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Abstract: Much of constructivist pedagogy focuses on moving past direct
instruction or “chalk and talk” to promote active construction of know-
ledge or teaching for understanding. In this article a group of teacher-
researchers conducts two classroom investigations. The first is epistemo-
logical (structural) in nature, and the second is functional. In the first
investigation, a student’s efforts to employ her conceptual knowledge to
guide her actions is analyzed through the lens of a conceptual frame-
work based upon the integration of creativity theory due to Koestler and
learning theory due to Piaget. The second investigation focuses on the
functional aspect of a teacher’s role in promoting the conceptual based
solution activity observed in the first investigation. This functional effort
employs visual concepts to direct student actions and is at first ineffecti-
ve however, later with more transparent structure it is successful. These
results suggest student efforts to create action schema and internalize
structure through conceptual visuals will depend upon the cognitive gap
(ZPD) between the concepts and the coordination involved with the as-
sociated actions.

Introduction

This article documents two investigations (cycles) by a team of teacher-resear-
chers. In the first investigation we analyze a student’s use of conceptual know-

Key words: teaching experiment, creativity, bisociation, abduction, reflective abstraction,
action schema, constructive generalization.



6 WILLIAM BAKER, EDME SOHO, OLEN DiAs, BRONISLAW CZARNOCHA

ledge to construct an action schema through a theoretical framework con-
structed by synthesizing Koestler’s mechanism of creativity ‘bisociation’ and
Piaget’s mechanism of learning ‘reflective abstraction.” In the second, an in-
structor promotes solution activity based upon the reasoning observed in the
first cycle. The first section recalls how difficult the transition from direct
instruction to teaching for understanding can be. The second section outli-
nes arguments by mathematical educators that creativity research should be
extended from the genius view to ordinary students and our argument for a
further extension to underserved students. The theoretical framework reviews
Glasersfeld’s (1995) understanding of an action schema, used to describe so-
lution activity when a student recognizes a situation and associates it with a
relevant action. Then Piaget & Garcia’s (2001) notion of ‘reflective abstrac-
tion’ is explained as the mechanism by which action schemas are modified to
accommodate new problem situations. In Glasersfeld’s (1998) work, Piaget’s
notion of creating an actions schema through reflection upon and abstraction
of an existing schema is extended to include conceptual knowledge. Glasers-
feld based this extension on Peirce’s (1931-1935) notion of ‘abduction.” In our
conceptual framework Koestler’s mechanism of ‘bisociation’ is integrated with
Glasersfeld’s work as a setting for which conceptual knowledge and its associa-
ted actions are abstracted to guide student solution activity and thus create
an action schema. The research hypotheses focus on the relationship betwe-
en concepts and the construction of an action schema, how bisociation can
be used to describe this process and how visual representations of concepts
can be used to guide schema development. The methodology contains clas-
sroom transcripts of these two investigations followed by the research team’s
discussion and analysis.

Understanding

Bruner (1990) states that the cognitive revolution had as its aim, “...to di-
scover and to describe formally the meanings that human beings created out
of their encounters with the world, and then to propose hypotheses about
what meaning making processes were implicated” (p. 2). Hiebert and Carpen-
ter (1992) comment that, although the search for how we create meaning out
of mathematics has been widely studied, a useful description for this process
remains elusive:

The goal of many research and implementation efforts in mathematics
education has been to promote learning with understanding. But achie-
ving this goal has been like searching for the Holy Grail (p. 66).
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The search for understanding has two components: a functional and structural
perspective. “The functional view focuses on the activity within the classro-
om” (Hiebert et al., 1996, p. 16). On the other hand, the structural-cognitive
view is focused upon relationships between knowledge: “understanding means
representing and organizing knowledge internally in ways that highlight rela-
tionship between pieces of information” (Hiebert et al., 1996, p. 17).

The word structural is used by educators who believe that understanding is
achieved when new information is assimilated or accommodated into an indi-
vidual’s schema, Hiebert & Carpenter (1992), Skemp (1987) and Glasersfeld
(1995). Seeger (2011) notes that this structural view raises the critical qu-
estions: “How do we relate things? How do we relate to things we know and
how do we relate old and new things?” (p. 215). Seeger (2011) asserts that
for Hiebert et al. (1997) the answer was straightforward: we relate through
reflecting upon and communicating our knowledge. However, Seeger (2011)
concludes that although this answer “...has an intuitive persuasiveness, it is
alarmingly incomplete...” (p. 216).

The search for understanding is central to the constructivist debate about
the teacher’s role in promoting a creative learning environment. As noted by
Simon (2013):

Traditionally teaching and curriculum development were based upon sho-
wing and telling students what they were to learn. The assumption, often
implicit, was that motivated students would take in the knowledge shared
by the teacher and incorporate it into their mathematical knowledge. . ..
Although this approach is still the most frequently used, it has been di-
scredited as a primary approach to mathematics instruction because the
results have not been good. With the loss of confidence in direct instruc-
tion came a loss in clarity in the teacher’s role in promoting student
learning, (p. 96).

Dubinsky (1991) eloquently expresses a widely held constructivist position on
educational pedagogy that a focus on procedural skills and passing exams has
limited interest in mathematics:

Whatever is the mechanism... that moves students to make cognitive
construction, to learn, it seems to us to be a very natural human drive. ...
We admit that this suggestion is inconsistent with the experience of most
mathematics teachers, especially at the post-secondary level, where stu-
dents, other than those with obvious talent in mathematics, do not seem
to be interested at all. Our conjecture is that this is due to the overall
approach in the traditional classroom, where the goal, as presented and
defended by the teacher, is for the student to develop skills in computa-
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tional procedures, to display on examinations, and to get a good grade
(p. 117).

In this article we investigate student use of conceptual knowledge to guide their
actions and concept based instruction to promote conceptual based or ‘rela-
tional” rather than procedural or ‘instrumental’ understanding (Skemp, 1987).
In terms of the dichotomy between procedural and conceptual knowledge we
essentially accept the ‘Educational Approach’ that states, conceptual know-
ledge is necessary for and enables use of procedures (Haapasalo & Kadijevich
2000). Our premise is that conceptual knowledge is essential for understanding
of one’s actions. More specifically, while one may learn procedural knowledge
from rote memorization, conceptual knowledge is what gives meaning to one’s
actions and understanding of mathematical structure.

Creativity

In this section we review arguments that educators have made for the intro-
duction of creativity research within the classroom with gifted and non-gifted
students and the extension of this argument made in Czarnocha at al, (2016)
and Prabhu (2016) that it is equally important to inspire creativity with non-
gifted and underserved students.

