = min{k ­ 1 : Xk = 1 and
Wk

Vk
< 1− ω}. (9)

The problem is monotone if the following condition is satisfied: If the 1-
sla calls for stopping at some stage j with Xj = 1, then at any future stage
k with Xk = 1 the 1-sla will also call for stopping no matter what else is
observed (a.s.). This means that if Xj = 1 and Wj/Vj ¬ 1 − ω, then at the
next k for which Xk = 1, we will a.s. have Wk/Vk ¬ 1− ω.

In particular, the problem is monotone if

Wk

Vk
is a.s. nonincreasing in k. (10)

For the purposes of most applications, it will suffice to check condition (10).
Only in special cases, as in Section 5, will it be useful to take advantage of
the weaker condition of the previous paragraph. The following corollary now
follows immediately from Theorem 2.1.

Corollary 1 Suppose the Bernoulli variables X1, X2, . . . satisfy the condition
that there are a finite number of successes with probability one. Let F1,F2, . . .
be an increasing sequence of σ-fields such that {Xj = 1} is in Fj for all j.
Then among stopping rules adapted to the sequence {Fj}, the rule N1 of (9)
is an optimal stopping rule provided condition (10) is satisfied. 2

This may be considered as a Sum-the-Odds Theorem in the sense that
the ratio, Wk/Vk in (9), may be written as

∑∞
j=k+1 Pjk/(1− Pjk), where

Pjk = P(Xj = 1|Fk, Xk+1 = · · · = Xj−1 = 0, Xj+1 = Xj+2 = · · · = 0).

It is easy to see that this corollary implies the theorem of Bruss. In the
theorem of Bruss, the Xj are independent and Fj = σ(X1, . . . , Xj). So the
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conditioning in the definition of Pjk may be ignored, and Pjk = pj . Then,
assuming

∑∞
i=1 pi <∞, we have

Wk

Vk
=

∞∑
j=k+1

pj
1− pj

so that in this case, N1 = N∗ of (2). We see from this that the Wk/Vk are
non-random and nonincreasing, so that (10) is satisfied. Thus the problem
is monotone and the 1-sla, N∗, is optimal. This proves the result of Bruss in
the infinite horizon case, and contains the Sakaguchi extension.

4. Full-Information Best-Choice Problems. In full-information best-
choice problems, independent random variables, Y1, Y2, ..., with known con-
tinuous distribution functions, F1(y), F2(y), ..., respectively, are observed se-
quentially. It is desired to choose a stopping rule that maximizes the prob-
ability of stopping on the largest observation. By the Kolmogorov zero-one
law, the probability that there is a largest observation is either zero or one.
If there is no largest observation, then the task is impossible. Therefore we
assume that with probability one there is a largest observation.

Let Mk = max{Y1, ..., Yk} be the maximum of the first k observations.
The Bernoulli variables of the preceding section are therefore X1, X2, . . .,
where Xk = 1(Yk = Mk). The problem is to stop on the last success, that is,
the last record value.

In (7) and (8), the sigma-field Fk is the sigma-field generated by the
variables, Y1, . . . , Yk. We may compute

Vk =
∞∏

i=k+1

Fi(Mk)

and

Wk =
∞∑

j=k+1

 j−1∏
i=k+1

Fi(Mk)

∫ ∞
Mk

 ∞∏
i=j+1

Fi(y)

 dFj(y)

We may therefore write

Wk

Vk
=

∞∑
j=k+1

∫ ∞
Mk

 ∞∏
i=j+1

Fi(y)

 dFj(y)/
∞∏
i=j

Fi(Mk). (11)

It is easy to see that Wk/Vk is a.s. nonincreasing. The first term of the sum
on the right is never negative, so removing it does not increase the sum.
Mk is nondecreasing a.s. so the range of the integral never increases. Finally,
the term,

∏∞
i=j Fi(Mk) is a.s. nondecreasing in k, so its reciprocal is a.s.

nonincreasing. Hence the 1-sla, N1 of (9), is optimal.
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Theorem 4.1 For the full-information best-choice problem with independent
observations, the one-stage look-ahead rule is optimal.

