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Abstract

In this paper, by considering the notion of MV-module, which is the struc-
ture that naturally correspond to lu-modules over lu-rings, we study injective
MYV-modules and we investigate some conditions for constructing injective MV -
modules. Then we define the notions of essential A-homomorphisms and essential
extension of A-homomorphisms, where A is a product MV-algebra, and we get
some of there properties. Finally, we prove that a maximal essential extension of
any A-ideal of an injective M V-module is an injective A-module, too.
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1. Introduction

MYV -algebras were defined by C.C. Chang [2] as algebras corresponding to
the Lukasiewicz infinite valued propositional calculus. These algebras have
appeared in the literature under different names and polynomially equiva-
lent presentation: C'N-algebras, Wajsberg algebras, bounded commutative
BC K-algebras and bricks. It is discovered that MV -algebras are naturally
related to the Murray-von Neumann order of projections in operator alge-
bras on Hilbert spaces and that they play an interesting role as invariants
of approximately finite-dimensional C*-algebras. They are also naturally
related to Ulam's searching games with lies. MV -algebras admit a natural
lattice reduct and hence a natural order structure. Many important prop-
erties can be derived from the fact, established by Chang that nontrivial
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MYV -algebras are subdirect products of MV -chains, that is, totally ordered
MYV -algebras. To prove this fundamental result, Chang introduced the no-
tion of prime ideal in an M V-algebra. The categorical equivalence between
MYV -algebras and lu-groups leads to the problem of defining a product op-
eration on MV -algebras, in order to obtain structures corresponding to
l-rings. A product MV -algebra (or PMV-algebra, for short) is an MV-
algebra which has an associative binary operation “.”. It satisfies an extra
property which will be explained in Preliminaries. During the last years,
PMYV -algebras were considered and their equivalence with a certain class
of l-rings with strong unit was proved. It seems quite natural to introduce
modules over such algebras, generalizing the divisible M V-algebras and
the MV -algebras obtained from Riesz spaces and to prove natural equiv-
alence theorems. Hence, the notion of MV -modules was introduced as an
action of a PMV-algebra over an MV-algebra by A. Di Nola [5]. Recently,
some reasearchers worked on MV-modules (see [1, 10, 7]. For example, in
2016, R. A. Borzooei and S. Saidi Goraghani introduced free MV -modules.
Since M'V-modules are in their infancy, stating and opening of any subject
in this field can be useful.

Now, in this paper, we present the definition of injective MV -modules
and obtain some interesting results on them. Also, we define the notions of
essential A-homomorphisms and essential extension of A-homomorphisms,
where A is a PMV-algebra. Finally, we prove that every maximal essential
extension of an A-ideal in injective A-module [ is injective if it was included
in I. In fact, we open new fields to anyone that is interested to studying
and development of M V-modules.

2. Preliminaries

In this section, we review some definitions and related lemmas and theorems
that we use in the next sections.

DEFINITION 2.1. [3] An MV-algebra is a structure M = (M, ®,",0) of type
(2,1,0) such that:

(MV1) (M,®,0) is an Abelian monoid,

(MV2) () = a,

(MV3) 0 @ “=0,

(MV4) (d ®b) @b:(b'@a)’@a,

If we define the constant 1 = 0 and operations ® and © by a®b = (a’®Y')’,
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aSb=a®l, then

(MV5) (a®b) = (d @),
(MV6) zd1=1,

(MVT7) (acb)db=(boa)®a,
(MV8)a®d =1,

for every a,b e M.

Now, let M = (M, ®,”,0) be an MV -algebra. It is clear that (M,®,1)
is an Abelian monoid. If we define auziliary operations V and N on M
byaVvb=(a0b)®band aNb = a® (a/ ®&D), for every a,b € M,
then (M,V,A,0) is a bounded distributive lattice. An MV -algebra M is
a Boolean algebra if and only if the operation “ @7 is idempotent, that is
x@x =z, for every x € M.

A subalgebra of an MV -algebra M is a subset S of M containing the
zero element of M, closed under the operation of M and equipped with the
restriction to S of these operations. In an MV -algebra M, the following
conditions are equivalent: (i) o’ ®b =1, (i) a®Y =0, (iii) b = a® (bOa),
(iv) 3¢ € M such that a ® ¢ = b, for every a,b,c € M. For any two
elements a,b of the MV -algebra M, a < b if and only if a,b satisfy the
above equivalent conditions (i) — (iv). An ideal of MV -algebra M is a
subset I of M, satisfying the following conditions: (I1): 0 € I, (I2): x <y
andy €I imply x € I, (I3): x @y € I, for every x,y € 1.

