MATHEMATICA APPLICANDA
Vol. 42(1) 2014, p. 39-62

doi: 10.14708/ma.v42i1.469

JACEK MIEKISZ* (Warsaw)
JAN GOMULKIEWICZ (Wroctaw)

STANISEAW MIEKISZ (Wroctaw)

Mathematical models of ion transport through cell
membrane channels

Abstract We discuss various models of ion transport through cell membrane chan-
nels. Recent experimental data shows that sizes of some ion channels are compared
to those of ions and that only few ions may be simultaneously in any single channel.
Theoretical description of ion transport in such channels should therefore take into
account stochastic fluctuations and interactions between ions and between ions and
channel proteins. This is not satisfied by macroscopic continuum models based on
the Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are
offered by microscopic molecular and Brownian dynamics. We present a derivation
of the Poisson-Nernst-Planck equations. We also review some recent models such as
single-file diffusion and Markov chains of interacting ions (boundary driven lattice
gases). Such models take into account discrete and stochastic nature of ion transport
and specifically interactions between ions in ion channels.
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1. Introduction Every living cell is an open system. Continuous transfer
of energy and mass between cells and their surroundings constitutes a nec-
essary condition for a sustained life. Cell membranes, which ensure the au-
tonomy of separated compartments, should be endowed by mechanisms of
a selective transport of substances indispensable for the life of cells. In par-
ticular, a fundamental phenomenon is a transport of ions through cell mem-
branes which ensures that the ion content of a cell is different from the one
outside the cell.

In evolutionary processes, structures, and mechanisms have been formed
in membranes, which lower locally an energy barrier for penetrating ions.
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Such structures consist of molecules of integral proteins whose hydrophobic
parts interact with two-lipid layers and polar hydrophilic parts form:

a) relatively wide non-selective hydrated pores which penetrate membranes,
b) specific ion channels, often endowed with special structural elements which
form gates sensitive to an electric field, chemical ligands, or to the mechanical
stress, ¢) ion-binding centers (on one or both sides of a membrane) called car-
riers or transporters which interact with ions and transport them to the other
side of the membrane where ion-carrier complexes dissociate. Such transport
can use the energy obtained by metabolic reactions (mainly ATP hydrolysis),
then it is called the active transport, or an interior energy in this case it is
called the facilitated diffusion.

All above mentioned transport mechanisms are essential for cell home-
ostasis, that is for securing the content of the interior of a cell, its volume, and
an electric potential of the membrane. In the stationary state, the membrane
potential is the result of a constant number (on average) of open channels. In

the excitable state, the number of open channels change in time [19]. Conduc-
tivity of the membrane is the product of the number of channels, probability
of opening a channel and conductivity of a single channel [25]. The channel

gate is charged and its position in a channel is crucial for channel opening [6].

In this paper we review three basic models of ion transport in ion chan-
nels: molecular dynamics, Brownian dynamics, and continual electro-diffusion
theory based on Poisson—Nernst—Planck equations and discuss problems of
these approaches. We also describe the Kawasaki dynamics — a simple model
of a one-dimensional boundary driven lattice gas.

2. Ion channels In the late forties and early fifties of the last century,
Hodgkin and Huxley in the collaboration with Katz [54-57, 85] worked out
their phenomenological theory of nerve impulses and put up a hypothesis that
transport of potassium and sodium ions in excitable biological membranes
takes places in selective ionic paths, different for different ions. These paths,
besides a high selectivity, displayed the dependence of the conductivity on the
membrane voltage. Although, such paths have not been called ion channels in
these papers, yet a widely accepted hypothesis was formulated that ions pen-
etrate membranes through specific ion channels made of proteins. Channel
properties as well as transport mechanisms were deducted from macroscopic
measurements. Particularly useful was the voltage-clamp method which con-
sists of registering electric currents through a certain macroscopic surface
of a membrane for fixed values of the membrane potential. There are many
channels on a given surface and therefore their individual properties can be
only deducted from current-voltage characteristics obtained in concrete ex-
perimental conditions. One can read about the voltage-clamp method for
example in [115].

The patch-clamp worked out by [90] make possible measuring currents
through individual channels. In this method, the ending of a glass pipette
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(of the diameter of 1 ym and the resistance of the contact of 109 ohms) is
attached to the membrane. One can register electric currents through the sur-
face adhered to the pipette for fixed voltage between measuring electrodes.
There should be only one ion channel located on such a small surface and
therefore one can obtain transport characteristics of individual channels. De-
tails of this method can be found in the very good monograph of [103].