4.1. The full-information best-choice problem with i.i.d. observa-
tions. As an example, consider the problem, solved in Gilbert and Mosteller
(1966) when there are a finite number of independent observations having the
same continuous distribution, which may be taken without loss of generality
to be the uniform distribution on the interval (0,1), Fj(y) = y for 0 < y < 1
and for all j. Let n denote the number of observations.

Equation (11) becomes

Wk

Vk
=

n∑
j=k+1

∫ 1

Mk

yn−j dy
1

Mn−j+1
k

(12)

=
n∑

j=k+1

1
n− j + 1

(1−Mn−j+1
k )

1

Mn−j+1
k

(13)

Therefore, the optimal rule of (9) may be written

N1 = min{k ­ 1 : Yk = Mk and
n∑

j=k+1

1
n− j + 1

(
1

Mn−j+1
k

− 1

)
< 1− ω}.

(14)
Gilbert and Mosteller, under the condition that ω = 0, state the optimal

rule in a different form: Stop at the first k for which Yk = Mk and Mk > bn−k,
where b0 = 0 and for m ­ 1, bm is the root, b, of the equation

m∑
j=1

1
j

(
m

j

)(
1
b
− 1

)j
= 1− ω (15)

between 0 and 1. (Note: Gilbert and Mosteller use the notation bm+1 for
this root.) Here m represents the number of observations remaining; if your
present observation is a record value, then you should stop if and only if it
is greater than bm.

When the optimal rule (14) is put into this form, it becomes: If your
present observation is a record value and if there are m observations remain-
ing, then you should stop if it is greater than bm, where bm is the root, b, of
the equation

m∑
j=1

1
j

(
1
bj
− 1

)
= 1− ω. (16)

This is a somewhat simpler equation than (15), but these two equations must
be equivalent since they give the same optimal strategy. Perhaps the simplest
way to check they are the same is to replace 1/b in both equations by x, note
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that the left sides are equal at x = 1 and that their derivatives with respect
to x are both equal to (xm − 1)/(x− 1) =

∑m−1
i=0 xi.

4.2. The full-information best-choice problem with batch ar-
rivals. As an example in which the variables have different distributions,
suppose that for i = 1, 2, . . ., Yi has the beta distribution with distribution
function and density

Fi(y) = yθi and fi(y) = θiy
θi−1 for 0 < y < 1, (17)

where θ1, θ2 . . . are given positive numbers. We assume
∑∞

1 θi < ∞ so that
from the Borel-Cantelli Lemma, there will be a finite number of record values
with probability one.

This example provides an extension of the no-information best-choice
problem with batch arrivals of Hsiau and Yang (2000) to the full-information
case. In this problem, candidates arrive in batches, with `i ­ 1 candidates
arriving on day i for i = 1, . . . , n, with n finite. All candidates arriving on
day i are interviewed together, and the best among them may be considered
as the observation for day i. Each candidate has a value chosen i.i.d. from a
known continuous distribution, which may be taken without loss of generality
to be the uniform distribution on (0,1). The distribution of the observation,
Yi for the ith day, is the distribution of the maximum of a sample of size
`i from the uniform distribution on (0,1). The leads to the beta distribution
given in (17) with θi = `i for i = 1, . . . , n.

Let us find the optimal rule of (9) for the problem with distributions (17).
Let sj =

∑∞
i=j θi. From (11),

Wk

Vk
=

∞∑
j=k+1

∫ 1

Mk

ysj−1 dy
1

M
sj
k

=
∞∑

j=k+1

1
sj

[1−M sk
k ]

1
M

sj
k

=
∞∑

j=k+1

M
−sj
k − 1
sj

so the optimal rule is, similar to (14),

N1 = min{k ­ 1 : Yk = Mk and
∞∑

j=k+1

M
−sj
k − 1
sj

< 1− ω}.

This stopping rule may also be described in a manner analogous to (16)
as follows. If at stage k the present observation, Yk, is a record value, then
stop if Yk(= Mk) is greater than ck, where ck is the unique root, c, of the
equation

∞∑
j=k+1

1
sj

(
1
csj
− 1

)
= 1− ω, (18)
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similar to (16). Equation (15) has no such simple analog for this problem.