In an MV -algebra M, the distance function d : M x M — M 1is defined
by d(z,y) = (x ©y) @ (y © x) which satisfies (i): d(xz,y) = 0 if and only
if 2 =y, (i0): dlw,y) = dy2), (ii): d@,2) < d(z,y) & d(y,2), (iv):
d(z,y) =d(2',y), (v): d(x®z,y®t) < d(z,y)Dd(z,t), for every x,y, z,t €
M

Let I be an ideal of MV -algebra M. We denote x ~y (x =1 y) if and
only if d(x,y) € I, for every x,y € M. So ~ is a congruence relation on
M. Denote the equivalence class containing x by 7 and % ={F:xe M}.

Then (%,@,/,%) is an MV -algebra, where (7)" = "LT/ and £ @Y = @,
for all x,y € M.

Let M and K be two MV -algebras. A mapping f : M — K is called
an MV -homomorphism if (H1): f(0) =0, (H2): fl(z®y) = f(z) ® f(y)
and (H3): f(z') = (f(x)), for every z,y € M. If f is one to one (onto),
then f is called an MV -monomorphism (MYV -epimorphism) and if f is

onto and one to one, then f is called an MV -isomorphism.
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LEMMA 2.2. [3] In every MV -algebra M, the natural order “ <” has the
following properties:

(i) z <y if and only if y' </,

(i) if x <y, thenx ® z <y P z, for every z € M.

LEMMA 2.3. [3] Let M and N be two MV -algebras and f : M — N be an

MYV -homomorphism. Then the following properties hold:
(¢) For each ideal J of N, the set

U ={z e M: f(z) € J}

is an ideal of A. Hence, Ker(f) = f~1({0}) is an ideal of M,

(i1) £(z) < f(y) if and only if 2 © y € Ker(f),

(ii) f is injective if and only if Ker(f) = {0}.

DEFINITION 2.4. [4] A product MV -algebra (or PMYV -algebra, for short)
is a structure A = (A, ®,.,",0), where (A, ®,,0) is an MV -algebra and
“” is a binary associative operation on A such that the following property
1s satisfied: if x + y is defined, then x.z + y.z and z.x + z.y are defined
and (x + y).z = vz +y.z, z.(x + y) = z.x + 2.y, for every x,y,z € A,
where “+7 is the partial addition on A. A unit of PMYV -algebra A is an
element e € A such that e.x = x.e = x, for every x € A. If A has a unit,
then e = 1. A PMV -homomorphism is an MV -homomorphism which also
commutes with the product operation.

LEMMA 2.5. [4] Let A be a PMV -algebra. Then a < b implies that a.c < b.c
and c.a < c¢.b, for every a,b,c € A.

DEFINITION 2.6. [5] Let A=(A, ®,.,/,0) be a PMV -algebra, M =(M,®,’,0)
be an MYV -algebra and the operation ® : A x M — M be defined by
®(a,x) = ax, which satisfies the following axioms:

(AM1) if x+y is defined in M, then ax+ay is defined in M and a(x+y) =
axr + ay,

(AM?2) if a+b is defined in A, then ax+bx is defined in M and (a+b)x =
axr + bx,

(AM3) (a.b)x = a(bx), for every a,b € A and x,y € M.

Then M is called a (left) MV -module over A or briefly an A-module. We
say that M is a unitary MV -module if A has a unit and

(AM4) 142 = x, for every x € M.

COROLLARY 2.7. [7] Let M be a unitary A-module. If N C M is a
nonempty set, then we have:
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(N={zx e M:z<o1x1 Dasxa® - ®anZy, for some 1, - ,T, € N,

a1, € A}
In particular, fora € M, (a] = {x € M : z < n(aa), for some integer n >
0 and o € A}.