Investigations using the patch-clamp method confirmed a high selectiv-
ity of ion channels. Transport velocity of ions, obtained from these mea-
surements, equals to about 107 ions per second (a number of ions crossing
a channel during one second) appeared to be close to values observed in the
diffusion in water solutions of electrolytes with the thickness compared to that
of cell membranes. Such high velocity of ions in membranes indicates that
the transport mechanism cannot be of a carrier type which is the case in the
active transport realized by ion pumps or in the passive exchange transport
(for example realized in the case of anions by band 3 protein in the erythro-
cyte membrane). Channels in excitable membranes are highly selective for
univalent cations (Na™ and K*). Such selectivity cannot be therefore the ef-
fect of electrostatic interactions between ions and charges of the inner surface
of the channel. It results from interactions with chemical residues of channel
proteins directed towards the interior of the channel [8,51,77,82,97, 98, 120].
Biochemical studies tell us which proteins form particular channels. We know
their aminoacid sequences and ternary and quaternary structures. It is known
which parts of channel proteins are responsible for hydrated pores, which
parts form a filter responsible for the channel selectivity and which ones play
the role of a voltage sensor which can change the state of a voltage-dependent
channel from the conductive to the non-conductive one (and vice versa). Bib-
liography discussing these issues is immense and we will not cite it here but
rather refer readers to the new edition of an excellent monograph [53] and
review papers [105,113,119] new idea on this matter is presented in MacKin-
non’s papers [70, 106].

Scientists who worked out theoretical description of ion transport in open
channels had to base their models on biochemical data and experimentally
obtained channel transport characteristics. Until recently we had lacked di-
rectly obtained channel images. First reports of such images appeared in
the end of nineties of the last century. There have been obtained X-rays
images of potassium and chlorine channels, an acetylocholin receptor, and
water channels (aquaporins). Particularly important is a paper [33] whose
authors were able to crystallize the protein of a potassium channel, KcsA,
from the membrane of the bacteria Streptomyces lividans, and obtained its
three-dimensional X-ray image with 0.32 nm resolution. Results obtained in
this paper were confirmed in [34,121] with images with 0.2 nm resolution. De-
spite the fact that the KcsA channel is not voltage-dependent and its image
corresponds to the non-conductive state, it has become the base for con-
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structing realistic models of ion channels (mainly potassium ones) [105, 111]
and the literature cited therein).

Cell interior Exterior

Gate Filter

Central cavity

Figure 1: Schematic cross-section of a ion channel

The general scheme of the potassium channel following from the above
papers is presented in Fig. 1. One can see that the channel cross-section
changes along its axis. In the channel part directed toward the outside of
the cell there is located a filter responsible for channel selectivity (of the
length of 1.2 nm length and the diameter of 0.3 nm). In the middle part
there is a relatively wide cavity of the length of about 1 nm which is capable
of containing tens of water molecules. In the part of the channel directed
toward the interior of the cell (of the length of about 2 nm) there are sub-
units of the protein channels responsible for the opening and closing the
channel (a channel gate). In the closed channel, the smallest diameter of this
part of the channel is 0.24 nm, whereas the diameter of K™ ion is equal to
0.26 nm. The surface of this part of the channel is hydrophobic. The above
data come from [19]. It is seen from the X-ray image of the channel that
there can be at most two potassium ions in the filter (separated by a water
molecule). In the middle cavity of the channel there can be a third potas-
sium ion. Such distribution of ions in a channel is confirmed by Brownian
dynamics [20], and molecular dynamics [2, 12, 105] and the literature cited
therein).

Detail studies of channel proteins indicate that a filter part is the same
in all potassium channels [53, 75, 84]. It is formed from segments of polypep-
tide chains (two or four subunits of a channel protein) with the amino acid
sequence TVGYG. One can distinguish four centers (S1, S2, S3, and S4) in
which oxygen atoms of the carbonyl residues exactly correspond to the coor-
dination bond of potassium ions and can substitute oxygen atoms of water
molecules around the hydrated K™ ion [83]. X-ray studies [121] and molecular
dynamics [9] indicate that there exists another center (S0) in the exterior of
the channel entrance domain. his is schematically illustrated in Fig. 2. The
presence of such a filter in all potassium channels allows the construction
of a uniform theoretical description of the ion transport in all open potas-
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Figure 2: Schematic distribution of K™ ions (e) and water molecules (o) in
the channel filter

sium channels. It was shown in [22] that such description can also be used in
calcium channels.

