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A Résumé on Interval Runge-Kutta Methods

Abstract The paper presents explicit and implicit interval methods of Runge-Kutta
type. Such methods introduce the errors of methods. It means that this kind of errors
are included in the interval solutions obtained. Applying these methods for solving the
initial value problem in floating-point interval arithmetic we can obtain solutions in
the form of intervals which contain all possible numerical errors. Numerical examples
are presented.
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1. Introduction. Many scientific and engineering problems are described in
the form of ordinary differential equations. If such equations cannot be solved analyt-
ically, we use approximate methods to solve them, usually providing all calculations
in floating-point arithmetic.

One of the most popular one-step methods to solve the initial value problem in
ordinary differential equations are the methods of Runge-Kutta. These methods yield
approximate solutions of the problem considered. From the well-known theorems
we can evaluate the local truncation error of the solution obtained, although it
can not be easy. Moreover, the floating-point arithmetic causes two kinds of errors:
representation errors and rounding errors. It means that the computed results could
be inaccurate, not only because of the method applied, but also because to the
arithmetic used.

In interval methods of Runge-Kutta types the errors of the methods are included
in the interval solutions obtained. Applying such methods in floating-point interval
arithmetic (see e.g. [7] or [22]) we can obtain solutions in the form of intervals which
contain all possible numerical errors.

In this paper, after recalling conventional Runge-Kutta methods (Section 2),
we present explicit (Section 3) and implicit (Section 4) interval methods of Runge-
Kutta types. For both types of interval methods we quote relevant theorems on the
inclusion of the exact solution in interval solutions and on estimations of the widths
of interval solutions obtained. The second kind of theorems present also the orders
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of the interval methods considered. Since the paper is a résumé on interval Runge-
Kutta methods, we present these theorems without the proofs (the proofs can be
found in the given references). In the last section some numerical examples with
interval methods considered are presented.

2. Conventional Runge-Kutta Methods. For the initial value problem

y′ = f(t, y(t)), y(0) = y0, (2.1)

where t ∈ [0, a], y ∈ RN and f : [0, a]×RN → RN , the well-known explicit m-stage
Runge-Kutta methods are of the form (see e.g. [2–4,8–10,15,16,25,27])

yk+1 = yk + h

m∑
i=1

wiκij , (2.2)

where
κ1k = f(tk, yk),

κij = f
(
tk + cih, yk + h

i−1∑
j=1

aijκij

)
, i = 2, 3, . . . , m, (2.3)

and where the coefficients wi, ci and aij are some parameters,

ci =
i−1∑
j=1

aij , i > 1, c1 = 0,

h = tk+1 − tk and yk is an approximation for the exact value y(tk), k = 1, 2, . . . .
It is convenient to present the coefficients in a form of an array, called the Butcher
table:

0
c2 a21
c3 a31 a32
...

...
...

cm am1 am2 · · · am,m−1
w1 w2 · · · wm−1 wm

If we do not assume that c1 = 0, then we can get more general, implicit m-stage
Runge-Kutta methods in which [2–4,8–10,15,16,25,27]

Kik = f
(
tk + cih, yk + h

m∑
j=1

aijKjk

)
, i = 1, 2, . . . , m, (2.4)

where

ci =
m∑
j=1

aij .

The local truncation error of step k+ 1 for a Runge-Kutta method (explicit and
implicit) of order p can be written in the form

rk+1(h) = ψ(tk, y(tk))hp+1 +O(hp+2) =

= r
(p+1)
k+1 (0)

hp+1

(p+ 1)!
+ r
(p+1)
k+2 (θh)

hp+2

(p+ 2)!
, 0 < θ < 1.

(2.5)
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The function ψ(t, y) = ψ(t, y(t)), occurring in the above equation, depends on
coefficients wi, ci, aij and on partial derivatives of f(t, y) = f(t, y(t)). The form of
ψ(t, y) is very complicated and cannot be written in a general form for an arbitrary p.
But this form is very important from the point of view of interval methods developed.

From the conditions r(l)k+1(0) = 0 (for l = 1, 2, . . . , p) follow the equations for
determining the coefficients wi, ci and aij . Unfortunately, there are fewer equations
than the number of unknowns, and usually we consider some special cases. In order
to reduce the number of equations for coefficients in the case of implicit Runge-Kutta
methods, one can consider semi-implicit, diagonally implicit, symmetric, symplectic
etc. methods.

