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AbstractWe present an algorithm for finding almost optimal partitions of the unit
interval [0, 1) according to given nonatomic measures µ1, µ2, . . . , µn. This algorithm
is based on the idea of Riemann integral and the linear programming method. We
also discuss the number of cuts needed for finding the optimal partitions.
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1. Introduction Let µ1, µ2, . . . , µn denote nonatomic probability mea-
sures defined on a measurable space (X ,B) and let I = {1, 2, ..., n} be a set of
numbered players. By a partition P = {Ai}ni=1 of this space among the play-
ers i ∈ I we mean a collection of B-measurable disjoint subsets A1, . . . , An
of X whose union is equal to X . Let P stand for the set of all measurable
partitions P = {Ai}ni=1 of X and let α = (α1, . . . , αn) denote a vector with
positive coordinates satisfying

∑n
i=1 αi = 1.

Definition 1.1 A partition P ∗ = {A∗i }
n
i=1 ∈P is said to be α-optimal if

vα(
→
µ) := min

i∈I

[
µi(A

∗
i )

αi

]
= sup

P∈P
min
i∈I

[
µi(Ai)

αi

]
, (1)

where the number vα(
→
µ) denotes the best value achievable for the vector

measure
→
µ= (µ1, µ2, . . . , µn) of partitioning of X proportional to α.

The number vα(
→
µ) (or vα in short) will be called the α-optimal value for

the problem of α-partitioning of a measurable space. We say that a par-
tition P e = {Aei}

n
i=1 ∈ P is equitable optimal if it is α-optimal for α =

(1/n, 1/n, . . . , 1/n).
The existence of α-optimal partition P ∗ = {A∗i }

n
i=1 follows from the theorem

of Dvoretzky et al. [7]:
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Theorem 1.2 If µ1, µ2, . . . , µn are nonatomic finite measures defined on the
measurable space (X ,B) then the range

→
µ (P) of the mapping

→
µ : P → Rn

defined by
→
µ (P ) = (µ1(A1), . . . , µn(An)) , P = {Ai}ni=1 ∈P,

is convex and compact in Rn.

The problem of α-optimal partitioning of a measurable space (X ,B) can
be viewed as a problem of fair division of an object X (e.g. a cake). Suppose
a group I = {1, 2, ..., n} of numbered players are interested in fair division of
a cake in such way, that each of them receive at least 1/nth value of the cake
according to his own estimation. Here each measure µi, i ∈ I, represents
the individual evaluation of sets from B for the i-th player. A partition

P = {Ai}ni=1 of the cake X is called equitable fair, if µi(Ai) ≥
1

n
for all i ∈ I.

This problem can be generalized if we assume that players do not have the
same position in the game, but they have to divide the cake according to the
individual shares α1, α2, . . . , αn, where

∑
i∈I αi = 1. In this case a partition

P = {Ai}ni=1 is α−fair, if µi(Ai) ≥ αi for all i ∈ I.
There are known many algorithms of obtaining equitable partitions. A simple
method of realizing the fair division for two players is ”for one to cut, the other
to choose”. Banach and Knaster [11] found an extension of this procedure
to arbitrary n. Their result was modified by Dubins and Spanier [5]. In turn
Fink [9] gave an algorithm in which the number of players may be unknown.
Brams and Taylor [4] found an interesting method of getting an envy free
partition for which nobody would be better off with someone else,s piece of
cake.

Most of these procedures may be generalized so that the resulting al-
gorithms generate α-fair partition for arbitrary sequence α1, α2, . . . , αn of
positive rationals summing to one.

In the fair division theory each player is interested in getting the biggest
possible piece of cake according to his own evaluation. It means that we
need to find the α-optimal value vα defined by (1) and effective methods of
finding α-optimal partitions. The first estimation of the number vα was given
by Elton et al. [8] and further by Legut ( [12]). An interesting algorithm for
finding the bounds for the α-optimal value was found by Dall,Aglio and Di
Luca [1]. In the literature of the fair division field there are known only few
results concerning effective methods of finding optimal partitions. Legut and
Wilczynski [13] showed how to obtain α-optimal partitions for two players.
Dall,Aglio and Di Luca [2] found an algorithm for computing approximately
optimal partition by construction of some maximin allocation in games of
fair division.