5. Sum-the-Odds Theorem: Positive Dependence. In the positive
dependent case, an observation of a success (resp. failure) on a trial increases
the probability of success (resp. failure) on future trials. To illustrate the
difficulties that arise with positive dependence, consider the problem where
the conditional distribution of X1, . . . , Xn given p are i.i.d. Bernoulli(p), and
the prior distribution of p is the beta distribution, Be(α, β). As is well known,
the posterior distribution after observing X1, . . . , Xk is Be(α+Sk, β+k−Sk),
where Sk =

∑k
1 Xi is the number of successes in the first k trials.

Let us compute Wk/Vk first for k = 0. We find

V0 = E(1− p)n =
Γ(α+ β)
Γ(α)Γ(β)

· Γ(α)Γ(β + n)
Γ(α+ β + n)

=
Γ(α+ β)Γ(β + n)
Γ(β)Γ(α+ β + n)

and

W0 = E(np(1− p)n−1) =
nΓ(α+ β)
Γ(α)Γ(β)

· Γ(α+ 1)Γ(β + n− 1)
Γ(α+ β + n)

=
nαΓ(α+ β)Γ(β + n− 1)

Γ(β)Γ(α+ β + n)

Therefore,
W0

V0
=

nα

n+ β − 1
.

It follows that for arbitrary k ¬ n,

Wk

Vk
=

(n− k)(α+ Sk)
n+ β − Sk − 1

. (19)

The 1-sla is

N1 = min{k : Xk = 1 and
(n− k)(α+ Sk)
n+ β − Sk − 1

< 1}.

In general, the 1-sla is not monotone because, even though Wk/Vk de-
creases with each failure, it may increase with a success. We now search for
conditions under which Wk/Vk decreases with a success. If Wk/Vk ­ 1 (and
Xk = 1), the 1-sla calls for continuing so it is optimal to continue. So we may
assume that Wk/Vk < 1 and find a condition under which Wk+1/Vk+1 < 1
when Xk+1 = 1. From (19) we may write the inequality Wk/Vk < 1 as

(n− k)(α+ Sk) < n+ β − Sk − 1 (20)

and we seek conditions under which

(n− k − 1)(α+ Sk + 1) < n+ β − Sk − 2. (21)
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Using (20), we have

(n− k − 1)(α+ Sk + 1) = (n− k)(α+ Sk) + (n− k)− (α+ Sk)− 1

< (n+ β − Sk − 1) + (n− k)− (α+ Sk)− 1.

Thus (21) is satisfied if
n− k ¬ α+ Sk. (22)

We may conclude that the 1-sla acts optimally if, at the first k for which
Xk = 1 and (20) is satisfied, (22) is also satisfied. In particular, if α ­ n− 2,
the 1-sla is optimal.

As an example, suppose n = 12, α = 2 and β = 2. Then

N1 = min{k : Xk = 1 and
(12− k)(2 + Sk)
n− Sk + 1

¬ 1}.

Suppose seven failures are followed by a success, so that k = 8, S8 = 1 and
X8 = 1. Then W8/V8 = 12/12 = 1, so that the 1-sla is indifferent between
stopping and continuing. Yet if X9 = 1, then W9/V9 = 12/11 > 1 and it is
strictly optimal to take another observation. Thus the 1-sla can be improved.
(To be more precise, we should take β = 2 + ε; then for sufficiently small
positive ε, the 1-sla calls for stopping at stage k (it is no longer indifferent),
while the improved value of continuing has not changed significantly.)

It is not hard to show that for any other sequence of successes and failures
in this example the 1-sla acts optimally.

6. Sum-the-Odds Theorem: Negative Dependence. To illustrate
the problems that arise with negative dependence, consider the case where n
balls are drawn without replacement from an urn containing a red balls and
b blue balls, where a + b ­ n. We wish to find a stopping rule to maximize
the probability of stopping on the last red ball drawn. So we take Xi =
1{ith draw is red}. Let ak and bk denote the number of red and black balls
respectively remaining after k balls have been observed, starting with a0 = a
and b0 = b. If bk < n − k at stage k, then there is bound to be another red
in the remaining n− k draws, so one should not stop. Assuming bk ­ n− k,
Vk and Wk may be computed using the hypergeometric distribution.