Creativity: Genius View

Koestler (1964) analyses the creative experience of many eminent mathemati-
cians during the creative leap of insight between the gestalt periods of incuba-
tion and illumination often referred to as ‘Aha’ or ‘Eureka’ moments. Koestler
considers two essential characteristics of creativity: first, an affective compo-
nent in which the individual experiences an aesthetical connection to a higher
self-transcending nature, and second, a cognitive component, the synthesis
(bisociation) of two frames or references previously considered independent
or unrelated. Liljedahl (2013) comments that a result of Koestler’s characte-
rization of creativity is the so called genius view, that creativity is limited
to “extraordinary individuals” (p. 255). Silver (1997) was an early proponent
that the so called genius-view of creativity must be adapted to shift its focus
to more pragmatic efforts in the mathematics classroom. Efforts to integrate
creativity research in the classroom often quote Hadamard (1945), “Between
the work of the student who tries to solve a problem in geometry or algebra
and a work of invention, one can say that there is only the difference of de-
gree, the difference of a level, both works being of similar nature” (p. 104).
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Leikin (2009) reviews several characterizations of an individual’s propensity
for creativity. One pragmatic approach makes a distinction between conver-
gent thinkers (those who can only focus on one possible solution strategy) and
divergent thinkers. Another characterization of creativity is based upon gifted
students’ capacity for flexibility, fluency, novelty and elaboration.

Creativity: Ordinary and Underserved Students

Shriki (2011) suggests that creativity-enriched instruction should be a part of
all students’ learning experience:

It is widely agreed that mathematics students of all levels should be
exposed to thinking creatively and flexibly about mathematical concepts
and ideas. To that end, teachers must be able to design and implement
learning environments that support the development of mathematical
creativity (p. 73).

Eugenio Maria de Hostos Community College was established in the South
Bronx as an inner city (2 year) college in the City University of New York
(CUNY) system to meet the educational needs of people who historically have
been excluded from higher education. The college student profile indicates that
the student body is composed of predominately female and minority students
for whom poverty is a real concern. The effect of poverty on completion of a
High School (HS) degree is studied in (Kewal Ramani et al., 2011) who note
that low income children are five times more likely to drop out of High School as
high income children. The negative effects of poverty and lack of family support
for these students frequently continues into their college experience. Santiago
& Stettne (June 2013) report that Hispanic and other minority students in the
U.S. that do graduate from High School frequently attend local community
college, yet their graduation rate in community colleges is a real concern.
One academic barrier to underserved students is placement exams for college
readiness in mathematics and the remedial non-credit courses they must pass
if they fail these placement exams. As noted by Hacker (2012) the graduation
rate for students placed into remedial course is very low. The U.S is not alone
in this issue, a report from PISA 2012 (PISA In Focus, 36, February 2014)
documents the difficulties that the European Union as well as some Asian
countries have with mathematics, and the negative effects that a low socio-
economic level have on the results of the PISA-exam.

Wood et al. (2006) insightfully characterize the attitude that community
college students often demonstrate: mathematics is all about random rules and
that they should be passive as the expert teacher explains these rules. These
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authors consider the lack of engagement with mathematics has led them to a
state of ‘learned helplessness.’

Prabhu’s insight (Prabhu & Czarnocha, 2014) and (Czarnocha et al., 2016)
is that students who state, ‘I stuck at math’ are not necessarily underserved
but rather have had limited exposure to the positive affect of accessing their
own creativity. For students with low self confidence engagement begins with
recognition of a relevant action for a problem situation. However, the passive
affect of such students often means they cannot or will not suggest any such
action even when prodded by the instructor. The thesis of this article is that
in such a situation creativity may begin when students access their conceptual
knowledge to give meaning to appropriate actions.

Theoretical Framework

Lester (2010) credits Eisenhart (1991) for the notion of a ‘conceptual frame-
work’ which he defines as:

An argument that the concepts chosen for investigation, and any antici-
pated relationships between them, will be appropriate and useful given
the research problem under investigation. Like theoretical frameworks,
concetual frameworks are based on previous research, but conceptual
frameworks are built from an array of current and possibly far-ranging
sources (p. 72).

This analysis of students’ attempt to create meaning for themselves of ma-
thematics takes place within a framework that blends creativity research and
theories of learning. In particular, we integrate the work of Koestler and his
mechanism of creativity, ‘bisociation’ with learning theories of Piaget and his
mechanism of learning, ‘reflective abstraction.” The work of Koestler assists
in the effort to ‘democratize creativity,” i.e. to apply creativity in the general
classroom environment, because it provides a precise mechanism in which to
analyse any student’s attempt to give meaning to solution activity based upon
their existing conceptual knowledge and thus realize Hadamard’s (1945) view
that the creativity for the gifted and struggling student is similar in nature.

Mechanism of Creativity: Bisociation

Koestler (1964) describes the mechanism of creativity in terms of a code and
a matriz, or a frame of reference: I use the term matriz to denote any ability,
habit, or skill, any pattern of ordered behaviour governed by a code or fixed
rules (p. 38). In Koestler’s framework the code of a matrix represents the rules
that dictate how and why one applies these actions:
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The matrizis the pattern before you, representing the ensemble of permis-
sible moves. The code which governs the matriz. .. is the fixed invariable
factor in a skill or habit... The two words do not refer to different enti-
ties; they refer to different aspects of the same activity (Koestler, 1964,
p. 40).

For Koestler (1964), bisociation represents a “spontaneous flash of insight. . .
which connects previously unconnected matrices of experience” (p. 45). Biso-
ciation occurs when the concepts in a problem situation are given meaning
by an association to a plane of reference that was previously unconnected.
In this process the concepts exist simultaneously in both frames of reference
and a new matrix-schema is created when the codes of the existing matrices
synthesize to form a new code. A phenomena Koestler (1964) refers to as the
discovery of ‘a hidden analogy.’

Vygotsky: Instruction and Concept Development

Vygotsky (1986) focuses on the development of structural or scientific con-
cepts, such as those of algebra which are generalized from ’spontaneous’ arith-
metical concepts. Vygotsky like Hiebert & Carpenter (1992) considers concept
development as inherently structural. Thus for Vygotsky, conscious scientific
concepts are distinct from intuitive spontaneous concepts because they are
inherently embedded in a schema or hierarchy of concepts: “...a concept can
become subject to conscious control only when it is part of a system” (Vygot-
sky, 1986, p. 171). In contrast to Koestler, Vygotsky has a strong focus on the
role of education in concept development. This is due in part to his observation
that when presented with assistance, some students, “could with cooperation
solve problems. .. while other could not...” (Vygotsky, 1986, p. 187). Vygot-
sky labels this phenomena the child’s Zone of Prozimal Development (ZPD),
defining it as “the discrepancy between the child’s mental age and the level he
reaches in solving problems with assistance” (p. 187). The role of education in
Vygotsky’s framework is to assist students to reach the upper limits of their
7ZPD.