The problem of α-optimal partitioning of a measurable space (X ,B) is
also considered in the classification problem (cf. [10]). Assume that a X -
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valued random variable Y has an unknown distribution µ which belongs to
a given set {µ1, µ2, . . . , µn} of nonatomic probability measures defined on
the space (X ,B). After observing a single value y of Y it is to be decided
which is the true distribution of Y . A decision rule is a measurable partition
P = {Ai}ni=1 of X with the understanding that if Y falls in Ai then µ = µi
is guessed. If the guess is correct and the true value of µ is µi then the
gain equals α−1i , otherwise it is equal to zero. It is easy to see that the α-
optimal partition is the minimax solution of the problem of finding a partition
which maximizes the expected risk R associated with the classification over
all partitions P = {Ai}ni=1 ∈P and given by

R = min
i∈I

[
α−1i µi(Ai)

]
= min

i∈I

[
α−1i P (Y ∈ Ai | µ = µi)

]
.

2. A general form of α-optimal partitions Without loss of gen-
erality assume here and throughout the rest of the paper that (X ,B) =(
[0, 1),B[0,1)

)
, where B[0,1) is the Borel σ-field on the unit interval [0, 1).

A general form of the α-optimal partition could be helpful in some cases
for finding constructive methods of optimal partitioning of a measurable
space. Let S = {s = (s1, . . . , sn) ∈ Rn, si > 0, i ∈ I,

∑n
i=1 si = 1} be

(n − 1)-dimensional open simplex and S be the closure of S in Rn. We can
assume that all nonatomic measures µ1, µ2, . . . , µn are absolutely continu-
ous with respect to the same measure v (e.g. ν =

∑n
i=1 µi). Denote by

fi = dµi/dν the Radon-Nikodym derivatives for all i = 1, 2, ..., n, i.e.

µi(A) =

∫
A
fi dν, forA ∈ B[0,1) and i ∈ I.

For α = (α1, . . . , αn) ∈ S, p = (p1, ..., pn) ∈ S and i ∈ I define the following
measurable sets:

Bi(p) =

n⋂
j=1,j 6=i

{
x ∈ [0, 1) : piα

−1
i fi(x) > pjα

−1
j fj(x)

}

Ci(p) =
n⋂
j=1

{
x ∈ [0, 1) : piα

−1
i fi(x) ≥ pjα−1j fj(x)

}
Legut and Wilczyński [14] proved the following theorem using a minmax
theorem of Sion (cf. [3]):

Theorem 2.1 For any α ∈ S there exists a point p∗ ∈ S and a corresponding
α-optimal partition P ∗ = {A∗i }

n
i=1 satisfying

(i) Bi(p∗) ⊂ A∗i ⊂ Ci(p∗),
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(ii)
µ1(A

∗
1)

α1
=
µ1(A

∗
2)

αn
= . . . =

µn(A
∗
n)

αn
Moreover, any partition P ∗ = {A∗i }

n
i=1 which satisfies (i) and (ii) is α-

optimal.

The above theorem gives a general form of α-optimal partition but unfortu-
nately in general case of the densities fi, i ∈ I finding the numbers p∗1, ..., p

∗
n

is not easy.
Assume now that for all i, j ∈ I, i 6= j and for any γ ∈ R

λ ({x : x ∈ [0, 1), fi(x)− γfj(x) = 0}) = 0, (2)

where λ denotes the Lebesgue measure defined on measurable subsets of the
interval [0, 1). Suppose we know the α-optimal value vα(

→
µ) for densities

satisfying (2) . Then we get from the Theorem 2

Corollary 2.2 Let the densities fi, i ∈ I satisfy (2) for all i, j ∈ I, i 6= j
and vα be the α-optimal value. Then a partition P ∗ = {A∗i }

n
i=1 is α-optimal

if and only if there exist numbers γ1, ..., γn such that

µ1(A
∗
1)

α1
=
µ2(A

∗
2)

α2
= . . . =

µn(A
∗
n)

αn
= vα(

→
µ),

where A∗i =
⋂n
j=1,j 6=i {x ∈ [0, 1) : γifi(x) > γjfj(x)}.