LEMMA 2.8. [5] Let A be a PMV -algebra and M be an A-module. Then
(a) Oz = O, a0 =0

)

) ax’ < (ax)’,
) d'z < (az)’
) (az) =d'z+ (1z),

) x <y implies ax < ay,

) a < b implies ax < bz,

B) a( ®y) < az ® ay,

i) d(az, ay) < ad(z,y),

j) if x =1y, then ax =y ay, where I is an ideal of A,

k) if M is a unitary MV -module, then (azx) = o’z +2a’, for every a,b € A

DEFINITION 2.9. [5] Let A be a PMV -algebra and My, My be two A-
modules. A map f : My — My is called an A-module homomorphism
(or A-homomorphism, for short) if f is an MV -homomorphism and (H4):
flaz) = af(x), for every x € My and a € A.

DEFINITION 2.10. [5] Let A be a PMV -algebra and M be an A-module.
Then an ideal N C M is called an A-ideal of M if (I4): ax € N, for every
a€Aandx € N.

DEFINITION 2.11. [10/ Let M be a unitary A-module and there exists k € N
such that Y1 aim; < (301, aim;)’, for every 1 < n <k, a; € A and
m; € M. Then M is called an Ax-module. If Y0 aim; < (30 a;my),
for every n € N, then M is called an Ayx-module.

LEMMA 2.12. [10] In PMV -algebra A, (a @ B)a < am @ Ba, for every
a,B,a € A.

3. Injective MV-modules

In the follows, let A be a PMV-algebra and M be an MV -algebra unless
otherewise specified.
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In this section, we present the definition of injective MV -modules and
we give some properties about them.
DEFINITION 3.1. [8] Let M be an A-module. M is called an injective A-
module if for every m € M and 0 # a € A, there exists ¢ € M such that
ac =m.
EXAMPLE 3.2. Consider the real unit interval [0,1]. Let x & y = min{x +
y,1} and 2’ =1 — =z, for all z,y € [0,1]. Then ([0,1],®,",0) is an MV -
algebra, where “+7 and “ —"7 are the ordinary operations in R. Also, the
rational numbers in [0,1] and for each integer n > 2, the n-element set

1 n—2
n—1 "n-=-1

L,= {07 1}

yield examples of subalgebras of [0,1] (See [3]). Now, by using this example,
we get some injective MV -modules.

(1) Consider ab = a.b, for every a,b € Lo, where s ordinary operation
in R. Then (La,®,.,,0) is a PMV -algebra and Ly as Lg-module is an
injective La-module.

(1) [0,1] as Lo-module is an injective Lo-module.

(7i1) Consider a.b = max{a,b}, for every a,b € Ls. Then it is routine to
show that (L3, ®,’,.,0) is a PMV -algebra and by cosidering ab = a.b, we
have Ls is a Ls-module. Moreover, Ls is an injective Ls-module.
DEFINITION 3.3. Let I be an ideal of M and a € I. If every b € I can be

showed as b = xa, for some x € A, then we say I is an MV -principle ideal
of M, and we write I =< a >.

EXAMPLE 3.4. Let A = {0,1,2,3} and the operations “ &7 and “. be
defined on A as follows:

W

@0 1 2 3 .o 1 2 3
oo 1 2 3 00 0 0 0
1|1 1 2 3 1jo 1 1 1
2 |2 2 2 3 20 1 2 2
3 13 3 3 3 3,0 1 2 3

Consider 0' =3, 1’ =2, 2/ =1 and 3’ = 0. Then it is easy to show that
(A, ®,,.,0) is a PMV -algebra. AlsoI ={0,1,2} and J ={0,1} are ideals
of A. Since 1 = 1.2, 2 =22, I =< 2 > is an MV -principle ideal of A.
Also, J =<1 = is an MV -principle ideal of A.
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PrOPOSITION 3.5. Let M be an As-module, where M is a boolean algebra.
Then I = {xa:x € A} is an MV -principle ideal of M, for every a € M.

PrOOF: It is clear that 0 € I. Let za,ya € I, for any x,y € A. Since
r<z®yand y <axdy, by Lemma 2.8(f), we have ax < a(z & y) and
ay < a(x®y), for every a € A and z,y € M. So by Lemma 2.2(ii), we have
ar®ay < a(z@y)Say and a(zBy)Say < a(z®y) Ba(rBy) = a(zSy).
Hence, ax ® ay < a(z P y), for every a € A and z,y € M. Now, by Lemma
212, ax @ ay =a(z®y) and so ax Day € I. Let t <z.a €1, fort € M.
Then 1.t/ @ z.a =1 and so (¢ @ a)' ® 2’a = 0. It results that (¢’ & a) =0
and so t' @ a = 1. Hence we have

t=tAza={t'O{t'®xa)’) =t &' da) ®x'a) =t ®z'a) = (' ®a) Dra=za.