Piaget: Action Schema Development

As noted by Piaget and Campbell (2001) Piaget’s research and theories con-
cern the way cognitive structures are developed and used to guide one’s actions
during problem-solving:

Knowledge is fundamentally operative, it is knowledge of what to do with
something under certain circumstances. .. For Piaget operative knowled-



12 WiLLiaAM BAKER, EDME SOHO, OLEN DiAs, BRONISLAW CZARNOCHA

ge consists of cognitive structures... If knowledge consists of cognitive
structures, then development comes down to what structures do. .. (p. 2).

The structure or schema that develops during problem-solving is described by
Glasersfeld (1995) in his description of an action schema which contains three
parts or steps:

1. Recognition of a certain situation. ..
2. Association of a specific activity with that kind of item. ..

3. Expectation of a certain result (p. 65).

In our conceptual framework Koestler’s notion of matrix is similar to the
Glasersfeld-Piaget notion of an action schema as both contain all actions an
individual associates with a given problem situation, as well as the rules or
expectations of what these actions accomplish.

Piaget employs the term assimilation to describe when an individual reco-
gnizes a situation and associates an activity that obtains the expected result.
For Piaget a prerequisite for cognitive change is the failure of one’s existing
schema to process the situation in which case ‘accommodation’ or restructu-
ring of one’s schemes restores the homeostasis between the individual’s internal
representation and the external situation, i.e. equilibrium, Gallaher and Reid
(2002).

Piaget: Reflective Abstraction

Piaget & Garcia (1989) describe the mechanism of reflective abstraction as a
two-step process involving reflection and generalization of one’s actions and
operations. The first step is a projection of what one knows on a lower level
into the new problem situation that cannot be assimilated into one’s existing
schema, and the second step involves coordination with the problem informa-
tion to modify the original schema into a new one that can accommodate the
situation:

First, projection essentially establishes correspondences at the next hi-
gher level, associating the old contents that can be integrated within the
initial structure but permitting it to be generalized. Second, these first
organizations also lead to the discovery of related contents, which may
not be directly assimilated into the earlier structure. This makes it ne-
cessary to transform that structure by means of a constructive process
until it becomes integrated within a larger, and therefore partially no-
vel, structure. This mode of construction, by reflective abstraction and
constructive generalization, repeats itself indefinitely, at each successive
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level so that cognitive development is the result of the interaction of a
single mechanism (pp. 2-3).

Simon et al. (2004) comment that although Piaget’s notion of reflective abs-
traction was a significant step in describing accommodation of new knowledge
and schema development, mathematics pedagogy has not benefited Piaget’s
contribution due to a lack of clarity about how it applies to learning in the
classroom:

The postulation of reflective abstraction was a significant contribution. . .
describing the kind of process that can derive more advanced structures
from those at a lower level... Recent efforts to ground pedagogy in Pia-
getian theory have been hampered, in our estimation, by the lack of a
sufficiently elaborated mechanism for explaining mathematics conceptual
development (p. 314).

Dubinsky: Process/Object Duality — APOS

Dubinsky (1991) studies reflective abstraction through the lens of Piaget’s
notion that concept development involves a cycle of actions upon concepts,
and reflection upon actions to form processes and ultimately new concepts.
Tall et al. (1999) note that although authors such as Piaget and Davis (1984)
had earlier expressed the process/object duality of concept development, the
work of Dubinsky has greatly increased interest in this phenomenon. Dubinsky
describes specific forms of reflective abstraction: interiorization, coordination,
generalization, reversibility and encapsulation. Interiorization involves the in-
ternalization of processes or actions, while reversibility involves reflection upon
the inverse of a known process. One important contribution of the work of Du-
binsky is that specific types of reflective abstraction are named and spelled out.
As noted by Arnon et al. (2014), this work has resulted in the process/object
model referred to as APOS or the Action-Process-Object-Schema model of
concept development:

According to Piaget and adopted by APOS theory, a concept is first
conceived as an action, that is, as an externally directed transformation of
a previously conceived object or objects. An action is external in the sense
that each step of the transformation needs to be performed explicitly and
guided by external instruction additionally, each step prompts the next,

that is the steps of the action cannot be imagined and none can be
skipped (p. 19).

Arnon et al. (2013) describe a solver in the action conception stage learning
to evaluate function variables as an individual, who “...can do little more
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than substitute for the variable and manipulate it... the expression acts as
an external cue” (p. 19). The focus on concept development in APOS as the
internalization of actions into processes and eventual transformation into con-
cepts is an important contribution. Asiala et al. (1997) point out the actions
of APOS are meant to be similar to action schema: “...what we are calling
actions are closely related to Piaget’s action schemes...” (p. 41).

If schema development can only begin with reflection upon actions the
question that arises is, how does a solver who fails to associate an action
with a situation proceed without external instruction-command? Glasersfeld
(1998) grapples with this question in his analysis of the learning paradox
expressed as, how does an individual form a higher order schema when there
is not appropriate lower order schema to modify? In this situation Glasersfled
extends reflection and abstraction of existing schema to conceptual knowledge.

Reflective Abstraction and Abduction

Von Glasersfeld (1998) and Norton (2009) review the work of Charles Peirce
(1931-1935) who studied creativity and differentiates between induction from
a plurality of data, deduction that arises from an established rule, and ab-
duction — references based upon a conjecture that explains a given problem
situation. Von Glasersfeld describes abductive reasoning as a three-step pro-
cess: C is observed and does not assimilate into our schemes — if A is true this
would explain C — thus we conjecture A. Von Glasersfeld (1998) explains the
abductive process as selecting what relevant conception in phenomena C one
considers to be analogous to something in our experience that we can gene-
ralize to form hypothesis A that explains C. Norton (2009) describes Peirce’s
notion of abduction as the process of problem-solving through the creation of
hypotheses, “...a kind of reverse deduction in which one adopts a general rule
in order to explain a surprising observation” (p. 5). Norton (2009) suggests
that abduction can be used “to address the question of how students select
particular operations to use in novel problem situations...” (p. 4). He further
suggests that Peirce’s notion of creative reasoning by abduction readily fits
within Piaget’s theory of genetic epistemology because, in order to perform
an action on an object there must first be an assumed rule or principle that
suggests to the solver that the action is somehow appropriate.