If the accurate number vα or at least its lower bound is known then the
Corollary 1 can be used in some cases to obtain a partition P ∗ = {A∗i }

n
i=1

satisfying

min
i∈I

[
µi(A

∗
i )

αi

]
≥ vα

Example 1. Consider the example given by Dall,Aglio and Di Luca [1] for
the density functions

f1(x) ≡ 1, f1(x) = 2x, f3(x) = 30x(1− x)4, x ∈ [0, 1].

It is assumed here that α = (13 ,
1
3 ,

1
3). By using a subgradient algorithm

Dall,Aglio and Di Luca [1] achieved the lower bound for the α-optimal value

vα ≥ 1.48768

It follows from the Corollary 2 that the only way to get an almost α-optimal
partition is to divide the interval [0, 1) into subintervals

[0, t1), [t1, t2), [t2, t3), [t3, 1),

where the numbers 0 < t1 < t2 < t3 < 1 satisfy

µ1([0, t1) ∪ [t2, t3)) ≥ 0.495893,
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µ2([t3, 1)) ≥ 0.495893,

µ3([t1, t2)) ≥ 0.495893.

At first we compute t3 from the equation:

µ2([t3, 1)) =

∫ 1

t3

2x dx = 0.495893,

and we get t3 = 0.710005. Hence we have

t1 + t3 − t2 = 0.495893, and t2 − t1 = 0.214112

To calculate the number t1 we solve the equation∫ t2

t1

30x(1− x)4 dx =

∫ t1+0.214112

t1

30x(1− x)4 dx = 0.495893 (3)

Because the number 1.48768 is only a lower bound for the vα we obtain two
solutions of the equation (3)

t
(1)
1 = 0.104532 and t

(2)
1 = 0.110127

Finally we have two almost α-optimal partitions
A1 = [0, 0.104532) ∪ [0.318644, 0.710005),
A2 = [0.710005, 1),
A3 = [0.104532, 0.318644)
and
B1 = [0, 0.110127) ∪ [0.324239, 0.710005),
B2 = [0.710005, 1),
B3 = [0.0.110127, 0.324239).
2

The construction of an α-optimal partition can be simplified when the
densities fi, i ∈ I, have the monotone likelihood ratio property defined below
(cf. [15]). This property is often used in testing statistical hypothesis to find
the uniformly most powerful test.

Definition 2.3 The family of densities fi, i ∈ I, is said to have monotone
likelihood ratio (MLR) if there exists a real-valued function t(x) such that
for any 1 ≤ k < j ≤ n the densities fk and fj are distinct and the ratio

fk(x)

fj(x)

is a nondecreasing function of t(x).

The following well known result (cf. Hill and Tong (1989) [10], Theorem 1.6)
is an immediate consequence of above property.
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Proposition 2.4 Assume that family fi, i ∈ I has the MLR property with
respect to a given function t(x). Then for any α ∈ S there exist numbers
−∞ = t∗0 < t∗1 < . . . < t∗n−1 < t∗n = ∞ such that P ∗ = {A∗i }

n
i=1 ∈ P is an

α-optimal partition, where

A∗i = {x ∈ X : t∗i−1 < t(x) ≤ t∗i } for all , i ∈ I.

Example 2.
Consider three nonatomic measures µ1, µ2, µ3 defined on the unit interval
[0, 1] with the probability Lebesgue density functions f1(x) = 2x, f2(x) =
3x2, f3(x) = 4x3 and with the corresponding distribution functions F1(x) =
x2, F2(x) = x3 and F3(x) = x4. Clearly, the family f1, f2, f3 has the MLR
property with respect to the function t(x) = x. Then for any α ∈ S the α-
optimal partition has the form A∗1 = [0, xα1 ), A

∗
2 = [xα1 , x

α
2 ) and A∗3 = (xα2 , 1],

where the numbers 0 < xα1 < xα2 < 1 satisfy the following condition

F1(x
α
1 )

α1
=
F2(x

α
2 )− F2(x

α
1 )

α2
=

1− F3(x
α
2 )

α3
.

In the case, where α1 = α2 = α3 = 1/3, we have xα1 = 0.640496, xα2 =
0.876334 and vα = 1.230707.

3. Finding almost optimal partitions We show in this section how
to obtain almost α-optimal partition by approximation of the continuous
densities by simple and piecewise linear functions.