Vk = P{the next (n− k) draws are blue |ak, bk} =

(
bk

n− k

)
(
ak + bk
n− k

)
and

Wk = P{1 red and (n− k − 1) blue |ak, bk} =

(
ak
1

)(
bk

n− k − 1

)
(
ak + bk
n− k

)
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from which we may compute

Wk

Vk
=

ak(n− k)
bk − n+ k + 1

.

We now show that Wk/Vk is almost surely decreasing in k. If Xk+1 = 0, then
Wk+1/Vk+1 = ak(n − k − 1)/(bk − n + k + 1) which is smaller than Wk/Vk.
If Xk+1 = 1, then Wk+1/Vk+1 = (ak − 1)(n− k − 1)/(bk − n+ k + 2) which
is also smaller than Wk/Vk. Thus the 1-sla is optimal. It is the stopping rule

N1 = min{k ¬ n : Xk = 1 and (ak + 1)(n− k) < bk + 1}.

This result should be true in greater generality, but there seems to be
many ways to try to extend it. One way is to assume that negative dependence
arises in the following way. The probabilities pk are determined by numbers
a and b, and by two sequences α1, . . . , αn and β1, . . . , βn, not necessarily
integers. We assume the urn has initially a red and b blue balls. On the
appearance of the jth red ball (resp. jth blue ball), αj red balls (resp. βj blue
balls) are removed from the urn. We assume that a ­

∑n
1 αj and b ­

∑n
1 βj .

It can be shown that if maxαj ¬ minβj , then the 1-sla is optimal. The
trouble with this result is that the model is somewhat artificial, and that the
whole result should hold in greater generality.

If maxαj > minβj , then the 1-sla may not be optimal. As an example,
suppose all βi = 0 and all αi = 0 except α2 = a. Let p = a/(a + b) and
q = 1 − p. Then V0 = qn and W0 = npqn−1. Assuming the possibility of
stopping at stage 0 (with X0 = 1), the 1-sla calls for stopping if W0 ¬ V0, or
equivalently if p ¬ n/(n+ 1). Yet if we observe X1 = 1, then V1 = qn−1 and
W1 = p+ pq + pq2 + · · ·+ pqn−2 = 1− qn−1, and we find that the 1-sla still
calls for stopping if and only if W1 ¬ V1, or equivalently, if qn−1 ­ 1/2. If
p = n/(n+ 1) or slightly less, the 1-sla calls for stopping at the initial stage,
yet qn−1 = (n/(n+ 1))n−1 which for large n is close to e−1 < 1/2 so for large
n (n ­ 5 suffices) the 1-sla calls for continuing. So the 1-sla is not optimal.

7. On a Stopping Game of Sakaguchi. Let X1, X2, . . . be a sequence
of independent Bernoulli random variables and let pi = P(Xi = 1) be the
probability of success. We assume

∑∞
1 pi < ∞ so that with probability one

there are a finite number of successes. For simplicity, we assume that pi < 1
for all i. Two players sequentially observe the Xi and vie with each other
to predict the last success. As each Xi is observed, Player I is given priority
whether or not to predict the present observation as the last success. If Player
I chooses not to make the prediction, then Player II is given the option. It is
assumed that the pi are known to both players. The player who makes the
prediction wins if his prediction is true and loses if it is false. If neither player
makes a prediction, the game is called a tie. We take the payoff from Player
I’s point of view to be one for a win, zero for a loss and ω for a tie. Here it
is not assumed that ω < 1, since the problem is non-trivial even if ω ­ 1.
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Sakaguchi (1984) solved this problem with pi = 1/i for i = 1, . . . , n and
pi = 0 for i > n as in the secretary problem, and with ω = 1/2.