The Conceptual Framework

In this section we highlight for the reader those aspects of the theoretical
review that we have connected to form our conceptual framework. Dubin-
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sky (1991) and Glasersfeld (1995) both review Piaget’s ‘reflective abstraction’
which occurs due to reflection upon internal mental actions as distinct from
empirical abstraction; the inductive abstraction of natural phenomena. The
view that reflection upon procedural actions leads to internalized processes
and ultimately new concepts is characteristic of process/object models. Ha-
apasalo & Kadijevich (2000) refer to the view that concepts develop is a result
of reflection upon procedures as the genetic view and suggest process/object
theories such as APOS support this view. Educators such as: Gray et al., 1999,
Gilmore & Inglis, 2008, Tall, 1999, and Gray & Tall, 2001 have criticized this
genetic view as too narrow, making the claim that reflection occurs on both
concepts and actions. Gallagher & Reid (2002) place reflective abstraction wi-
thin the context of an effort by Piaget to explain how an individual transforms
or accommodates lower level schemes into more advanced schemes. Thus Pia-
get certainly meant for reflective abstraction to be on schemes, which we take
to include both concepts and their associated actions. Furthermore, as we have
pointed out, Asiala et al. (1997) interpret the action conception of APOS to
include reflection upon the entire action schemes not only procedural actions.

One question that arises is the relationship between conceptual schemes
(typically viewed as networks of concepts connected by relationships in a hie-
rarchical structure) and action schema as portrayed by Glasersfeld. We con-
sider that Koestler matrix covers both types of schemes and note that a tho-
rough study of this question would connect the often separate branches of
mathematics education research, concept development and problem solving.

Research Hypothesis for Investigation: One method of action schema for-
mation occurs when solvers creates meaning through bisociation of their con-
ceptual knowledge with problem situation. During this bisociative process the
code of the conceptual knowledge is abstracted (abducted) and coordinated
with the problem information to guide solution activity.

Educational Considerations

Dubinsky (1991) eloquently relates his thoughts on the traditional method of
instruction that employs repeated examples to encourage students to interna-
lize the underlying process:

It is an article of faith with most mathematics instructors that, ‘lots of
examples’ must be an integral part of any instructional treatment... We
suggest, however, that working with examples may not help very much
with the construction of concepts. Indeed ... and it is a major part of our
theory that understanding mathematical ideas come from sources other
than looking at many examples and ‘abstracting their common features’,
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which is what happens if there is only empirical abstraction. Something
more is needed and we suggest it is precisely the constructive aspects of
reflective abstraction. .. (pp. 118-119).

Dubinsky’s argument is that when students view examples as external — the
process of abstracting a common feature is akin to empirical abstraction, i.e.
inductive reasoning. However, when the student begins to internalize the pro-
cesses and relates it to her schema then accommodation and learning can take
place. One related pedagogical question that arises is how effective a concep-
tual based lesson is compared to doing repeated examples. Simon et al. (2004)
note that with repeated exercises learning the activity sequence is the goal
of the instruction. In a conceptual based lesson plan this is not the case; the
activity sequence has as its goal reflection upon concepts and associated acti-
vities the student can readily relate to in order to give meaning to algebraic
structure.

Research Question: Can a conceptual based lesson supported by visuals
assist students, guide actions, and internalize this process in an effort to give
meaning to the concepts of the algebraic structure?

Methodology

We now turn our attention to the mathematics classroom to investigate and
apply our conceptual framework. Thus, like Cobb’s, (2011) our effort begins
with direct observation of the classroom experience:

First and foremost, I continue to believe in the importance of sustained,
direct engagement with the phenomena under investigation, be it young
children’s understanding of measurement, the collective mathematical
learning of the teacher and students in a classroom, or the learning of
a professional teaching community (p. 11).

Acting simultaneously as both researchers and teachers, the collaborative
effort of these authors is an example of teaching research or the synthesis of
educational research with the craft of teaching to reflect upon and improve
educational methodology. We present several teaching research investigations
that build upon or refine the previous ones upon the team’s assessment. This
methodology is referred to as the Teaching Research NYCity Model in (Czar-
nocha & Prabhu, 2006) and (Czarnocha et al. 2016) (see Fig. 1).

All these examples concern adult students reviewing introductory algebraic
thinking (inverse reasoning with the operator conception of a fraction) before
taking college level mathematics. In Baker et al. (2009) it was suggested that
students understand the operator construct of a fraction (taking a fraction of a
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quantity) as highly related to the part-whole construct and these investigations
further that work.

Teaching-Research
Cycle
2 Iterations

Inner: Cycle |
Outer: Cycle Il

TR team analysis
leads to reflection &
resulting corrective
action-refinement &
publication

Phase-|
Design

Phase-IV
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learning theories

results
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team: success-failure of
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& Analysis implementation during
\

Figure 1. Teaching Research Cycle NYCity.

Phase-I|

Implementation

We present two investigations or cycles. The first, containing observations
of a student engaged in solving two exercises, is structural in nature. The
second investigation observes the difficulties and successes of an instructor
employing a conceptual based lesson founded upon the reasoning observed in
the first cycle.

First Investigation

In the first investigation adult students engage in a brief review of algebra
before taking college level mathematics. The exercises involve inverse reasoning
with an operator problem (given a fraction of an unknown, find the unknown
— typically solved using reciprocals).

Exercise 1: Instructor-teacher ‘T’ asks the students, ‘Three-quarters of what
number is 187’ Student ‘MR’ provides the correct solution 24. When asked to
explain she replies:

MR: First I divided: 18 by 3 to get 6
T: Why?
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MR: Because 18 is three quarters so 6 is one quarter
MR: Then I added 6 + 18 = 24

T: Why did you add?
MR: To get the 4 quarters

Analysis Exercise 1

MR understands fractional parts of quarters as an encapsulated object ‘Q’
and makes an association between three of these objects and the problem
information 18:

3@ = 18 — the Partial Amount.

Abstracting her part-whole conception for ‘taking 3 out of 4 equal parts’ in
this situation leads her to represent the unknown as 4 quarters:

4@) = Unknown Total X.

She then abstracts (abducts) the action of taking three out of four objects
associated with her three quarters conception (leaving one object remaining)
and coordinating this with the goal of finding all four objects 4Q = X, she
realizes she needs one more quarter.

Thus, the characteristics of bisociation that have been observed include:
The simultaneous existence of concepts with MR’s quarter conception and the
problem situation (3Q = 18 & 4@Q = Total X). The abstraction (abduction)
of the three-quarter conception as taking 3 out of 4 objects which led to
the solution activity (find @ & add) this occurs during the coordination of
(3Q = 18, 4Q = X, & Find X). It is difficult to determine whether there
is an ‘Aha’ moment on the part of MR as the teacher did not observe her
original work. It was also not clear to the instructor if MR is flexible enough to
modify her additive reasoning to more formal multiplicative reasoning. Thus,
the instructor provides MR with the following example.

Exercise 2: ‘Two-fifths of some number is 500, find the number’.

This requires more generalization, in part, because fifths are a more abstract
concept than quarters which are a half of a half and thus intuitive, also because
using two-fifths instead of four-fifths means MR cannot readily employ an
additive solution schema. The student MR once again gave the correct answer
and the instructor asked her to explain.