Assume we are given n simple functions hi(x) =
∑m

j=1 hijI[aj ,aj+1)(x)
were {[aj , aj+1)}mj=1 is a partition of the interval [0, 1) such that

[0, 1) =
m⋃
j=1

[aj , aj+1), a1 = 0, am+1 = 1, aj+1 > aj j = 1, 2, ...,m (4)

and hij , i = 1, ..., n, j = 1, ...,m are nonegative real numbers with∫ 1
0 hidx > 0 for i = 1, 2, ..., n. Define measures ν1, ν2, ..., νn by

νi(A) =

∫
A
hidx, forA ∈ B, i = 1, 2, ..., n

These measures are not necessarily to be probabilistic but we can also define
α-optimal partition P ∗ = {A∗i }ni=1 and the α-optimal value vα(

→
ν ) similarly

to (1). For any natural number k ≥ n − 1 denote by P(k) the collection of
all partitions of the unit interval [0, 1) which are obtained by using at most
k cuts.
Now we prove

Proposition 3.1 Let α = (α1, α2, . . . , αn) ∈ S. Then for the measures
ν1, ν2, ..., νn there exists an α-optimal partition P ∗A = {A∗i }ni=1 ∈P(mn− 1).
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Proof. Define an n×m matrix H = [hij ]n×m for i = 1, 2, ..., n, j = 1, 2, ...,m.
Let a stochastic matrix X∗H = [x∗ij ]n×m be a solution of the following linear
programming (LP) problem:

max z (5)

with constraints

z =
1

αi

m∑
j=1

xijhij(aj+1 − aj), i = 1, 2, ..., n;

n∑
i=1

xij = 1, j = 1, 2, ...,m;

xij ≥ 0, ∀i = 1, 2, ..., n; j = 1, 2, ...,m.

Denote by vLP (H) the optimal value of the objective function z. We construct
a partition PA = {A∗i }ni=1 of the interval [0, 1) such that

νi(A
∗
i )

αi
= vLP (H) for i = 1, 2, ..., n.

For j = 1, 2, ...,m we can find subpartitions {[bji , b
j
i+1)}ni=1 of intervals [aj , aj+1)

with

[aj , aj+1) =

n⋃
i=1

[bji , b
j
i+1)

where bji ∈ [aj , aj+1) are numbers satisfying the following conditions

bji+1 − b
j
i

aj+1 − aj
= x∗ij , i = 1, 2, ..., n

and bj1 = aj , b
j
n+1 = aj+1. If x∗ij = 0 for some i = 1, 2, ..., n then bji+1 = bji

and we put [bji , b
j
i+1) = ∅ in this case. Define a partition PA = {A∗i }ni=1 by

A∗i =
m⋃
j=1

[bji , b
j
i+1), i = 1, 2, ..., n

Hence we have

νi(A
∗
i )

αi
=

1

αi

m∑
j=1

hij(b
j
i+1 − b

j
i ) =

1

αi

m∑
j=1

x∗ijhij(aj+1 − aj), i = 1, 2, ..., n;

Now we prove that the partition PA = {A∗i }ni=1 is α−optimal. Suppose that
a partition PB = {Bi}ni=1 is α−optimal for the measures ν1, ν2, ..., νn and

min
i

{
νi(Bi)

αi

}
>
νi(A

∗
i )

αi
= vLP (H) for i = 1, 2, ..., n.
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If νi ([aj , aj+1)) > 0 we denote

yij =
νi (Bi ∩ [aj , aj+1))

νi ([aj , aj+1))
=
νi (Bi ∩ [aj , aj+1))

hij (aj+1 − aj)
, i = 1, 2, ..., n, j = 1, 2, ...,m

otherwise we put yij = 0. Now we show that Y = [yij ] is a stochastic
matrix. Simple functions hi are constant on intervals [aj , aj+1), then we have
νi(Bi ∩ [aj , aj+1)) = hijλ(Bi ∩ [aj , aj+1)), where λ is the Lebesgue measure.
Therefore we obtain

n∑
i=1

yij =

n∑
i=1

νi (Bi ∩ [aj , aj+1))

νi ([aj , aj+1))
=

n∑
i=1

hijλ (Bi ∩ [aj , aj+1))

hij(aj+1 − aj)
=

=
1

aj+1 − aj

n∑
i=1

λ (Bi ∩ [aj , aj+1)) = 1

Finally for i = 1, 2, ..., n we have

νi(Bi)

αi
=

1

αi

m∑
j=1

νi (Bi ∩ [aj , aj+1)) =
1

αi

m∑
j=1

yijhij (aj+1 − aj) >
νi(A

∗
i )

αi
=

=
1

αi

m∑
j=1

x∗ijhij (aj+1 − aj) .

