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Scale-free graphs with edge deletion

Abstract We extend the classical Barabási-Albert preferential attachment proce-
dure by allowing edge deletion. We show that unlike in the original model, power-law
exponents of degree distribution of scale-free graphs with edge deletion depend on
the number of attached edges in one step of the growing process.
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1. Introduction. Many systems of interacting objects or individuals in
natural and social sciences can be described by complex networks [1–5]. The
structure of neighborhoods may have a quite complex topology resulting from
various random processes which describe mechanisms of growing networks. To
mimic the ”the rich get richer” rule, Barabási and Albert used the preferential
attachment rule in growing their networks [2, 6, 7]. It says that a new vertex
is linked with already existing ones with a probability proportional to their
degrees. Such a procedure leads to a scale-free network with a power-law
degree distribution, P (k) ∼ k−3. This was heuristically understood in [2, 6,
7] and proved mathematically in [8, 9], see also [10] for an introduction to
random graphs.

Since then there were proposed many generalizations and extensions of
the preferential attachment procedure. In particular, graphs with internal
vertex structure given by weights of vertices were considered in [11]. In that
model, weight dynamics depends on the current vertex degree distribution
and the preferential attachment procedure takes into account both weights
and degrees of vertices. It was proved that such a coupled dynamics leads
to scale-free graphs with exponents depending on parameters of the weight
dynamics.

In many real situations, edges are not only created but they may also
be destroyed [12–14]. Here we assume that edges are deleted by a preferen-
tial detachment. This describes situations where vertices with high degrees
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are more dynamic, they are more likely to change their connections. Similar
model was discussed in [12] where it was shown that power-law exponents
depend on the probability of deleting an edge in any time step. In our model
we also assume that two vertices which were forced to be disconnected form
an edge between themselves. We use a method of ”master equations” and
show (under the assumption of linear evolution) that our procedure leads
to scale free graphs with power-law exponents depending on the number of
attached edges in one step of the growing process. This is a novel behaviour
not present in the original Barabási-Albert model.

2. Model. We will now define precisely our discrete-time dynamical
model. At time t = m0, the graph consists of m0 vertices and (m − 1)m0

edges. At any time t + 1, we have two sub-steps. At a first sub-step of our
procedure, we choose two vertices v1 and v2 with the probability proportional
to their degrees and then we choose their neighbors w1 and w2 with the
uniform probability. If vertices (w1, w2) are different, then we delete edges
(v1, w1) and (v2, w2), and finally we add an edge (w1, w2) (in this way we
may create multiple edges), otherwise we repeat the procedure. In the second
sub-step, we follow the original preferential attachment procedure, that is we
create a new vertex and link it by m > 2 edges with existing vertices with
the probability proportional to their degrees (we do not take into account
changes made in the first sub-step). It is easy to see that at any time t ­ m0,
our graph has t vertices and (m− 1)t edges.

Let Nk(t) be the expected number of vertices of degree k at time t. It
follows that

Nk(t+ 1) = Nk(t)− 2kNk(t)
2(m−1)t + 2(k+1)Nk+1(t)

2(m−1)t −
mkNk(t)
2(m−1)t + m(k−1)Nk−1(t)

2(m−1)t .

We assume that like in the original model, the graph evolves in the linear
way (we expect this but we are short of a rigorous proof), that is for every k,
Nk
t → nk when t→∞. The rates of linear evolution, nk, satisfy the following

linear equations:

nk =
k + 1
m− 1

nk+1 +
(k − 1)m
2(m− 1)

nk−1 −
k(m+ 2)
2(m− 1)

nk (1)

Let us notice that
∑M
k=0 nk = limt→∞

∑M
k=0Nk(t)

t ¬ 1 for every M so the
sequence nk is summable. We will prove that that the degree distribution nk
follows the power law with the exponent depending on m.