It can be proved that if pmax(m) denotes the maximum order of the m-stage
explicit Runge–Kutta method, then we have

pmax(m) = m, m = 1, 2, 3, 4,

pmax(m) = m− 1, m = 5, 6, 7,

pmax(m) = m− 2, m = 8, 9,

pmax(m) = leqm− 2, m ­ 10.

In the case of implicit Runge–Kutta methods for each m there exists a method
with maximum order pmax(m) = 2m.

3. Explicit Interval Methods. The basis of interval computations one can
find e.g. in [1, 7, 22–24,26].

Let us denote
• ∆t and ∆y — bounded sets in which the function f(t, y) occurring in (2.1), is

defined, i.e.

∆t = {t ∈ R : 0 ¬ t ¬ a},

∆y = {y = (y1, y2, . . . , yN )T ∈ RN : bi ¬ yi ¬ bi, i = 1, 2, . . . , N},

• F (T, Y ) — an interval extension of f(t, y), where an interval extension of the
function

f : R×RN ⊃ ∆t ×∆y → RN

we call a function
F : IR× IRN ⊃ I∆t × I∆y → IRN

such that
(t, y) ∈ (T, Y ) =⇒ f(t, y) ∈ F (T, Y ),

and where IR and IRN denote the space of real intervals, and the space of N -
dimensional real interval vectors, respectively,
• Ψ(T, Y ) — an interval extension of ψ(t, y) (see (2.5)),
and let us assume that:
• the function F (T, Y ) is defined and continuous for all T ⊂ ∆t and Y ⊂ ∆y,
• the function F (T, Y ) is monotonic with respect to inclusion, i.e.

T1 ⊂ T2 ∧ Y1 ⊂ Y2 =⇒ F (T1, Y1) ⊂ F (T2, Y2).

• for each T ⊂ ∆t and for Y ⊂ ∆y there exists a constant Λ > 0 such that

w(F (T, Y )) ¬ Λ(w(T ) + w(Y )). (3.1)
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where w(A) denotes the width of the interval A (if A = (A1, A2, . . . , AN )T then the
number w(A) is defined by w(A) = maxi=1,2,...,N w(Ai)),
• the function Ψ(T, Y ) is defined for all T ⊂ ∆t and Y ⊂ ∆y,
• the function Ψ(T, Y ) is monotonic with respect to inclusion.
For t0 = 0 and yo ∈ Y (0) = Y0 where the interval Y0 is given, the explicit m-stage

interval method of Runge–Kutta type, introduced by Shokin et al. [14,26], is defined
as follows:

Yk+1 = Yk+h
m∑
i=1

wiKik+(Ψ(Tk, Yk)+[−α, α])hp+1, k = 0, 1, . . . , n−1, (3.2)

where Yk = Y (tk) and Yk depends also on n, Kik = Kik(h).

K1k = F (Tk, Yk),

Kik = F

Tk + cih, Yk + h

i−1∑
j=1

ajiKjk

 , i = 2, 3, . . . , m,
(3.3)

α is a constant such that α = Mh0, where h0 is a given initial step size, p denotes
the order of adequate conventional method, and (see (2.5))∣∣∣∣∣r

(p+2)
k+1 (θh)

(p+ 2)!

∣∣∣∣∣ ¬M, 0 < θ < 1. (3.4)

The step size h of the methods (3.2)–(3.3), which fulfills the condition 0 < h ¬ h0,
is given by

h =
ξ∗m
n
, (3.5)

where ξ∗m = min{ξ0, ξ2, . . . , ξm}, and where for Y0 ⊂ ∆y and y0 ∈ Y0 the numbers
ξ2 > 0, ξ3 > 0, . . . , ξm > 0 are such that

Y0 + ξciF (∆t,∆y) ⊂ ∆y, i = 2, 3, . . . , m,

and the number ξ0 > 0 fulfills the condition

Y0 + ξ0

m∑
i=1

wiF (∆t,∆y) + (Ψ(∆t,∆y) + [−α, α])hp0 ⊂ ∆y.