3. Ion transport in channels

A fundamental model aspiring to provide a realistic description of ion
transport in channels of excitable membranes is the molecular dynamics
[2,3,9,18,19,73,88,101,102]. Tons and molecules of water and of channel pro-
teins are treated as individual objects. Newton equations of motion of ions
interacting with other ions, water molecules, and the surface of a channel,
are solved. Unfortunately, the computer time needed to solve these equations
and to calculate properties of channels (like their conductivity) is so far pro-
hibitively large (years for the fastest computers). In such a situation, even
if one could have a realistic model of channels and a proper physical theory
describing interactions between molecules in a channel, then limitations of
computer power prevent us from using the molecular dynamics to describe
ion transport.

3.1. Brownian dynamics

A model which is less fundamental but still describing motion of indi-
vidual ions is the Brownian dynamics. In order to reduce the number of
equations, the force acting on a given ion (originated from water molecules)
is decomposed into the sum of a deterministic friction force and a random
force (a white noise) with the zero average. Now in a standard Newton equa-
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tion, a random force appears, such an equation is called a Langevin equa-

tion [15,62], see discussion and (21) in Appendix A,
dv
mo = —myv + L(t) + ¢F + F, (1)

where m, q, v are respectively a mass, a charge, and a velocity of a given ion,
E is the electric field. The friction, m~yv, (where 7 is the friction coefficient per
unit mass) and a stochastic force, L, are results of random collisions of ions
with water molecules and the channel surface, Fj is the force of a short-range
non-electrostatic interaction between the ion and the channel. The electric
field responsible for the force exerted on ions, is computed numerically from
the Poisson equation in the form

Vie(r)Ve(r)] = —p(r), (2)

where r = (x,y, z) is a position vector, p is the total charge of ions and channel
proteins, ¢ is the potential of the electric field, ¢ — the electric permittivity
and V = (%, 8%, %) — the gradient operator. One adds to the obtained
electric field, an exterior field connected with the membrane potential.

In a very narrow selective channel, in an axon of a nerve cell for exam-
ple, there can be only few ions of the same type. In such membranes, ions
of different types are separated and their transport takes place in different
channels. The electric field inside such channels is a sum of fields coming from
surface charges and individual ions. The first field is an exterior field, the sec-
ond one is a result of interactions between ions. The Langevin equations (1)
were derived under the assumption that Brownian motion of ions is
independent of the presence of other ions. The problem of interaction
between ions in very narrow channels requires a separate discussion.

In the first paper [21], where Brownian dynamics was used to describe
ion transport, one assumed that ions movement is one-dimensional. Such
assumption is far from realistic models of ion channels. Papers published
since 1998, mainly by a group of physicists from the Australian National
University in Canberra, contain numerical simulations in a three-dimensional
space. A detailed list of references devoted to this issue can be found in
extensive reviews [18,19,066-68, 102].

Parameters required in equations (such as an electric permittivity or a dif-
fusion coefficient) are taken from molecular dynamics. One very often uses pa-
rameter fitting based on an optimization principle [22,34,80,81]. Geometrical
dimensions of channels are often taken from experimentally obtained images
or from molecular dynamics. In a recent paper [63], a stochastic optimization
algorithms were constructed to estimate certain structural parameters of ion
channels.

In Brownian dynamics, Langevin equations are solved to describe trajec-
tories of all ions. In order to do so in very short time intervals (steps) of few



Jacek Miekisz, Jan Gomulkiewicz, Stanistaw Miekisz 45

femtoseconds (1071 s), Langevin equations are integrated to find velocities
and locations of all ions before the next step. This procedure is repeated for
a sufficiently long time, usually few microseconds (1079 s), to find the num-
ber of ions (An) passing through the channel in time (At) (naturally, An
includes ions with velocity v which are not further than vAt from a given
channel cross-section). This gives us the flux of ions,

An
J="—. 3
At (3)
Details of this method can be found in a review paper [(7], see also a math-
ematical monograph on computational methods for micro and nano-flows [60]
and recent mathematical papers on Langevin dynamics [71,72]. Fluxes ob-

tained for different values of a membrane potential for a fixed ion concentra-
tion or for different concentrations but a fixed membrane potential, allow us
to describe current-voltage and current-concentration characteristics. Such
characteristics can be confronted with an experimental data.