The above inequality contradicts that the stochastic matrix X∗H = [x∗ij ]n×m
is a solution of the linear programming problem (5). Thus constructed par-
tition PA = {A∗i }ni=1 is α−optimal. Moreover it is easy to verify that the
partition PA can be obtained using at most m(n− 1)+m− 1 = mn− 1 cuts.
2

The above constructive method of finding α-optimal partition for simple func-
tions is based on an interesting method found by Demko and Hill [6] for op-
timal randomized solution of equitable distribution of indivisible objects.
Consider now measurable nonnegative bounded functions fi, i ∈ I defined on
the unit interval [0, 1) and corresponding finite measures ν1, ν2, ..., νn defined
by

νi(A) =

∫
A
fidλ, forA ∈ B, i = 1, 2, ..., n

Assume that functions fi, i ∈ I are piecewise linear (PWL). It means that
there exists a partition {[aj , aj+1)}mj=1 of the interval [0, 1) satisfying (4) and
numbers cij , dij ∈ R satisfying

fi(x) = cijx+ dij , for x ∈ [aj , aj+1), i = 1, 2, ..., n, j = 1, 2, ...,m

For PWL functions given above define an n×m matrix A = [aij ]n×m by

aij = νi([aj , aj+1)) =

∫ aj+1

aj

fidλ i = 1, 2, ..., n, j = 1, 2, ...,m (6)
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Let the stochastic matrix X∗A = [x∗ij ]n×m be a solution of the following linear
programming problem:

max z (7)

with constraints

z =
1

αi

m∑
j=1

xijaij , i = 1, 2, ..., n;

n∑
i=1

xij = 1, j = 1, 2, ...,m;

xij ≥ 0, ∀i = 1, 2, ..., n; j = 1, 2, ...,m.

Denote by vLP (A) the optimal value of the objective function z.
Now we prove:

Proposition 3.2 For given α = (α1, α2, . . . , αn) ∈ S there exists a partition
P ∗ = {A∗i }ni=1 ∈P(m(2n− 1)− 1) such that

νi(A
∗
i )

αi
= vLP (A), i = 1, 2, ..., n

Moreover each A∗i can be chosen to be a union of at most 2m intervals.

Before proving the above Proposition we need to show the following

Lemma 3.3 Let g1, g2, ..., gn be nonnegative linear functions defined on the
interval [a, b) such that

gi(x) = cix+ di, ∀ i = 1, 2, ..., n.

for some numbers ci, di, i = 1, ..., n. Then for arbitrary nonnegative numbers
β1, β2, ..., βn with

∑n
i=1 βi = 1 there exists a partition {Bi}ni=1 of the interval

[a, b) such that∫
Bi

gidλ = βi

∫ b

a
gidλ = βigi

(
a+ b

2

)
(b− a), ∀ i = 1, 2, ..., n, (8)

where λ denotes the Lebesgue measure. Moreover for all i = 1, 2, ..., n each
set Bi can be chosen as a union of at most two subintervals.

Proof. If βi = 0 we put Bi = ∅. Without loss of generality we may assume
that βi > 0 for i = 1, 2, ..., k ≤ n. Define by recursion two increasing finite
sequences of numbers {si}ki=1,{ti}ki=1 as follows

s1 = a, tk = b,
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and

si+1 = si +
βi(b− a)

2
, tk−i = tk−i+1 −

βi(b− a)
2

for all i = 1, 2, ..., k − 1. For i = 1, 2, ..., k − 1 we define the set Bi by

Bi = [si, si+1) ∪ [tk−i, tk−i+1)

and for i = k we put Bk = [sk, tk). It is easy to verify that the partition
{Bi}ni=1 satisfies (8). The proof of Lemma 1 is complete. 2

Proof of Proposition 3
For fixed 1 ≤ j ≤ m we make use of the Lemma 2 for gi = fi, i = 1, 2, ..., n,
[a, b) = [aj , aj+1) and βi = x∗ij , i = 1, 2, ..., n. As in proof of Lemma 2 we
construct a partition {Aij}ni=1 of the subinterval [aj , aj+1) satisfying∫