We divide the interval [0, ξ∗m] into n parts by the points tk = kh (k = 0, 1, . . . , n),
whereas the intervals Tk, which appear in the methods (3.2)–(3.3), are selected in
such a way that

tk = kh ∈ Tk ⊂ [0, ξ∗m].

On the basis of (3.2)–(3.3) we can present interval methods corresponding with
some well-known conventional explicit Runge–Kutta methods:
• the interval version of Euler’s method

Yk+1 = Yk + hF (Tk, Yk) + (Ψ(Tk, Yk) + [−α, α])h2, k = 0, 1, . . . , n− 1, (3.6)

• the interval version of Euler’s improved method

Yk+1 = Yk + hK2k + (Ψ(Tk, Yk) + [−α, α])h3,

K1k = F (Tk, Yk), K2k = F

(
Tk +

h

2
, Yk +

h

2
K1k

)
, k = 0, 1, . . . , n− 1,

(3.7)
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• the interval version of the Euler-Cauchy method

Yk+1 = Yk + h
2 (K1k +K2k) + (Ψ(Tk, Yk) + [−α, α])h3,

K1k = F (Tk, Yk), K2k = F (Tk + h, Yk + hK1k) , k = 0, 1, . . . , n− 1,
(3.8)

• the interval version of the Runge–Kutta method

Yk+1 = Yk + h
6 (K1k + 2K2k + 2K3k +K4k) + (Ψ(Tk, Yk) + [−α, α])h5,

K1k = F (Tk, Yk), K2k = F

(
Tk +

h

2
, Yk +

h

2
K1k

)
,

K3k = F

(
Tk +

h

2
, Yk +

h

2
K2k

)
, K4k = F (Tk + h, Yk + hK3k)

k = 0, 1, . . . , n− 1,

(3.9)

In (3.6) the function Ψ(T, Y ) is an interval extension of the function ψ(t, y)
occurring in (2.5) for p = 1, in (3.7) and (3.8) for p = 2, while in (3.9) for p = 4 (the
function ψ(t, y) is different for the different values of p). Note that in (3.6), (3.7)
and (3.9) the values of α are also different (see the definition of the constant α and
(3.4)).

For the explicit m-stage interval method of Runge–Kutta type we can prove

Theorem 3.1 For the exact solution y(t) of the initial value problem (2.1) we have
y(tk) ∈ Yk (k = 0 , 1, . . . , n) , where Yk are obtained from the method (3.2)–(3.3).

The proof of the above theorem (the mathematical induction with respect to k)
can be found in [5, 17,22].

We also have

Theorem 3.2 If Yk (k = 1, 2, . . . , n) are obtained from (3.2)–(3.3) , then

w(Yk) ¬ Qhp +Rw(Y0) + S max
l=1,2,...,n

w(Tl),

where Q, R and S denote some nonnegative constants.

In the proof, which can be found in [5, 7, 22], we use the following estimation:

w(Kik) ¬ Λ(w(Tk) + w(Yk))
i∑
j=0

µij(hΛ)j .

where µij denote some nonnegative constants and Λ is given by (3.1).

4. Implicit Interval Methods. Let F (T, Y ) and Ψ(T, Y ) be interval exten-
sions of f(t, y) and ψ(t, y), respectively, and fulfill the same assumptions as in Sec-
tion 3. For t0 = 0 and y0 ∈ Y0, where the interval Y0 is given, an implicit m-stage
interval method of Runge–Kutta type, which solves the initial value problem (2.1),
is given by [5, 6, 17,22]

Yk+1 = Yk+h
m∑
i=1

wiKik+(Ψ(Tk, Yk)+[−α, α])hp+1, k = 0, 1, . . . , n−1, (4.1)
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where

Kik = F
(
Tk + cih, Yk + h

m∑
j=1

aijKjk

)
,

a = Mh0, 0 < h ¬ h0,
(4.2)

and where h0 denotes a given number (initial value of step size) and M is given
by (3.4).