In the introduction to [22], the authors declare that in their model, based
on Brownian dynamics, ion chemical potentials and other channel parameters
were neither assumed ad hoc or fitted to experimental data. It seems that
they cannot really justify it. An optimization of channel parameters and
their calculations based on molecular dynamics are not free from necessary
approximations (for example treating water in a channel as a continuum,
putting the relative electric permittivity of a channel protein to 2 or treating
channel proteins as static structures).

Despite many simplifications, the description of ion transport in ion chan-
nels based on Brownian dynamics explains many experimentally observed
channel characteristics [34]. In particular, it predicts, in the agreement with
experiments, current-voltage and current-concentration characteristics (in-
cluding the observed flux saturation with respect to the ion concentration
in a solution near the membrane [75, 82], caused by the independence of
the time of the ion passage through a selective filter of the concentration
[ y ey UITUO, ]

When we realize that proteins form dynamical structures whose pores, al-
lowing ion transport, have cross-sections of atomic sizes, then we understand
that using statistical macroscopic parameters (like an electric permittivity e
and a diffusion coefficient D inside the channel) to describe their functions is
not justified. This may constitute a fundamental limit of usability of Brow-
nian dynamics to describe the ion transport in channels. Moreover, it is ar-
gued in [12, 108] that one cannot define an electric permittivity of protein
molecules and a solution near their surface of contact. In particular, one can-
not characterize a protein molecule by an average permittivity (an estimated
permittivity varies in space and it depends on the method of calculation).
Protein channels are commonly treated as equilibrium structures with a time-
independent permittivity. In reality, ion channels are non-equilibrium struc-
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tures in which moving ions induce a time-dependent electric permittivity of
channel proteins [12]. The above described problem of the electric permittiv-
ity of ion channels concerns in the same degree models of Brownian dynamics
and molecular dynamics [37].

We would like to pinpoint still another problem. Brownian dynamics de-
scribes movements of individual ions. Results of experimental papers [34] and
of molecular dynamics [9,10,101,109] suggest that potassium ions are moving
collectively together with a water molecule between them — they pass from
S1 and S2 centers to S2 and S4. Such collective transport cannot be described
in a simple way within models based on molecular dynamics. A kinetic the-
ory of collective transport was presented in by Nelson in [92-04]. He assumed
that transport barriers exist at the channel entrance and exit and there no
barriers inside the channel (which is consistent with molecular dynamics).
Results of the above papers display a saturation in current-concentration
characteristics. We would also like to point out that ion sizes are compared
to those of water molecules, therefore treating ions in channels as Brownian
particles is not justified [50].

3.2. Poisson-Nernst-Planck equations

Here we present continual electro-diffusion theory, proposed by [18] and then
developed in many papers, a comprehensive bibliography can be found in
monographs [53,110]. It is a mean-field theory. It can only be used to describe
ion transport in channels of sufficiently large diameters and for solutions of
dilution ensuring that ions do not interact with themselves.

We assume that ions passing through a channel are subject to a severe
dumping which justifies neglecting the inertial term (2 = 0) in (1). One

dt
obtains a reduced Langevin equation for a given ion:
myv = L(t) + qF + F, (4)

where ¢ is a charge of the ion, £ = —g—i is the electric field and Fy = —%~
is the force of a short-range non-electrostatic interaction between the ion
and the channel [65, 74,99, 102]. For wide multi-ion channels, of diameters
exceeding several times the Debye radius, one can neglect Fj.

Of course, one also has to assume, for (4) to have a sense, that exterior
forces do not vary substantially during dumping. This assumption is dubious
in narrow channels — a cross section of such channels is not a constant and
therefore ion-channel interactions vary on short distances.