Aij

fidλ = νi(Aij) = x∗ijaij , (9)

where [x∗ij ]n×m is a stochastic matrix being solution of the LP problem (5).
Define a partition P ∗ = {A∗i }ni=1 by

A∗i =
m⋃
j=1

Aij , i ∈ I. (10)

We have

νi(A
∗
i )

αi
=

1

αi

m∑
j=1

νi(Aij) =
1

αi

m∑
j=1

x∗ijaij = vLP (A), i = 1, 2, ..., n

Moreover it follows from the Lemma 2 that the partition P ∗ = {A∗i }ni=1 can
be obtained by at most m(2n− 1)− 1 cuts of the unit interval [0, 1).
Unfortunately the partition P ∗ constructed in the proof of Proposition 3 does
not need to be the α−optimal, but it can be used to obtain almost α−optimal
partitions by approximation of the densities {fi}ni=1 by PWL functions.

Now using the idea of the Riemann integration we present a method
of obtaining almost α-optimal partition for arbitrary continuous densities
{fi}ni=1.

Definition 3.4 For a given ε > 0 and α = (α1, . . . , αn) ∈ S a partition
Pε = {Aεi}ni=1 is said to be ε− α-optimal if the following inequality holds

vα(ε) := min
i∈I

[
µi(A

ε
i )

αi

]
≥ sup

P∈P
min
i∈I

[
µi(Ai)

αi

]
− ε
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Suppose we are given arbitrary continuous densities {fi}ni=1 defined on the
unit interval [0, 1). To get ε − α-optimal partitions for these functions we
can use approximation by simple functions. Increasing the number of subin-
tervals dividing [0, 1) we get the desired accuracy. For any ε > 0 we can
find a partition {[aj , aj+1)}mj=1 of the interval [0, 1) and two collections of
nonnegative simple functions

hLi (x) =

m∑
j=1

hLijI[aj ,aj+1)(x) and hUi (x) =

m∑
j=1

hUijI[aj ,aj+1)(x)

such that:

1. hLi ≤ fi ≤ hUi for i ∈ I,

2. max
i∈I

{
1

αi

∫ 1

0
(hUi − hLi ) dλ

}
< ε

Denote HL = [hLij ]n×m and HU = [hUij ]n×m. For these matrices we can solve
suitable LP problems (cf. Proposition 1) and obtain the lower and upper
bounds for the number vα:

vLP (HL) ≤ vα ≤ vLP (HU ).

where (vLP (HU )−vLP (HL)) < ε. Moreover, as in Proposition 1, we can also
construct a partition Pε = {Aεi}ni=1 satisfying

min
i∈I

[
µi(A

ε
i )

αi

]
≥ vLP (LU )− ε

Now we present an example illustrating described methods of finding
almost α− optimal partitions.
Example 3.
Consider three nonatomic measures µ1, µ2, µ3 defined on the unit interval
[0, 1) with the density functions

f1(x) =
6

5
x2 +

3

5
, f2(x) =

3

2
(1− x2), f3(x) =

7

6
(1− x6).

The first function f1 is convex while the functions f2 and f3 are concave.
We find almost α-optimal partition and almost α-optimal value vα for α =(
1

3
,
1

3
,
1

3

)
by dividing equally the interval [0, 1) into m = 12 subintervals

{[
j − 1

m
,
j

m

)}m
j=1

.
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Figure 1: The density functions considered in Example 3, f1 : tiny dashing,
f2 : large dashing, f3 : continuous line.

For finding the lower bound of vα to get better estimation we use approxi-
mation of the functions fi, i = 1, 2, 3 by PWL functions gi, i = 1, 2, 3.
Let g1 be any PWL function satisfying

g1 ≤ f1 and g1

(
2(j − 1) + 1

m

)
= f1

(
2(j − 1) + 1

m

)
, j = 1, 2, ...,m

For i = 1, 2 we put

gi(x) = m

[
fi

(
j

m

)
− fi

(
j − 1

m

)]
x+jfi

(
j − 1

m

)
−(j−1)fi

(
j

m

)
, j = 1, 2, ...,m

Define matrix AL = [aLij ]n×m by

aL1j =
1

m
f1

(
2(j − 1) + 1

m

)
, for j = 1, ...,m,

aLij =
fi

(
j−1
m

)
+ fi

(
j
m

)
2m

, for i = 2, 3 and j = 1, ...,m.