To find h we apply the following formulas:

h =
η∗m
n

η∗m = min{η0, η1, . . . , ηm}, (4.3)

where the numbers η1 > 0, η2 > 0, . . . ηm > 0 should be evaluated in such a way
that

Y0 + ηiciF (∆t,∆y) ⊂ ∆y, i = 1, 2, . . . , m,

and the number η0 > 0, should fulfill the following condition:

Y0 + η0

m∑
i=1

wiF (∆t,∆y) + (Ψ(∆t,∆y) + [−α, α])hp0 ⊂ ∆y,

and where Y0 ⊂ ∆y and y0 ∈ Y0 The interval [0, η∗m] is then divided into n parts
by the points tk = kh, where k = 0, 1, . . . , n, and the intervals Tk occurring in the
method should be chosen in such a way that

tk = kh ∈ Tk ⊂ [0, η∗m].

From (4.2) it follows that in each step k we have to solve a nonlinear equation
of the form

X = G(T,X),

where

T ∈ I∆t ⊂ IR, X = (X1, X2, . . . , XN )T ∈ I∆y ⊂ IRN , G : I∆t × I∆y → IRN .

If we assume that G is a contraction mapping, then the well-known fixed-point
theorem implies that the iteration

X(l+1) = G(T,X(l)), l = 0, 1, . . . , (4.4)

is convergent to X∗ i.e. liml→∞X(l) = X∗, for an arbitrary choice of X(0) ∈ I∆y.
Let us recall that G is called a contraction mapping if

d(G(T,X(1)), G(T,X(2))) ¬ βd(X(1), X(2)),

where d is a metric and β < 1 denotes a constant.
For the equation (4.2) the process (4.4) is of the form

K
(l+1)
ik = F

(
Tk + cih, Yk + h

m∑
j=1

aijK
(l)
jk

)
,

i = 1, 2, . . . , m, k = 0, 1, . . . , n− 1, l = 0, 1, . . . ,

(4.5)



A. Marciniak 45

where K(0)ik = F (Tk + cih, Yk) The process (4.5) may be modified to the following
form:

K
(l+1)
ik = F

[
Tk + cih, Yk + h

(i−1∑
j=1

aijK
(l+1)
jk +

m∑
j=1

aijK
(l)
jk

)]
, (4.6)

which should reduce the number of iterations.
Interval methods corresponding with some well-known conventional implicit Runge–

Kutta methods are as follows:
• the interval version of the implicit midpoint rule

Yk+1 = Yk + hK1k + (Ψ(Tk, Yk) + [−α, α])h3,

K1k = F

(
Tk +

h

2
, Yk +

h

2
K1k

)
, k = 0, 1, . . . , n− 1,

(4.7)

• the interval version of the Hammer–Hollingsworth method

Yk+1 = Yk + h(K1k +K2k) + (Ψ(Tk, Yk) + [−α, α])h5,

K1k = F

[
Tk +

(
1
2
∓
√

3
6

)
h, Yk +

h

4
K1k +

(
1
4
∓
√

3
6

)
hK2k

]
,

K2k = F

[
Tk +

(
1
2
±
√

3
6

)
h, Yk +

(
1
4
±
√

3
6

)
hK1k +

h

4
K2k

]
,

k = 0, 1, . . . , n− 1,

(4.8)

• the interval version of the Butcher semi-implicit method

Yk+1 = Yk +
h

6
(K1k + 4K2k +K3k) + (Ψ(Tk, Yk) + [−α, α])h5,

K1k = F (Tk, Yk), K2k = F

[
Tk +

h

2
, Yk +

h

4
(K1k +K2k)

]
,

K3k = F (Tk, Yk + hK2k), k = 0, 1, . . . , n− 1,

(4.9)

• the interval versions of Alexander’s diagonally implicit methods

Yk+1 = Yk + h

[
1

8ζ2
K1k +

(
1− 1

4ζ2

)
K2k +

1
8ζ2

K3k

]
+ (Ψ(Tk, Yk) + [−α, α])h5,

K1k = F

[
Tk +

(
1
2

+

√
3

3
ζ

)
h, Yk +

(
1
2

+

√
3

3
ζ

)
hK1k

]
,

K2k = F

[
Tk +

h

2
, Yk −

√
3

3
ζhK1k +

(
1
2

+

√
3

3
ζ

)
hK2k

]
,

K3k = F

[
Tk +

(
1
2
−
√

3
3
ζ

)
h,

Yk +

(
1
2

+
2
√

3
3
ζ

)
hK1k −

(
1
2

+
4
√

3
3
ζ

)
hK2k +

(
1
2

+

√
3

3
ζ

)
hK3k

]
,

(4.10)
where k = 0, 1, . . . , n = 1, and ζ = cos 10◦, − cos 50◦ or − cos 70◦.