In the dumping case, the probability density of finding a ion at a certain
location x at the time ¢, p;(x,t), is a solution of the Smoluchowski equation
[15] (which is a particular case of the Fokker—Planck equation [100], see (30)
in Appendix A, where the Fokker—Planck equation for the probability density
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of finding ions with certain velocities is given),

Op(z,t) _ O [KT'Op  gp dU (5)
ot Ox lmydr mrydr]|’

where U = qp + V.
Continuity equation for the probability p(z,t) reads
op(z,t) 0

where J is the ion flux. From (5) and (6) we get the following formulae for

probability flux:

kT 0 au
J=—— P 9P Er (7)

myOdx  my dx
For wide multi-ion channels, their interior can be treated as a continu-
ous media and therefore the probability p(z,t) can be then replaced by ion

concentrations ¢(z,t) and we get:
J=——-=—— (8)

From the fluctuation-dissipation theorem we get the relation between v and
the diffusion coefficient D,

T
p=-* )
my
hence p JU
_ _p|%  gcavU
/= D{dmij:Tda:} (10)

This is the one-dimensional Nernst-Planck (NP) electro-diffusion equation
for the ion flux [18].
We supplement it with the Poisson equation for the electric potential ¢,

d*¢
€E— =
d2x
where € is the electric permittivity and N — a fixed charge of the membrane.
The above two equations form the Poisson—Nernst—Planck (PNP) theory.
If we assume that the electric field is constant in the channel, then the

right-hand side of (11) is zero (electro-neutrality). In the stationary state,
(10) can be integrated. One then obtains the following expression for the

flux J:

—c(z)q — N(z), (11)

—Dq —Vm {c- —cC e_q;/?}
(2 (o}
J=4ld L , (12)
e kr —1

where d is the thickness of the layer, V,;, — a membrane potential, ¢; ion con-
centration on the boundary inside the membrane and ¢, — ion concentration
on the boundary outside the membrane.
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Eisenberg and his coworkers [16,17,35-38,44,95,108] and Kurnikova with
her coworkers [14,50,65,80] developed a three-dimensional electro-diffusion
theory based on the Nernst-Planck equation and the Poisson equation for
the potential of electrostatic interactions. This theory, called PNP (Poisson—
Nernst—Planck) theory, is still a mean-field theory and as it was shown
in [23,80], it cannot be used in channels of dimensions described above. It can
be applied to channels of dimensions exceeding twice the value of the Debye
radius. The PNP theory cannot be used to describe the transport in channels
discussed here because the average number of ions observed in such channels
is compared to the size of fluctuations and therefore the concept of concen-
tration ceases to have a sense. This problem was pointed out in [83, 108].
However, this was not taken into account in proposed theories and in the
case of the second paper, this problem was bypassed by averaging over a long
time. In [15,46], the PNP equations were generalized by adding to the chem-
ical potential of ions, an “excess” responsible for interactions between ions
and non-electrostatic interactions between ions and the surface of a channel.

The PNP theory fails to explain an experimentally observed saturation
of the ion flux as a function of the concentration of ions in the solution ad-
jacent to the membrane for the fixed membrane potential. According to the
PNP theory, this dependence should be linear. It is worth to point out once
again that using the continuous description of the ion transport in channels
with atomic dimensions is inherently inappropriate. Macroscopic parameters
of channels such as the diffusion coefficient (equivalently ions motility), con-
centration and electric permeability, taken from continual theories cannot be
rationally justified. This is confirmed by Monte-Carlo simulations of a double
electric layer in 2 nm nano-pores [116,117]. The above remarks about contin-
ual description of ion transport in open channels, based on the PNP theory
suggest that it should not be used for channels with dimensions observed ex-
perimentally. Accidental agreement of this theory with an experimental data
can follow from cancellation effects of assuming wrong channel parameters
and wrong assumptions about the physics of channels [23]. The importance of
ions interactions in modeling ion channels was discussed recently in [39—11].

Finally, we would like to emphasize once again the fundamental problem
present both in continuum models of the PNP type as well as in the Brow-
nian dynamics. In channels containing several ions simultaneously, it seems
to be essential to take into account interactions between them. In Langevin
equations, random collisions between ions and water molecules and the sur-
face of the channel are represented by a sum of a deterministic friction force
and a purely random force. Relations between friction and fluctuations of
random interactions are described by a dissipation-fluctuation theory. Such
theory requires the system to be in a thermodynamic equilibrium and parti-
cles not to interact. Then the diffusion coefficient (which measures the size of
fluctuations) is given by the Einstein relation, D; = kT /m;~y;, where T is the
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temperature of the system. However, if we take into account ion interactions,
then random forces acting on ions are no longer independent. Also the divi-
sion of a force into a deterministic and a random part becomes problematic.