Theorem 2.1 The distribution of vertex degrees in the preferential attach-
ment model with edge deletion satisfies the power law, that is nkkβ → c when
k →∞, for some positive constant c, where β = 3m−4

m−2 , m > 2.
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A proof of the Theorem is based on the following Lemma.

Lemma 2.2 If a sequence nk, k = 0, 1, ... of positive real numbers satisfies
the following recurrence equations:

nk−1

nk
= 1 +

β

k
+ rk,

where the sequence rk is summable, that is
∑
i ri <∞, then for some constant

c we have
nkk

β → c when k →∞

Proof We write 1/nk as a product

1
nk

=
1
n1

n1

n2

n2

n3
...
nk−1

nk

hence
1
nk

=
1
n1

k∏
j=2

(1 +
β

j
+ rj) =

1
n1

k∏
j=2

(1 +
β

j
)

k∏
j=2

(1 + r′j), (2)

where r′j = rj
1+β/j .

Analogous equation is satisfied by the sequence nk = k−β which satisfies
the assumption of the Lemma. To see that the second product has a limit,
we take the logarithm of it and use that 1 + x ¬ ex and the summability of
rk. We then multiply Eq. 2 by nk = k−β and the Lemma is proved. �

Proof (of Theorem 2.1) Now we would like to transform Eq. 1 into the
expression present in the Lemma, that is we have to eliminate nk+1 . In the
identity nk+1 = nk + nk+1 − nk we set nk+1 − nk = nk − nk−1 + dk hence
nk+1 = 2nk − nk−1 + dk. We put this expression for nk+1 in Eq. 1, divide
Eq. 1 by nk, and after some rearrangements we get

nk−1

nk
= 1 +

3m− 4
(m− 2)k − (m+ 2)

+
2(k + 1)

(m− 2)k − (m+ 2)
dk
nk

Now we have to prove that the sequence

dk
nk

=
nk+1

nk
+
nk−1

nk
− 2.

is summable and then the Theorem would follow from the Lemma.
Let us denote pk = nk−1

nk
. Then from Eq. 1 we get the following recurrence

formula for pk:

pk =
m+ 2
m

+
3

k − 1
− 2(k + 1)
m(k − 1)pk+1

. (3)
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We will show that pk ­ 1 for every k. We first observe that from pk+1 ­ 1 it
follows that pk ­ 1. Indeed,

pk = m+2
m + 3

k−1 −
2(k+1)

m(k−1)pk+1
­

m+2
m + 3

k−1 −
2(k+1)
m(k−1) =

1 + 3
k−1 −

4
m(k−1) ­ 1.

If there would exists k such that pk < 1, then pk+i < 1 for every i > 0 and
hence nj > nj−1 for every j ­ k and nk would not be summable. Hence we
showed that pk ­ 1 for every k and in consequence nk+1 < nk for every k.

Now after a series of simple transformations we get from Eq. 3 that

(pk+2 − pk+1) =
mpk+1pk+2

2 + 4
k

(pk+1 − pk) +O(
1
k2 ).

From the fact that pk is bounded and mpk+1pk+2
2+ 4
k

> 15
14 for k > 4 it follows

that
pk+1 − pk = O(

1
k2 )

so pk converges and it follows from Eq. 3 that it converges to 1. Hence we
get that

nk+1

nk
+
nk−1

nk
− 2 =

1
pk+1

+ pk − 2 = O(
1
k2 ).

This shows that the sequence is dk/nk is summable which proves the Theo-
rem. �

Now, one may use inequalities concerning sums of random variables [15,
16], see [9], to show that the number of vertices of a given degree is concen-
trated around its expected value. More precisely, let Z(k, t) be the number
of vertices of degree k at time t. It can be shown that Z(k, t)/t converges in
probability to nk as t tends to infinity.