MR: First I found one part is 250
T: How did you do that?
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MR: I divided by 2
T: OK then what?
MR: I multiplied by 5 to get 1250

Analysis Exercise 2

In the first exercise MR demonstrates an abstraction of the quarter conception,
and coordinates this with the problem information to guide her actions (find @)
and then add. This strategy would not work as readily in the second problem.
Indeed, the conception ‘5F = X’ and the information 2F = 500 does not
immediately suggest a need to find F. Thus, it appears likely to the research
team that MR’s first step of finding F' expressed in line 1 & 2 was the result
of her recognition of the similar structure between the problems. That is, she
immediately understood that a sub-goal of this problem, like the first one was
to find a unit amount, in this case one fifth ‘F”. This is likely not only because
the second problem was presented to MR immediately after she solved the
first but also because as stated the information given of two-fifths does not
immediately suggest that knowing one-fifth will yield the unknown total five-
fifths. In this scenario, MR projects her previous schemata into the second
problem situation. This projection would be considered reflective abstraction
as MR realizes that addition is problematic so instead adapts a multiplicative
approach, i.e. she restructures her existing schema to accommodate the new
problem situation.

Summary Discussion Investigation I

The creative act of giving meaning to mathematics during schema develop-
ment is demonstrated by MR in these exercises. In the first MR bisociates her
quarter conception with problem information 3¢) = 18 and 4Q) = X while si-
multaneously coordinating this with the goal find X to abstracts a code (Find
@ and add to find 4Q = X)) that directs her solution activity. Norton (2009)
reviews a solver ‘Josh’ who given a diagram of half of a half of an object first
employs his part-whole conception incorrectly labeling a resulting piece as a
one-third. Then after realizing this mistake he abducted the larger half part
as equal to two of the smaller parts to obtain the correct answer one-quarter.
Thus, both Josh and MR employ their part-whole conceptions specifically ab-
ducting the quarter’s conception of four equal parts to guide their solution
activity.

In the second problem MR recognizes that the action schema developed
in the first problem is appropriate. She projects the action done in the first,
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‘find the unit amount through division’ and then adapts this schemata through
employing a multiplication rather than addition approach as a more efficient
manner to find the goal. In this scenario MR reasoning is:

1. 2F = 250, 5F = X and in the previous-similar problem, I found the unit
so I first find F.

2. Multiply by 5 to find 5F = X.

The shift in focus from an additive to a multiplicative approach within the
context of proportional reasoning is viewed as evidence of growth in under-
standing (Caddle & Brizuela, 2011; Fernandez et. al., 2010). Thus, MR is
projecting from an additive-lower to a multiplicative-higher structural schema
as in the definition of reflective abstraction given by Piaget & Garcia (1989).

Second Investigation

The next exercises demonstrate the functional component of teaching for un-
derstanding. In these narratives the instructor acted as a mediator negotiating
between the problem information and students’ conceptual knowledge in an
effort to engage them in the reasoning demonstrated by MR. This second inve-
stigation is with adult students who require a more extensive review of algebra
before taking college level mathematics than those in the first investigation.
The instructor employs visuals of the part-whole conception to encourage stu-
dent engagement. Two students ‘EM’ and ‘RR’ navigate through this reasoning
yet a third student ‘SL’ rejects it as ‘baby math.’

In a prelude to this exercise the instructor ‘T’ introduces an example (Find
% of 120) in which a fraction is used as an operator. When the instructor
considers that the class understands this operator principle, he assigns this
next question to assess whether they can transition to inverse reasoning.

Exercise 1)
If % of some number is 36 find the number.

T: How is this problem different than the first one? Silence!
EG: The answer is 27.

T: No, but if you take % of 36 you do get 27.

[The class does not understand the inverse reasoning required, they have
ignored the inverse structure of this problem associating it instead with
the direct multiplication problem done immediately before.]

T: Class, what is wrong with taking % of 36 and multiplying?
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T:
EM:

What are we taking % of ? Not the 36 but of what?

Some number.

: Correct, 36 is the result what we get, we take % of another number.

[The instructor now employs a visual image of the part-whole construct
hoping it can promote the bisociation and subsequent coordination em-
ployed by MR among these students.]

: So if 36 represents the 3Q) the question is what represents the 4Q)’s?
RR:

48

: No, but if you take % of 36 you do get 27

(writes the following)

Q| Q

Q+Q+Q=3Q =36
Q

: The 36 represent the 3 quarters out of the 4 quarters some number is

divided up into
(Simultaneous writes)

0 1@ 20 3Q 4Q
e D posesssseoennned
36

: So if 36 represents the 3Q) the question is what represents the 4Q’s?
RR:

48

: Very Good, how did you do this?
RR:

Well, 1is 12

: OK, so 1Q is 12
: Good, how did you get the 127
: I divided by 3

: Good, does everyone see this?

(writes the following)
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12| 12

12

0 1Q 2Q 3Q 4Q
boseeeesd oeeeeesd orereeeagenneaned

12 36
T: What did you do to get the 487
RR: I multiplied by 4.
[Supported by the visual’s RR follows the conceptual based reasoning of
the student MR in the first cycle with multiplicative rather than additive
reasoning. |
SL: Can we do this using real math? Not baby stuff!

T: Well this is real, and it is math but how can we do this problem without
using pictures?

Let’s go back to the problem: If % of some number is 36 find the number.

T: What did we say the word ‘of’ translates into?

EM: Multiplication.

T: Yes, but as we have been saying, we do not multiply % with 36 instead
with some number we don’t know. What do we use to represent this
unknown number?

EM: Using X.

T: Good. So we have: %X is 36, what does the word ‘is’ translate into?
EM: The equal sign.

T: Good, writes %X = 36 , how do we solve this? Can we multiply?
EM: We flip the fraction.

T: Good, we find the reciprocal and multiply.
Analysis

In this example RR with the instructor’s guidance and appropriate visuals
follows the conceptual based reasoning of MR. Thus such reasoning is within
the ZPD of this pre-algebra class. However, SL rejects this methodology due
to presence of “baby stuff” i.e. the visuals. Clearly this method did not result
in positive affect for students, nor did it promote student engagement and
construction of knowledge.
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The second question given after covering formal proportions was designed
to initiate inverse reasoning. However, after the failure of the students to accept
this structure in the first exercise the instructor’s fallback plan is to employ a
basic proportion.

Exercise 2)
If % of some number is 150, find the number.

T: What is the difference between this problem and the earlier ones? Can I
multiply the fraction with the 1507

Student: No

T: Why not?
Silence

T: Does everyone see that you multiply the % with some unknown number
to get 150. The 150 is the result! The question is what is the number
you multiply % with. So how do we write it? What notation do we use
for the unknown number we multiply?

EM: X
T: Good, writes: %X =150
T: How do we solve it ... (begins to work out problem using reciprocal)
SL: Teacher, I don’t get it.