In [107], authors claim channel solutions are very diluted and therefore
one can neglect correlations between random forces exerted on particular ions
(however, they explicitly consider interactions between ions). Then they in-
troduce appropriate electro-diffusion equations with a self-consistent electric
field a solution of Poisson equations. Let us observe, however, that solutions
in channels, in comparison to diluted surrounding solutions where ions are
far apart, are not diluted. Despite that fact that there are only few ions in
the channel, due to atomic sizes of channels, ions are close to each other
and therefore their interactions cannot be neglected. Moreover, the concept
of a self-consistent field treats concentration as a statistical quantity. In the
case of a low number of ions, concentration fluctuations are of the order of
the concentration itself.

Different approach is contained in [13]. The authors analyze there a mo-
tion of interacting ions in electrolyte solutions. In the appropriate Langevin
equation, a friction force has the form of an integral dependent upon a his-
tory. Friction with a memory is also used if sizes of Brownian particles are
compared to sizes of solution particles [(4] which takes place in ion channels.

Taking into consideration interactions between ions in the description
of ion transport in channels requires further studies. Ion interactions cause
dependence between fluxes of different ion types. However, interactions be-
tween ions of the same type within one channel does not lead to interactions
between channels. This was used in [12] where an additivity principle was
invoked.

In conclusion, one can say that only a truly microscopic description of
ion channels (based for example on molecular dynamics) can fully explain
mechanisms of their functioning [19]. Further development of computational
techniques, better computational methods for stochastic ordinary differential
equations in particular, more detailed knowledge of a molecular structure of
ion channels, and also advances of physics of nano-systems are needed to
achieve this goal.

4. Ions as interacting random walkers in ion channels

Some ion channels are very narrow hence ions move in a one-dimensional
array and they cannot pass each other. Such a situation is modeled by the so-
called single-file diffusion and it is discussed in [24,26-29,12,61,91]. Authors
of these papers solve either numerically or analytically Langevin equations
which include interactions between ions. They showed that the mean square
displacement of a particle grows at long times with the square root of time,
rather than linearly as in the standard diffusion. The coefficient in front of
the square root, the so-called single-file mobility, can be derived from the
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fluctuation-dissipation theory based on the generalized Smoluchowski equa-
tion.

To simplify things even further, we discretize the space to model narrow
ion channels by continuous-time Markov chains (Markov jump processes)
with finite number of states. Namely, consider a one dimensional array of lat-
tice sites. Every lattice site can be either empty or occupied by one particle.
Particles may hop with certain rates (depending on their interaction energy)
to neighboring empty sites. If hoping rates to the left and to the right are
different, then such a process is called an asymmetric simple exclusion pro-
cess (ASEP) [30,31]. In addition, particles from outside of the system may
appear at the empty array endpoints, particles which occupy endpoints may
disappear from the system. Physically speaking, array endpoints are coupled
to particle reservoirs. Such models are called boundary driven lattice gases.
They may serve as models of narrow ion channels, where hoping asymmetry
is due to the external electric field (we assume that particles are charged).
Calculating mean current and its fluctuations in such systems is a challeng-
ing problem. Mathematically speaking, we have an ergodic continuous-time
Markov chain with a finite number of states. It has a unique stationary prob-
ability distribution (a stationary state). Such a stationary state cannot be
called an equilibrium, there is an average current (flux of particles) in the
system. It is one of the simplest examples of a non-equilibrium system of
interacting particles with a non-equilibrium stationary state (NESS).

Below we describe in more detail a particular version of a driven lattice
gas — the so-called Kawasaki dynamics, we follow closely the description
in [79].

Let Ay = {1,...,N}. Every site of Ay can be either occupied by one
particle or be empty. Qn = {0,1}*¥ is the configuration space, if = € Qy,
then z(i) € {0,1}, i € An. The energy of interaction between particles is
given by the Hamiltonian, H: Qy — R,

:—ﬂiE:x z(i+ 1), (13)

k > 0 implies attraction between particles (two neighboring particles have
a negative energy) and x < 0 means repulsion between particles (two neigh-
boring particles have a positive energy).