In each of the above formulas the form of Ψ(T, Y ) depends on the order p and
the number of stages m.

As in the case of the explicit interval methods we can prove the following
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Theorem 4.1 For the exact solution y(t) of the initial value problem (2.1) we have
y(tk) ∈ Yk (k = 0, 1, . . . , n), where Yk are obtained from the method (4.1)–(4.2).

In order to estimate the widths of interval solutions obtained by the implicit
methods we have to consider these methods for each m separately. It follows from
the fact that for Kik from (4.2) and properties of the function F we get

w(Kik) ¬ Λ[w(Tk) + w(Yk)] + hΛ
m∑
j=1

|aij |w(Kjk),

where i = 1 for m = 1, i = 1, 2 for m = 2, etc., Λ is given by (3.1), and it is
impossible to write a general solution of these inequalities (with respect to w(Kik))
for an arbitrary value of m.

For m = 1 and m = 2 we have

Theorem 4.2 If Yk (k = 1, 2, . . . , n) are obtained from (4.1)–(4.2) with m = 1,
then for h0 < 2/Λ we have

w(Yk) ¬ Q1h2 +R1w(Y0) + S1 max
l=1,2,...,n

w(Tl),

where Q1, R1, S1 denote some nonnegative constants.

Theorem 4.3 If Yk (k = 1, 2, . . . , n) are obtained on the basis of the method
(4.1)–(4.2) with m = 2, then for h0 such that

h0 ¬ min
{

1,
1

Λ|a11|
,

1
Λ|a22|

,
1

Λ(|a11|+ |a22|) + Λ2|a12||a21|
,

}
we have

w(Yk) ¬ Q2hp +R2w(Y0) + S2 max
l=1,2,...,n

w(Tl),

where p ¬ 4 and Q2, R2, S2 denote some nonnegative constants.

The proofs of the above theorems one can find in [17, 22]. In [5] and [22] there
are also similar theorems for m = 3 and m = 4. In [18] and [22] it is presented
an algorithm to find the maximum integration intervals in floating-point interval
arithmetic for both, explicit and implicit interval methods of Runge–Kutta types.

5. Numerical Examples. Below we present some numerical experiments that
confirm the theoretical justifications given in the previous sections. All calculations
have been performed using the unit called IntervalArithmetic written in the Delphi
Pascal programming language and presented in [22].

Example 5.1 Let us solve, by a number of interval Runge–Kutta type methods,
the initial value problem

y′ = 0.5y, y(0) = 1. (5.1)

This problem has the exact solution of the form y = exp(0.5t), from which it follows
that y(1.0) ≈ 1.648721270700128.
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Let us consider the interval explicit methods (3.6), (3.8), (3.9), and implicit ones
(4.7), (4.8) and (4.9). Let us assume that in each of these methods the input data
are as follows:

∆t = [0, 10], ∆y = [0.9, 149], h0 = 0.001, T0 = [0, 0], Y0 = [1, 1],

where x denotes the largest machine number less or equal to x (similarly, further
x will denote the smallest machine number greater or equal to x). The maximum
integration interval, i.e. the value of ξ∗m given by (3.5) or the value of η∗m given by
(4.3), is approximately equal to 1.985. Taking [0, 1] as the integration interval and
partitioning this interval into n = 2000 parts, we have h = 0.0005. The obtained
interval results at

T = [9.9999999999999999E−0001, 1.0000000000000001E+0000]

are presented in Table 5.1. In implicit interval methods considered we assumed the
accuracy 10−18 in both iterations (4.5) and (4.6), and we have obtained the same
results (in each method the number of iterations was equal to 5 or 6).