T: OK so we take 3 fifths of some number and get 150, that means we divide
some number ‘X’ into 5 equal pieces take 3 of them and the result is 150

T: Draws the visual
3 out of 5 parts is 150, what is the total?

150 X
The question is how much is the total 5 parts correct?
SL: Yes, but?

[SL is the same student who rejected this approach as baby math in the
first exercise, she still does not get it]

T: OK you don’t see it, how about in this diagram (draws different visual

— to motivate proportion)
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T: Can we set up a proportion? How would it go?
3 150
SL: Sets up the proportion: s =X

T: Good, now how would you solve this?

SL: (works out the problem through cross multiplication)... This is a much
better way.

T: Class, who can tell me why the 150 goes with the 3 and the X with the
5 in this proportion and not the other way around?

EM: Because you are taking the 150 out of the total!

Discussion Investigation 11

In the first exercise the instructor employs visuals to induce the class to follow
the reasoning employed by MR. However, the students rejected this approach
and did not internalize the resulting action scheme even though it was clearly
within their ZPD. One factor was that MR’s reasoning with the operator con-
ception requires more coordination than the part-whole proportion conception
used by the instructor with EM and SL, Doyle et al. (2016). Specifically MR’s
bisociated information: 3Q) = 18, 4Q = X, find X, requires more coordination
during solution activity (To find all 4Q) one must find @ and add). In contrast,
the proportional reasoning used in the second exercise: 3 parts out of a total
5 is equivalent to 150 out of a total X, requires less coordination to set up
the corresponding proportion and as Tossavainen (2009) points out, the more
steps to coordinate, the higher the cognitive load. Also it is clear that MR
demonstrated an ability to use her ‘quarter conception’ as an object while
SL and the class required the instructor’s visuals to engage effectively in such
reasoning.

Conclusion

In the first investigation, MR employs her bisociated conceptual knowledge,
coordinating it with the problem situation to guide her actions. We view the
cognitive aspects of her bisociation as containing two components, which may
occur simultaneously or one after another. The first is her ability to relate
her conceptual knowledge to the situation. At this point the concepts can be
thought of as existing simultaneously in her conceptual matrix and the matrix
of the problem situation: (3Q) = 18 & 4Q = X). The second component is
her abstraction (abduction) of the code that guides her solution activity. The
abduction occurs on the action associated with her three quarters conception
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(given 3@ taken out of a total 4Q) means I need the remaining @) and then
I will add to find the total 4Q) = X). Thus, MR’s solution activity is guided
in large part by her reflection upon an action associated with her quarter’s
conception. We conclude that an attempt to separate reflection upon concepts
and their associated actions during schema development is tenuous at best.

In the second exercise, the team’s analysis suggests MR’s actions were
guided by her realization that this problem was similar in nature to the first.
Thus, she projects the first schemata into the second problem matrix. Her
reasoning is along the lines that, I will find the unit object ‘one-fifth — F')’
then she coordinates this with the problem goal (Find 5F = X) to modify
her schemata to a multiplicative strategy. In this scenario, her reasoning is
reflective abstraction as she recognizes that this situation required her previous
action schemata and because her coordination with the problem situation
results in constructive generalization, i.e. a modified multiplicative schemata.

We have made a distinction between MR’s reasoning in the first and second
exercises. In the first, she recognizes relevant conceptual knowledge and reflects
upon its associated actions to guide her solution activity. In the second, she
recalls the action schema developed in the first. We note that Norton (2009)
does not make such a distinction in his analysis of ‘Josh’ employing his part-
whole conception, which Norton refers to as an elementary schema. In this
framework MR’s reasoning in the first exercise is also reflective abstraction.
A relevant question for future research is how can conceptual schemes typically
viewed as networks of concepts with associated actions be integrated with the
action schemes used in problem solving.

We also note that in Norton (2009) study of ‘Josh’, the observed abduction
takes place in the second & third step of an action schema. Instead, it occurs
after ‘Josh’ understands that has initial action of labeling half of a half as
one third is incorrect. Thus, it occurs during the period when he realizes that
the half part can be measured as two of the quarter parts. In contrast, our
investigation studies the first recognition step. Another relevant question for
future research is the relationship between bisociation and abduction within
the framework of an actions schema.

The second investigation is functional rather than theoretical in nature as
an instructor attempts to induce his students by means of supporting visuals
to follow the conceptual based reasoning of the student MR. The question
for a mathematics teacher, as posed by Simon et al (2004) is, “How to foster
the students’ reinvention of particular mathematics ideas; which situation will
make the mathematical idea transparent?” (p. 325).

In the first exercise, although the student RR supported by the visuals
follows this reasoning, student’s affect is not positive. Indeed, SL outright
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rejects this methodology and although the stated reason is ‘this is baby math’,
it is much more likely that the cognitive load required was too much for the
student. Thus vindicating Tossavainen (2009) statement that: “The intrinsic
cognitive load cannot be modified by instructional design.” The difficulty SL
and the students had with the approach used by MR was due in part to the
coordination involved and their difficulty employing their ‘quarter conception’
as an object. However, a visual diagram did allow SL and other students to
associate the problem information with a proportion structure, which required
less coordination.

Clearly, conceptual based lesson plans cannot modify the intrinsic load
of an activity sequence nor guarantee internalization of mathematical sche-
mes especially when students have weak object conceptions however, they can
assist students create meaning for mathematical structure if the association
between the conceptions and the structure is within the students’ ZPD and
the coordination steps are not too difficult or numerous.

References

Arnon, I., Cottrill, J., Dubinsky, E., Oktag, A, Fuentes,
S.R., Trigueros, M., Weller, K.: 2014, APOS theory: A framework
for research and curriculum development in mathematics education’, Springer
Science & Business Media.

Asiala, M., Brown, A, DeVries, D.J, Dubinsky E,
Mathews, D, Thomas, K. 1996, A framework for research and
development in undergraduate mathematics education. Research in Collegiate
Mathematics Education 2. 1-32.

Baker, W., Dias, O.,, Doyle, K., Czarnocha, B. Prabhu, V.
2009, A Study of Adult Students Learning Fractions at a Community College,
Annals of Polish Mathematical Society, 5th Series: Didactica Mathematicae
32, 5-41.

Bruner, J. S.:1990, Acts of meaning (Vol. 3), Harvard University Press.
Caddle, M., Brizuela, B.: 2011, Fifth grader?s additive and mul-
tiplicative reasoning: Establishing connections across conceptual fields using
a graph, The Journal of Mathematical Behavior 30, 224-234.
Czarnocha, B.,, Prabhu, V.:2006, Teaching-Research NYCity Mo-
del. Dydaktyka Matematyk: 29.

Czarnocha, B, Prabhu, V., Dias, O, Baker, W.: 2016,
Creativity Research and Koestler, in: The Creative Enterprise of Mathematics
Teaching Research, 23-41, SensePublishers.