For finding the upper bound we define a matrix AU = [aUij ]n×m by

aU1j =
f1

(
j−1
m

)
+ fi

(
j
m

)
2m

, for j = 1, ...,m,

aUij =
1

m
fi

(
2(j − 1) + 1

m

)
, for i = 2, 3 and j = 1, ...,m.

Solving the LP problem (5) for α =

(
1

3
,
1

3
,
1

3

)
and matrices AL,AU we get

vLP (AL) = 1.32916 and vLP (AU ) = 1.33164.
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Hence we have the following estimation of an α-optimal value vα

1.32916 ≤ vα ≤ 1.33164. (11)

We also obtain the stochastic matrix

XL =

 0 0 0 0 0 0 0 0 0.61869 1 1 1
1 1 1 0.66842 0 0 0 0 0 0 0 0
0 0 0 0.33158 1 1 1 1 0.38131 0 0 0

 .
Now we are ready to construct the almost equitable optimal partition PL =
{ALi }ni=1 by analysing the matrix XL. The first player receives the inter-

val
[
3

4
, 1

)
, the second player

[
0,

1

4

)
and the third

[
1

3
,
2

3

)
. The remain-

ing two intervals
[
1

4
,
1

3

)
and

[
2

3
,
3

4

)
are divided using the method given

in the proof of the Lemma 2. The interval
[
1

4
,
1

3

)
is to be divided among

the second and the third player according to the shares xL24 = 0.66842 and

xL34 = 0.33158 respectively. Similarly we divide the interval
[
2

3
,
3

4

)
among

the first and the third player according to the shares xL19 = 0.61869 and
xL39 = 0.38131 respectively. Finally we obtain the almost equitable optimal
partition PL = {ALi }ni=1 as follows

AL1 = [0.66667, 0.69245) ∪ [0.72422, 1),

AL2 = [0, 0.27785) ∪ [0.30548, 0.33333),

AL3 = [0.27785, 0.30548) ∪ [0.33333, 0.66667) ∪ [0.69245, 0.72422).

Now we check the measures of obtained partition for each player

3 · µ1(AL1 ) = 1.32985, 3 · µ2(AL2 ) = 1, 33068, 3 · µ3(AL3 ) = 1, 33140.

Then it turns out that we have a little better improvement of the lower bound
for the α-optimal value vα

vα ≥ 1.32985 > vLP (AL) = 1.32916.

We can increase the accuracy of the estimation (11) of the number vα using
a larger number m in the LP problem. For m = 100 we get estimation

1.3336228 ≤ vα ≤ 1.3336580. (12)

Looking at the form of the obtained almost equitable optimal partition PL =
{ALi }ni=1 we could consider the hypothesis that the equitable optimal partition
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can be effected by using only two cuts 0 < t1 < t2 < 1 of the unit interval
[0, 1). Based on the estimation (12) assume that vαε = 1.333623. Similarly to
the methods given in Example 1 we solve the following equations to find t1
and t2

3

∫ 1

t2

f1(x) dx = 1.333623,

and

3

∫ t1

0
f2(x) dx = 1.333623.

We get the solutions t1 = 0.305904 and t2 = 0.698531. I turns out that

3

∫ t2

t1

f3(x) dx = 1.333743

and then we obtain much better partition

P εL = {[0.698531, 1), [0, 0.305904), [0.305904, 0.698531)}

which is effected by using only two cuts.
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O uzyskaniu optymalnych podziałów przestrzeni mierzalnej
Marco Dall’Aglio, Jerzy Legut, Maciej Wilczyński

Streszczenie W pracy zaprezentowano algorytm uzyskania prawie optymalnego
podziału odcinka jednostkowego [0, 1) według danych probabilistycznych miar bez-
atomowych µ1, µ2, ..., µn . Algorytm ten oparty jest na idei całki Riemanna oraz
wykorzystuje metodę programowania liniowego. Ponadto autorzy podają wystar-
czającą liczbę cięć potrzebnych do uzyskania podziałów optymalnych.

Klasyfikacja tematyczna AMS (2010): 91F10, 91B12, 91B32.

Słowa kluczowe: sprawiedliwy podział, podział tortu, optymalny podział przestrzeni
mierzalnej.
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