Table 5.1: The interval solutions of the problem (5.1)
Method Y Width of Y
(3.6) [1.6487210675225932E+0000, 1.6487214567067031E+0000] ≈3.89·10−7

(3.8) [1.6487212706768890E+0000, 1.6487212707222942E+0000] ≈4.54·10−11

(3.9) [1.6487212707001280E+0000, 1.6487212707001283E+0000] ≈2.78·10−16

(4.7) [1.6487212706784987E+0000, 1.6487212707239042E+0000 ≈4.54·10−11

(4.8) [1.6487212707001280E+0000, 1.6487212707001286E+0000] ≈5.61·10−16

(4.9) [1.6487212707001277E+0000, 1.6487212707001283E+0000] ≈5.60·10−16

In Table 5.2 we present the solutions obtained by conventional methods corres-
ponding to the interval ones. In implicit methods we assumed the accuracy 10−18.
One can observe that only the fourth order methods of Runge–Kutta, Hammer-
Hollingsworth and Butcher give solutions that belongs to the interval solutions ob-
tained.

Table 5.2: The solutions of the problem (5.1) at t = 1.0 obtained by conventional
methods

Method Order y Error
Euler’s 1 1.6486182460106884E+0000 ≈1.03·10−4

Euler-Cauchy 2 1.6487212621146481E+0000 ≈8.59·10−9

Runge–Kutta 4 1.6487212707001281E+0000 ≈3.69·10−17

Implicit midpoint rule 2 1.6487212749936732E+0000 ≈4.29·10−9

Hammer-Hollingsworth 4 1.6487212707001281E+0000 ≈1.53·10−17

Butcher’s semi-implicit 4 1.6487212707001282E+0000 ≈4.34·10−18

Example 5.2 Let us take into account the two-dimensional problem

dyl
dt

= yl+2, l = 1, 2,
dy3
dt

= −y1
r3
,

dy4
dt

= −y2, r =
√
y21 + y22 ,

y1(0) = 1, y2(0) = 0, y3(0) = 0, y4(0) = 1,
(5.2)
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the exact solution of which is given by

y1 = cos t, y2 = sin t, y3 = − sin t, y4 = cos t.

Let us try to solve this problem by the following explicit interval methods:
• (3.8), i.e. by the interval version of the Euler–Cauchy method which is a two-

stage method (m = 2) and of the second order (p = 2),
• (3.9), i.e. by the interval version of the Runge–Kutta method (m = p = 4),

and by the two-stage (m = 2) implicit interval method of the Hammer-Hollingsworth
(p = 4).

Let us assume that

∆t = [0, 1], ∆y1 −∆y4 = [0.8, 1.2], ∆y2 = [−0.2, 0.2],

T0 = [0, 0], Y1(0) = Y4(0) = [1, 1], Y2(0) = Y3(0) = [0, 0].

For these intervals and h0 = 0.01 we obtain for each of the method the maximum
integration interval approximately equal to 0.085. Taking [0, 0.05] as the integration
interval and splitting this interval into 10 parts, we get at

T = [4.9999999999999999E−0002, 5.0000000000000000E−0002]

the interval solutions presented in Table 5.3. For the implicit method (4.8) in the
iteration (4.6) we assumed the accuracy 10−18 and we obtained the results after 8–9
iterations. It should be noted that in each case the exact solution

y1(0.05) = y4(0.05) ≈ 0.998750260394966,
y2(0.05) = −y3(0.05) ≈ 0.049979169270678

is included in the interval solution obtained.

Table 5.3: The interval solutions of the problem (5.2)

Method Ys Width of Ys
(3.8) Y1 = [ 9.9875024733284893E-0001, 9.9875027293211718E-0001] ≈ 2.56 · 10−8