CREATING ACTION SCHEMA BASED ON CONCEPTUAL KNOWLEDGE 27

Doyle, K., Dias, O,, Kennis, J, Czarnocha, B, Ba-
k er, W.: 2016, The rational number sub-constructs as a foundation for
problem solving, Adults Learning Mathematics 11(1), 21-42.

Dubinsky, E.: 1991, Reflective abstraction in advanced mathematical
thinking, in: Advanced mathematical thinking, 95-126), Springer Netherlands.
Eisenhart, M.: 1991, Conceptual Frameworks for Research circa 1991:
Ideas from a cultural Anthropologist; Implications for Mathematics Education
Researchers in Underhill, Robert G., (Ed) North American Chapter of the
International Group for the Psychology of Mathematics Education, Proceedings
of the Annual Meeting (13th, Blacksburg, Virginia, October 16-19, 1991).
Fernandez C., Llinares, S, Modestou M., Ga-
gatsis, A.: 2010, Proportional Reasoning: How Task Variables Influence
the Development of Students? Strategies from Primary to Secondary School,
acta Didactica Universitatis Comenianae Mathematics, ADUC 10, 1-18.
Gallagher, J. M., Reid, D. K.: 1981, 2002, The learning theory of
Piaget and Inhelder, Authors Choice Press, Lincoln NE

Glasersfeld, E.V.: 1995, Radical Constructivism: A Way of Knowing
and Learning. Studies in Mathematics Education Series: 6. Falmer Press, Tay-
lor & Francis Inc., 1900 Frost Road, Suite 101, Bristol, PA 19007.
Glasersfeld, E. V.: 1998, Scheme theory as a key to the learning para-
dox. Paper presented at the 15th Advanced Course, Archives Jean Piaget. Ge-
neva, Switzerland. Retrieved (November 2015) at http://www.fractus.uson.mx/
Papers/vonGlasersfeld/vg2001esquemas. pdf.

Gilmore, C.K., Inglis, M.: 2008, Process — and object-based thin-
king in arithmetic. in: O. Figueras, J. L. Cortina, S. Alatorre, T. Rojana &
A. Sepulveda (Eds.), Proceedings of the 32nd Conference of the Internatio-
nal Group for the Psychology of Mathematics Education 3, 73-80. Morelia,
Mexico: PME.

Gray, E,, Pinto, M., Pitta, D., Tall, D.: 1999, Knowledge Con-
struction and Diverging Thinking in Elementary and Advanced Mathematics,
Educational Studies in Mathematics 38, 111-133.

Gray, E., Tall, D.: 2001, Relationships between embodied objects and
symbolic procepts: an explanatory theory of success and failure in mathema-
tics, in: M. van den Heuval-Panhuizen (Ed.) Proceedings of the 25th conference
of the international group for the psychology of mathematics education (PME),
Utrecht, 3, 65-72.

Hadamard, J.: 1945, The Psychology of Invention in the Mathematical
Field, Princeton University Press.



28  WILLIAM BAKER, EDME SOHO, OLEN DIiAS, BRONISLAW CZARNOCHA

Haapasalo, L., Kadijevich, D.: 2000, Two types of mathema-
tical knowledge and their relation, Journal fir Mathematik-Didaktik 21(2),
139-157.

Hiebert, J, Carpenter, T.P.: 1992, Learning and teaching with
understanding, in: D. Grouws (Ed.), Handbook of research on mathematics
teaching and learning 65-97, New York, NY: Macmillan

Hiebert, J, Carpenter, TP, Fennema, E., Fuson,
K, Human, P, Murray, H Wearne, D.: 1996, Problem solving
as a basis for reform in curriculum and instruction: The case of mathematics,
Educational researcher, 25(4), 12-21.

Hiebert, J, Carpenter, T.P., Fennema, E., Fuson, K. C,
Wearne, D, Murray H.: 1997, Making sense: Teaching and learning
mathematics with understanding, Portsmouth, NH: Heinemann, 34, 40-56.
Kewal Ramani, A, Laird, J, Ifill N, Chap-
m a n, C.: 2011, Trends in High School Dropout and Completion Rates in
the United States: 1972-2009, Institute of Education Science, National Center
for Educational Statistics. US Department of Education. Retrieved July 8th
2015, https://nces.ed.gov/pubs2012/2012006.pdf

Koestler, A.:1964, The Act of Creation, London: Hutchinson & Co.
Leikin, R.: 2009, Exploring Mathematical Creativity using Multiple So-
lution Tasks, in: R. Leikin, A. Brown and B. Koichu (Eds.) Creativity in Ma-
thematics and the Education of Gifted Students, 129-145, Sense Publishers,
Netherland.

Lester Jr.,, F. K. 2010, On the Theoretical, Conceptual, and Philosophi-
cal Foundations for Mathematics Education Research in Mathematics Educa-
tion, in: Theories of Mathematics Education: Seeking New Frontiers, B. Srira-
men and L. English (Eds.), 67-86, Spring Verlag, Berlin Heidelberg.
Liljedahl, P.:2013, Illumination: an affective experience, The Interna-
tional Journal of Mathematics Education 45, 253-265.

Norton, A.: 2009, Re-solving the learning paradox: Epistemological and
ontological questions for radical constructivists, For the Learning of Mathe-
matics 29(2), 2-7.

Piaget, J., Campell R.L.: 2001, Studies in reflecting abstraction,
Psychology Press.

Piaget, J., Garcia, R.: 1989, Psychogenesis and the history of scien-
ce, (H. Feider, Trans.) New York, NY: Columbia University Press. (Original
work published 1983).



CREATING ACTION SCHEMA BASED ON CONCEPTUAL KNOWLEDGE 29

PISA 2012, EU performance and first inferences regarding education and tra-
ining policies in Europe, Executive Summary of the report for Program for In-
ternational Student Assessment: PISA Retrieved July 22nd at: hitp://ec.europa.
eu/education/policy/strategic-framework/doc/pisa2012_en.pdf

Peirce, C.S.: Collected papers, volumes 1-6, edited by C. Hartshorne and
P. Weiss, Cambridge, 1931-1935, Massachusetts: Harvard University Press.
Prabhu, V.:2016. The Creative Learning Environment, in: The Creative
Enterprise of Mathematics Teaching Research, 107-126. SensePublishers.
Prabhu, V., Czarnocha, B.: 2014. Democratizing Mathematical
Creativity Through Koestler’s Bisociation Theory, in: Proceedings of the Joint
Meeting of PME 38, 1-8.