This is a multistage game of perfect information. If it were a finite game,
it could be solved by backward induction. However, a simple observation
changes it into a finite horizon problem. Let Vj denote the probability that
no successes occur after stage j,

Vj =
∞∏

i=j+1

(1− pi) (23)

for all j. Note that the Vj are nondecreasing and converging to 1 as j →∞.
If Xj = 1 and Vj ­ 1/2, then it is clearly optimal for Player I to stop at j,
since his probability of win is at least 1/2, and if he passes, his opponent can
stop and win with probability at least 1/2. Let

m = min{j : Vj ­ 1/2}. (24)

We know what will happen if play reaches stage m: Player I will stop at the
next success if any, since if he doesn’t, Player II will. If stage m is reached,
then Player I’s expected payoff is

Um = P(exactly one success from m on) (25)

+ωP(no successes from m on)

=
∞∑
j=m

[ j−1∏
i=m

(1− pi)
]
pjVj + ωVm−1 = Vm−1

[ ∞∑
j=m

pj
1− pj

+ ω
]

= Vm−1

[ ∞∑
j=m

rj + ω
]

where rj = pj/(1 − pj) is the odds ratio at stage j. Thus the game may be
reformulated to be: The payoff to Player I is Vj if he stops at j, and 1 − Vj
if Player II stops at j for j = 1, . . . ,m − 1. If neither player has stopped by
stage m, the payoff to Player I is Um.

7.1. A more general model. Although one could solve this game
by the method used by Sakaguchi, it is simpler and gives more insight to
consider this game in a slightly generalized form as a multistage game of
perfect information. Let 0 < V1 < V2 < · · · < Vm−1 < 1/2 be given numbers,
and let p1, . . . , pm−1 be given probabilities, not necessarily related to the Vi
by (23). Also, let Um be an arbitrary number, not necessarily given by (25).
The game at stage k for k = 1, . . . ,m− 1, denoted by Gk, may be described
as follows. The first move is a chance move with success probability pk. If
failure occurs, the game moves on the game Gk+1. If success occurs, Then
Player I may stop and receive Vk, or continue. If Player I continues, Player II
may stop giving Player I the payoff 1−Vk, or continue. If Player II continues,
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the game moves on to the game Gk+1. The game Gm is simply the game that
gives Player I the amount Um. In symbols,

Gk = pk

[ ( stop wait

stop Vk Vk

wait 1− Vk Gk+1

)]
+ (1− pk)Gk+1 for k = 1, 2, . . . ,m− 1

Gm = (Um).

The value of Gm is Um obviously. Let Uk denote the value of Gk. The
Uk may be found by backward recursion using a well-known technique in
multistage games. (See for example Ferguson (2005), Part II Chapter 6.2.)

Uk = pkVal

(
Vk Vk

1− Vk Uk+1

)
+ (1− pk)Uk+1

for k = m−1,m−2, . . . , 1. The game inside the Val sign always has a saddle
point, and since Vk < 1− Vk for k < m, we have

Val

(
Vk Vk

1− Vk Uk+1

)
=


Vk for Uk+1 ¬ Vk
Uk+1 if Vk ¬ Uk+1 ¬ 1− Vk
1− Vk if 1− Vk ¬ Uk+1.

Therefore,

Uk =


pkVk + (1− pk)Uk+1 for Uk+1 ¬ Vk
Uk+1 if Vk ¬ Uk+1 ¬ 1− Vk
pk(1− Vk) + (1− pk)Uk+1 if 1− Vk ¬ Uk+1.

(26)

Note that if Um ¬ 1/2, the Uk are constant or increasing as k gets smaller.
Similarly for Um ­ 1/2, the Uk are constant or decreasing as k gets smaller.
This implies that there are two types of optimal behavior depending Um. If
Um ­ 1/2, Player I should continue up to m and Player II may stop before. If
Um ¬ 1/2, Player II should continue up to m and Player I may stop before.

Let k1 = max{k : Uk > Vk−1} and k2 = max{k : Uk < 1− Vk−1}.

Theorem 7.1 The value of the game is U1. If Um ¬ 1/2, it is optimal for
Player I to stop at the first success from stage k1 on and for Player II to
continue up to m. If Um ­ 1/2, it is optimal for Player II to stop at the first
success from stage k2 on and for Player I to continue up to m.