We allow particles to hop to neighboring empty sites. The easiest way to
implement such a dynamics is to consider interchanging of occupation of two
neighboring lattice sites. Namely, let

z(k) if k£, 0+1,
2" (E) = { x(3) if k=141, (14)
x(i+1) if k=i



Jacek Miekisz, Jan Gomulkiewicz, Stanistaw Miekisz 51

We define k(z — x%*1) to be the probability of transition per unit time.
- il _
probablhty(z(tJr};l)—x |z(t)=x) _ We set

More precisely, k(z — z%*1) = limj,_,o

k(z — abitl) = efg[H(a:i*i“)fH(x)]’ (15)
where [ is the inverse of the temperature of the system.

We constructed a continuous-time Markov chain. One can easily show that
the following Gibbs state (the canonical ensemble of equilibrium statistical
mechanics),

e—BH(x)
ple) = S e P

yeQN

(16)

is its stationary state. It is enough to demonstrate that the chain satisfies the
so-called detailed balance condition (see Appendix B),

e_ﬁH(a;)k(x . xi,i-}—l) _ e—ﬂH(xi,i+1)k(xi,i+1 — ). (17)

Now we allow the system to absorb a particle from a reservoir at sites
1 =1, N or expel it to a reservoir from sites ¢ = 1, N. Such a flipping of
occupation we denote by © — x*, where

oo [1—al) ik =i,
@(k) = {x(k) itk £ (18)

and the rates are given by

k(z — 2') = o~ SH @) —H(@)—pi(1-22()]  ; _ 0, N. (19)

)

It is an easy exercise to show that the Markov chain of the above boundary-
driven dynamics satisfies the detailed balance condition if and only if pu; =
un = p. If this is the case, then the stationary state is given by

¢~ BlH(@)—uN (@)]

ple) = S PN (20)
yeQN
where N(x) =3 ;1; x(i) is the number of particles in the configuration z.

Assume that p; > 0 and pe < 0. Then we expect a current of particles
from the left to the right even in the stationary state of the Markov chain
with the rates (15) and (19), the steady state of the open system coupled
to two reservoirs. The mathematical analysis of the above steady state in
the limit of low temperatures (large 3) can be found in [79]. The Kawasaki
dynamics was analyzed recently in [32], where an exact current — particle
density relation was derived. For the general treatment of the detailed balance
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condition in non-equilibrium statistical mechanics we refer readers to [59] (see
also Appendix B), see [5,89] for a discussion of the detailed balance condition
in the transport of ions in ion channels.

The more realistic model of ion channels should include interactions be-
tween neighboring ions but not necessarily at the distance 1. The work is in
progress.

5. Discussion In our paper we reviewed various models of ion channels.
We emphasized the need of construction of new models which would take into
account interactions between ions. This is especially important in narrow
channels where the number of ions is very small and standard continuous
Poisson-Nernst-Planck theory cannot be applied. We also discussed simple
discrete one-dimensional models of non-equilibrium statistical mechanics, the
so-called boundary driven lattice gases. They may serve as toy models of
narrow ion channels.

A. Langevin, Ito, and Fokker—Planck equations We consider a par-
ticle (a macromolecule) immersed in a liquid and therefore subject to forces
exerted by surrounding liquid molecules (micromolecules). For simplicity we
will discuss one-dimensional model. Our particle is described by its posi-
tion z and velocity v and it moves according to the Newton dynamics,
a = dv/dt = F/m, where m is the mass of the particle and F' is the sum
of all forces exerted on it. Instead of solving such an equation together with
analogous equations for liquid molecules (Molecular Dynamics approach), we
decompose the force acting on our particle into the sum of a deterministic
friction force proportional to the velocity of the particle and a random force
(a white noise) with the zero expected value. In this way we pass from the
deterministic Newton equation to the stochastic Langevin equation [114]:

dv L(t)
T 21
P U S (21)

where 7 is the friction coefficient per unit mass and L(¢) is a stochastic force
for which we assume that the expected value and the correlation function are
given respectively by (L(t)) = 0 and (L(t)L(t")) = T'd(t — t'). The Langevin
equation is simply the Newton equation plus a random force. It can be written
in the precise mathematical way as the Ito equation:

d
dv = —yvdt + ﬂ, (22)
m

where W is the Wiener process.