Santiago A.D., Stettne, A.:2013, Supporting Latino Community
College Students: An Investment in Our Economic Future, Excelencia in Edu-
cation , retrieved July 8th 2015 at: http://www.edexcelencia.org/research/sup-
porting-latino-community-college-students-investment-our-economic-future
Shriki, A.:2010, Working like Real Mathematicians: Developing Prospec-
tive Teachers? Awareness of Mathematical Creativity thought Generating New
Concepts, Educational Studies in Mathematics 73(2), 159-179.

Seeger, F.: 2011, On meaning making in mathematics education: Social,
emotional, semiotic, Educational Studies in Mathematics T7(2-3), 207-226.
Simon, M. A.: 2013, The need for theories of conceptual learning and te-
aching of mathematics, in: Vital Directions for Mathematics education rese-
arch, 95118, Springer New York.

Simon, M. A.,, Tzur, R.,, Heinz, K., Kinzel, M.: 2004, Explicating
a mechanism for conceptual learning: Elaborating the construct of reflective
abstraction, Journal for Research in Mathematics Education, 305—-329.
Sriraman, B, Yaftian, N, Lee K.H. 2011, Mathematical
Creativity and Mathematical Education: A Derivative of Existing Research, in:
The Elements of Creativity and Giftedness in Mathematics (Eds.) B. Sriraman,
and K. H. Lee (Eds) Sense Publishers, Netherlands.

Silver, E. A: 1997, Fostering creativity through instruction rich in ma-
thematical problem solving and problem posing, ZDM 29(3), 75-80.
Skemp, R.R.:1987, The psychology of learning mathematics, Lawrence
Erlbaun Associates, New Jersey.

Tall, D.: 1999, Reflections on APOS Theory in Elementary and Advan-
ced Mathematical Thinking, in: O. Zaslavsky (ed.) Proceedings of the 23rd
Conference of PME, Haifa, Israel,1, 111-118.

Tall, D, Thomas, M., Davis, G, Gray E., Simpson, A.
1999,. What is the object of the encapsulation of a process?, The Journal of
Mathematical Behavior 18,(2), 223-241.



30  WILLIAM BAKER, EDME SOHO, OLEN Di1AS, BRONISLAW CZARNOCHA

Tossavainen, T.:2009, Who can solve 2z = 17 An analysis of cognitive
load related to learning linear equation solving, The Mathematics Enthusiast
6(3), 435-448.

Vygotsky, L.:1997, Thought and Language, (10th printing) Cambridge,
MA: MIT Press.

Wood, S, Bragg, S.C.,, Mahler, P.H, Blair, R. M.: 2006,
Beyond Crossroads: Implementing Mathematics Standards in the First Two
Years of College, American Mathematical Association of Two-Year Colleges.

Rozwdj ,struktur dziatania” w oparciu o matematyczna
wiedze pojeciows

Streszczenie

Nasza praca opisuje dwa cykle badan przeprowadzonych na lekcjach matema-
tyki przez nauczycieli-badaczy. Pierwszy cykl ma charakter badan epistemo-
logicznych: bada proces konstruowania przez ucznia rozwiazujacego zadanie
sensownego postepowania na podstawie jego wiedzy pojeciowej. W drugim
cyklu badamy, w jaki sposéb nauczyciel prébuje uruchomié u uczniéw rozu-
mowanie oparte na wiedzy pojeciowej.

Baza pojeciowa pierwszego badania to synteza teorii rozwoju pojeé¢ mate-
matycznych i teorii kreatywnosci, skonstruowana w celu zrozumienia rozwojo-
wych schematéw myslowych uczniéw. W drugim badaniu dokonujemy opartej
na tej idei préby ,uczenia przez zrozumienie” jako metody nauczania roz-
wigzywania zadan, utatwiajac przy tym rozumowanie pojeciowe wizualnymi
reprezentacjami odpowiednich pojec.

Baza metodologiczna tego etapu zostala stworzona przez wykorzystanie
dwobch zrodet: wiedzy zawodowej nauczyciela dotyczacej przyczyn, dla ktoérych
uczen nie jest w stanie znalezé wlasciwego postepowania matematycznego, by
rozwiaza¢ dany problem, oraz integracji teorii uczenia si¢ i teorii kreatywnosci.
Taka synteza teorii i wiedzy praktycznej jest charakterystyczna dla metodologii
nauczania-badania (teaching research) a energia wyzwolona dzieki niej pozwala
na stworzenie tworczego Srodowiska na lekcji matematyki.

Strukture pojeciowa uczenia sie otwiera mechanizm abstrakcji refleksyw-
nej (reflective abstraction), wprowadzonej przez J. Piageta, ktéry wyjasnia,
jak schemat myslenia jest modyfikowany w czasie rozwiazywania zadania, gdy
uczen nie wie, jak sie do tego zabraé¢. Von Glasersfeld dodal pojecie ,struk-
tury dzialania” (action schema), skladajacej sie z rozpoznania, skojarzenia
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(wladciwych) czynnosci i przewidywania wyniku. OdpowiedZ na pytanie, jak
sstruktura dzialania” powstaje lub wczedniejsza jest modyfikowana w procesie
rozumowania, Von Glasersfeld znajduje w opisanym przez Pierce’a myéleniu
nazwanym ,abdukcja” (abduction). Bisocjacja (bisociation) Koestlera opisuje
mianowicie synteze pojeciowa dwoch roztacznych schematéow myélenia w mo-
mencie olénienia ,,Ahal”, ktére moze inspirowaé i motywowaé ucznia do szu-
kania matematycznego postepowania rozwigzujacego problem. Jest to synteza
kreatywnoéci opartej na ,abdukcji” z refleksywnag abstrakcja Piageta.

Analiza i wyniki przeprowadzonych badan potwierdzaja hipoteze, ze bi-
socjatywna synteza wiedzy pojeciowej ucznia z warunkami zadania moze by¢
wykorzystana do rozwiazywania zadan. Wykorzystanie wizualnej reprezenta-
cji problemu jest ograniczone przez mozliwosci ucznia w operowaniu duzym
zasobem pojeciowym.

Synteza teorii kreatywnosci z teoriami uczenia si¢ daje wglad w to, jak
uczniowie moga wykorzysta¢ swoja wiedza pojeciowa w celu rozwiazania za-
dania. Ta integracja sugeruje takze kilka nowych pytan, wykraczajacych poza
opisane tu badania. Jednym z nich jest zwiazek pomiedzy strukturami poje-
ciowymi i schematami postepowania matematycznego: Czy ten zwigzek sam
jest ,struktura dzialania” (action schema)? Jak uzywane sa pojecia w celu
rozpoznania sytuacji, w ktérej powinny by¢ zastosowane? Jaka jest rola po-
jeé intuicyjnych? I wreszcie podstawowe pytanie: Jaki jest zwiazek pomiedzy
»bisocjacja” i ,abdukcja”, ktéry tutaj byl wykorzystany tylko do zrozumienia
pierwszego kroku rozpoznania sytuacji matematycznej.
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