Y2 = [ 4.9979156577987591E−0002, 4.9979182150246763E−0002] ≈ 2.56 · 10−8

Y3 = [−4.9979183082789349E−0002,−4.9979155738949369E−0002] ≈ 2.73 · 10−8

Y4 = [ 9.9875025200135706E−0001, 9.9875027763381159E−0001] ≈ 2.56 · 10−8

(3.9) Y1 = [ 9.9875026039496204E−0001, 9.9875026039496845E−0001] ≈ 6.40 · 10−15

Y2 = = [ 4.9979169270675078E−0002, 4.9979169270681472E−0002] ≈ 6.39 · 10−15

Y3 = [−4.9979169270681769E−0002,−4.9979169270674931E−0002] ≈ 6.84 · 10−15

Y4 = [ 9.9875026039496203E−0001, 9.9875026039496845E−0001] ≈ 6.41 · 10−15

(4.8) Y1 = [ 9.9875026039496244E−0001, 9.9875026039496886E−0001] ≈ 6.40 · 10−15

Y2 = [ 4.9979169270675104E−0002, 4.9979169270681498E−0002] ≈ 6.39 · 10−15

Y3 = [−4.9979169270681762E−0002,−4.9979169270674925E−0002] ≈ 6.84 · 10−15

Y4 = [ 9.9875026039496244E−0001, 9.9875026039496886E−0001] ≈ 6.41 · 10−15

In the problem considered the maximum integration intervals are very small and
are approximately equal to merely 1.35% of the orbit period. Of course, we can
take the intervals obtained at the last time interval and start any of the methods
again. But a better approach is to take the interval solutions obtained (by any
of these methods) as starting intervals for multistep interval algorithms (see e.g.
[11–13,19–22]).
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Example 5.3 Finally, let us consider the motion of a simple pendulum given by
the initial value problem

y′1 = − g
L
y2, y′2 = y1

y1(0) = 0, y2(0) = ϕ0,
(5.3)

where g is the gravitational acceleration at the Earth’s surface, L denotes the pen-
dulum length and ϕ0 is an initial angle.

Let us try to solve it by the interval version of Alexander’s diagonally implicit
method with ζ = − cos 50◦ (see (4.10)). Assuming L = 1 and

∆t = [0, 2], ∆y1 = [−2.5, 2.5], ∆y2 = [−1, 1], h0 = 0.01,

T0 = [0, 0], Y1(0) = [0, 0], Y2(0) = [0.52359877559829887, 0.52359877559829888],

and taking the intervals

[9.80665, 9.80665] and [−0.642787609686539327,−0.642787609686539326]

to represent the gravitational acceleration g at Earth’s surface and the value of ζ,
respectively, we obtained the maximum integration interval approximately equal to
0.19. This means that the method considered could be applied to about 10% of the
period. Taking the iteration (4.6) with accuracy 10−18 for finding Kik (i = 1, 2,
3), the interval [0, 0.1] as the integration interval and splitting it into 20 parts, we
obtained the interval solution shown in Table 5.4. The number of iterations in the
process (4.6) was equal to 8 and, of course, the exact solution belongs to the intervals
obtained.

Table 5.4: The interval solution of the problem (5.3) obtained by the method (4.10)
T Ys Width of Ys

[4.9999999999999999E−0002,
5.0000000000000001E−0002]

Y 1 = [−2.5568972570054137E−0001,
−2.5568972569288790E−0001] ≈ 7.65 · 10−12

Y2 = [5.1719344066940931E−0001,
5.1719344067582207E−0001] ≈ 6.41 · 10−12

[9.9999999999999999E−0002,
1.0000000000000001E−0001]

Y 1 = [−5.0512359899636122E−0001,
−5.0512359897780303E−0001] ≈ 1.86 · 10−12

Y2 = [4.9813415251025603E−0001,
4.9813415252354455E−0001] ≈ 1.33 · 10−12

All the examples presented in this section, like the others performed by the
author, confirm the theoretical studies developed in the previous sections. Explicit
and implicit interval methods of Runge–Kutta type can be used to find interval
solutions (in floating-point interval arithmetic) for one- and multidimensional prob-
lems. In each case the exact solution belongs to the interval solutions obtained.

It is obvious that higher order methods give interval solutions with smaller
widths. One should consider implicit interval methods which with small number
of stages give solutions with greater order, e.g. the interval version of the Hammer–
Hollingworth method (4.8).
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Przegląd metod przedziałowych typu Rungego-Kutty

Streszczenie. W artykule przedstawiono jawne i niejawne metody przedziałowe
typu Rungego-Kutty. Metody takie zawierają w sobie błędy metod, co oznacza, że
ten rodzaj błędów jest uwzględniony w otrzymywanych rozwiązaniach przedziało-
wych. Stosując te metody do rozwiązywania zagadnienia początkowego w zmien-
nopozycyjnej arytmetyce przedziałowej otrzymujemy zatem rozwiązania w postaci
przedziałów, które zawierają wszystkie możliwe błędy numeryczne. W artykule przed-
stawiono także przykłady numeryczne.
Słowa kluczowe: metody przedziałowe dla równań różniczkowych zwyczajnych,
metody Rungego-Kutty, zmiennopozycyjna arytmetyka przedziałowa
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