7.2. Application to Sakaguchi’s Game. Now consider the general-
ization of the game of Sakaguchi in which Vj is related to the pi by (23), m is
given by (24), and Um is given by (25). We treat the two cases of Theorem 7.1
separately.
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Suppose first that Um ¬ 1/2. Player II’s optimal behavior is clear: stop at
the first success from stage m on if given the chance. Player I will certainly
stop from stage m on, and he may stop earlier. He will stop at stage m− 1 if
Vm−1 ­ Um, which reduces to

∑∞
j=m rj ¬ 1−ω. This is the behavior entailed

in the optimal stopping rule N∗ of (2). We may compute Um−1 from (25)
and the top line of (26) as

Um−1 = pm−1Vm−1 + (1− pm−1)Um (27)

= Vm−1[pm−1 + (1− pm−1)
[ ∞∑
j=m

rj + ω
]

= Vm−2

[ ∞∑
j=m−1

rj + ω
]

Therefore at stage m− 2, Player I will stop if
∑∞
j=m−1 rj ¬ 1− ω. Note that

(27) is just (25) with m replaced by m− 1. Therefore, this analysis continues
by induction down to stage

k1 = min{k :
∞∑

j=k+1

rj ¬ 1− ω}. (28)

This is the same cutoff point used by the stopping rule N∗ of (2)! However in
this game, Player I should stop from stage m on even if

∑∞
j=m+1 rj > 1−ω.

Thus, Player I’s optimal strategy is to stop at the first success from stage
min{k1,m} on, while Player II’s optimal strategy is to stop at the first success
from stage m on.

Now, suppose Um ­ 1/2. (The problem treated by Sakaguchi, where
pi = 1/i for i ¬ n, pi = 0 for i > n and ω = 1/2, falls in this case.)
The computation corresponding to (27) is only slightly more complex. Let
θ denote

∑∞
j=m rj + ω, so that Um = Vm−1θ. From (26), we evaluate Um−1

assuming 1− Vm−1 < Um.

Um−1 = pm−1(1− Vm−1) + (1− pm−1)Vm−1θ

= pm−1Vm−1(
1

Vm−1
− 1) + Vm−2θ

= Vm−2[rm−1(
1

Vm−1
− 1) + θ]

This analysis may be repeated to find Uk for k < m− 1 as long as 1− Vk ¬
Uk+1. We find

Uk = Vk−1[rk(
1
Vk
− 1) + · · ·+ rm−1(

1
Vm−1

− 1) + θ].

This stops at

k2 = min{k :
m−1∑
j=k+1

rj(
1
Vj
− 1) +

∞∑
j=m

rj ¬ 1− ω}.
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In this case, Player II’s optimal strategy is to stop at the first success from
stage min{k2,m} on, while Player I’s optimal strategy is to stop at the first
success from stage m on.
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Twierdzenie o sumie ilorazów szans
i jego zastosowanie do gry Sakaguchi’ego

Thomas S. Ferguson

Streszczenie Problem optymalnego zatrzymania na ostatnim sukcesie w ciągu prób
Bernoulli’ego z maksymalnym prawdopodobieństwem badali Hill i Krengel (1992),
Hsiau i Yang (2000) oraz Bruss (2000). Optymalna reguła zatrzymania podana przez
Brussa mówi, że należy zatrzymać się gdy suma ilorazów szans przyszłych sukcesów
jest mniejsza niż jeden. Twierdzenie wykorzystujące sumy ilorazów szans zostało
uogólnione na wiele sposobów. Przede wszystkim uogólniono na nieskńczony ciąg
prób Bernoulli’ego. Innym jest dopuszczenie różnych wypłat za brak wyboru (zatrzy-
mania) i zatrzymanie na sukcesie który nie jest ostatnim. Kolejne, to dopuszczeenie
prób zależnych. Dalej, dopuszczono, aby na każdym etapie były obserwowane dodat-
kowe zmienne zależne, których obserwacja może zmienić ocenę prawdopodobieństwo
sukcesu w przyszłych etapach. Wreszcie, zastosowano metodę do rozwiązania gry
sformułowanej przez Sakaguchi’ego (1984) w którym dwaj gracze współzawodniczą
o prognozę ostatniego sukcesu, gdy jeden z graczy ma pierwszy prawo podjęcia de-
cyzji na każdym kroku.

2010 Klasyfikacja tematyczna AMS (2010): Pierwotna: 91A60; Wtórna: 60G09;
60G40; 6L15.
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