3. Conclusion In summary, we introduced a model of growing scale-
free graphs with edge deletion. We showed (under the assumption of linear
evolution) that unlike in the standard preferential attachment procedure, the
power-law exponent of the degree distribution depends upon the number of
added edges at every step.
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[3] S. N. Dorogovtsev and J F. F Mendes. Evolution of Networks: From
Biological Nets to the Internet and WWW. Oxford University Press,
Oxford (2003)

[4] S. Boccalettia, V. Latorab, Y. Moreno, M. Chavez, and D.-U. Hwanga.
Complex networks: Structure and dynamics. Phys. Rep. 424: 175-308
(2006) doi: 10.1016/j.physrep.2005.10.009

[5] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Critical phe-
nomena in complex networks. Rev. Mod. Phys. 80: 1275-1335 (2008)
doi: 10.1103/RevModPhys.80.1275

[6] A.-L. Barabási and R. Albert. Emergence of scaling in random net-
works. Science 286: 509-512 (1999) doi: 10.1126/science.286.5439.509

[7] A.-L. Barabási, R. Albert, and H. Jeong. Mean-field theory for scale-free
random networks. Physica A 272: 173-187 (1999) doi: 10.1016/S0378-
4371(99)00291-5

[8] F. Chung and L. Lu. Complex Graphs and Networks. American Math-
ematical Society (2006).

[9] R. Durrett. Random Graph Dynamics. Cambridge University Press
(2007).

[10] S. Janson, T. Łuczak, and A. Ruciński. Random Graphs, Wiley, New
York (2000).

[11] K. Choromański, M. Matuszak, and J. Miękisz. Scale-free graph with
preferential attachment and evolving internal vertex structure. J. Stat.
Phys. 151: 1175–1183 (2013) doi: 10.1007/s10955-013-0749-1

[12] M. Deifen and M. Lindholm. Growing networks with preferential dele-
tion and addition of edges. Physica A 388: 4297-4303 (2009) doi:
10.1016/j.physa.2009.06.032

[13] P. Prałat and C. Wang. An edge deletion model for complex net-
works. Theoretical Computer Science 412: 5111-5120 (2011) doi:
10.1016/j.tcs.2011.05.016

[14] H. Brot, M. Honig, L. Muchnik, J. Goldenberg, and Y. Louzoun. Edge
removal balances preferential attcahment and triad closing. Phys. Rev.
E 80: 042815 (2013) doi: 10.1103/PhysRevE.88.042815

[15] W. Hoeffding. Probability inequalities for sums of bounded
random variables. J. Am. Stat. Soc. 58: 13-30 (1963) doi:
10.1080/01621459.1963.10500830

http://dx.doi.org/10.1016/j.physrep.2005.10.009
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1016/S0378-4371(99)00291-5
http://dx.doi.org/10.1016/S0378-4371(99)00291-5
http://dx.doi.org/10.1007/s10955-013-0749-1
http://dx.doi.org/10.1016/j.physa.2009.06.032
http://dx.doi.org/10.1016/j.physa.2009.06.032
http://dx.doi.org/10.1016/j.tcs.2011.05.016
http://dx.doi.org/10.1016/j.tcs.2011.05.016
http://dx.doi.org/10.1103/PhysRevE.88.042815
http://dx.doi.org/10.1080/01621459.1963.10500830
http://dx.doi.org/10.1080/01621459.1963.10500830


120 Scale-free graphs with edge deletion

[16] K. Azuma. Weighted sums of certain dependent random variables.
Tohoku Math. J. 3: 357-367 (1967) doi: 10.2748/tmj/1178243286

Bezskalowe grafy z usuwaniem krawędzi

Krzysztof Choromański i Jacek Miękisz

Streszczenie Praca rozszerza klasyczny model Barabasiego-Alberty o możliwość
usuwania krawędzi. Pokazano, że wykładnik w prawie potęgowym rozkładu stopni
wierzchołków zależy od liczby krawędzi dodawanych w każdym kroku procesu bu-
dowy grafu.
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Słowa kluczowe: grafy losowe, prawo potęgowe, preferencyjne przyłączenia, usuwanie
krawędzi .
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