We will continue the informal (physical) discussion of the Langevin equa-
tion. For a given realization L(t) of the Wiener process we may simply solve
the linear equation (21) with the initial condition v(0) = v,,

t !
W(t) = e 4 e /0 L) d. (23)
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We use the properties of L and get the expected values of the velocity,
(v(t)) = voe ™ (24)

and the expected value of the square of the velocity,

(3 (E) = w3 (1 e, (25)

For the infinite time ¢ at the equilibrium we get

. m{v3(t))  ml
S T (26)

and from the equipartition principle it should be equal to k7'/2, where k is
the Boltzmann constant and 7" the temperature of the system.
Finally we get he following relation in the equilibrium:

r kT
—=— (27)
2y m

This is an example of the fluctuation-dissipation theorem which relates
friction to thermal motion.
On the other hand, for a small time ¢ we have:

(v(t) = vo) ~ —yvot (28)

{(0(t) = vo)?) ~ Tt. (29)

This enables us to write a Fokker-Planck equation, a partial differential
equation for the probability density P(v,t) that the particle will have a ve-
locity v at time ¢ [100, 114],

OP(v,t)  OuP(v,t) n E(‘ﬁP(v,t)
ot v 2 o

(30)

B. Time-irreversibility and the detailed balance It is well-known
that Newtonian dynamics of interacting particles is time-reversible. If we
reverse the momenta of all particles, then the system will travel back to
its past along the trajectory by which it arrived at a given point. Here we
will discuss what we mean by time-reversible Markov chains (we follow [52]).
Let {X,,—00 < n < oo} be an ergodic discrete-time Markov chain with
a transition matrix P and a unique stationary probability distribution pu.
Assume now that X, has distribution u for every n.

DerINITION B.1 Let Y,, = X_,,, then Y is the time-reversed chain of X.
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DEFINITION B.2 Markov chain X is time-reversible if X and Y have the
same transition matrix.

DEFINITION B.3 Markov chain X satisfies the detailed balance condition if
there exists a function f on its states such that

f)pig = F(G)pji
for all states i, j of the chain.

We encourage readers to prove the following theorems (proofs are elemen-
tary).

THEOREM B.4 Markov chain X is time-reversible if and only if its stationary
distribution satisfies the detailed balance condition.

THEOREM B.5 If a positive and normalized to one function f satisfies the de-
tailed balance condition, then it is a stationary distribution of a given Markov
chain.

THEOREM B.6 Markov chain X is time-reversible if and only if for every
three states 1, j, k we have that

PijPikPki = PikPkjPji-

Definition B.3 and Theorem B.5 hold also for continuous-time Markov
chains (Markov jump processes) if by p;; we mean not probabilities but tran-
sition rates. We leave as an exercise for readers to define time reversibility of
continuous-time Markov chains.
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Matematyczne modele transportu jonéw w kanaltach
komérkowych
Jacek Migkisz, Jan Gomutkiewicz, Stanistaw Migkisz

Streszczenie

W naszej pracy przegladowej przedstawiamy rézne modele transportu jonéw w ka-
natach komérkowych. Rozmiary niektérych kanaléw jonowych sa rzedu érednicy jo-
néw, a wiec tylko kilka jonéw moze jednocze$nie znajdowaé sie w danym kanale.
Opis transporu w tak waskich kanatach powinien bra¢ pod uwage stochastyczne
fluktuacje liczby jonéw oraz oddziatywania miedzy nimi. Ciagle modele makrosko-
powe oparte na rownaniach Poissona—Nernsta—Plancka nie spelniaja tych warunkow.
Bardziej realistyczne modele, takie jak dynamika molekularna i dynamika brow-
nowska, uwzgledniaja mikroskopowsg dyskretng strukture kanaléw jonowych. Przed-
stawiamy wyprowadzenie réwnan Poissona—Nernsta—Plancka. Przedyskutowujemy
réwniez modele tancuchéw Markowa oddzialujacych jonéw. Modele takie biora pod
uwage dyskretny charakter transportu jonéw i oddzialywania miedzy nimi.

2010 Klasyfikacja tematyczna AMS (2010): 92BO05.

Slowa kluczowe: kanaly jonowe, transport jonéw, réwnanie Poissona—Nernsta—Plancka,
dynamika Kawasaki.
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