It means that ¢t € I. Therefore, I is an ideal of M. O

NOTE. We can consider A as As-module. Then in proposition 3.5, I =
{z.a : x € A} is an MV-principle ideal of A.

DEFINITION 3.6. [10] Let My and My be two A-modules. Then the map
f My — Ms is called an A’-homomorphism if and only if it satisfies in
(H1), (H3), (H4) and

(H'2) : if x +y is defined in My, then h(z +y) = h(z ® y) = h(z) B h(y),
for every x,y € My, where “+7 is the partial addition on M. If h is one
to one (onto), then h is called an A’-monomorphism (epimorphism). If h
18 onto and one to one, then h is called an A’-isomorphism and we write
My = M.

THEOREM 3.7. Let all ideals of A be MV -principle and M be an injec-
tive A-module. Then for every A-module C' and every A’-homomorphism
a : C — M and A -monomorphism u : C — B, there is an A-
homomorphism 3 : B — M such that the diagram

C—2s>M

| A

B

is commutative, that is Bu = «.

PRrRoOF: Let M be an injective A-module, p : D — B be an A’-mono-
morphism and « : D — M be an A-homomorphism, for MV -algebras D
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and B. With out lost of generality, let D be an A-ideal of B (because p is
an A-monomorphism). Consider

Q:{(Dj,aj):Dng QB, o IDj —)M, a; ‘D: Oé}.

Then by Zorn’s lemma, 2 has a maximal element (D,,, ). We claim
that D,, = B. If D,, # B, then D,, & B and so there is b € B such that
b¢ D. Let I ={a€ A:abe Dy,}. Since 0 € I, we have I # (. We show
that I is an ideal of A. Let ay,as € I. Then a1b,asb € D,,. By Lemma
2.12) (a1 ® a2)b < a1b B agb € D,, and so a1 B ag € I. Now, let t <a € I,
for some ¢t € A. Then by Lemma 2.8 (g), tb < ab € D,,, and so tb € D,,. Tt
means that ¢t € I. Hence I is an ideal of A and so there is ag € A such that
I =< ap ». If ag = 0, then we consider an arbitrary element ¢ € M. If
ag # 0, then we consider apb € D,;, and so m = ., (agh) € M. Since M is
an injective A-module, there is ¢ € M such that m = a,,(agb) = apc. Now,
let Dy ={am @tb:t € A, ay, € Dy, }. Since b ¢ D,,, we have D,, C D).
We define aps : Dy —> M by

am(am) +te, if am(am) + te, anm +tb are defined
ap(am ®th) =
0, otherwise

The first, we show that aj, is well defined. It is sufficient that we show
ay (tb) = te. Since th € D,,, we have ¢t € I and since I =< ag >, there is
z € A such that t = zag and so

(1) = am(zagh) = zayy, (agh) = zage = te

The proof of (H1) is clear. If a,,1 + t1b + apma + tab is defined, then

e

ans(am, ®t10) & (am, S tab)) =

M(Amy B A, ® 610 ® tab)

M(aml + Ao + t1b + tgb)

M (A1 + ama + (t1 + t2)b)

m(@m1 + am2) + (t1 + t2)c
(am1) + t1¢ ® ap(ama) + tac

ap(am1) @ apg(amsa)

Q

Q

|
Q2

I
2

and so (H2)' is true, for any a,,1 @ t1b, ama @ tob € Dys. By definition of
Q, for every a,, ®thb € Dj;, we have
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(aM (am S2) tb)), =

and so (H3) is true. Now, for every a € A and a,, ® tb € Dy, we have

(arr(alam ® b)) = an(aam @ (a.t)d)
= anp(aay,)® (a.t)c
= aap(am) D a(te)
= alam(am) ® te)
= aap(am D td)

and so (H4) is true. Hence a s is an A’-homomorphism and so (Dy,, &) S
(Dpr, anr), which is a contradiction, by maximality of (D,,, ). There-
fore, D,, = B. O

EXAMPLE 3.8. [0,1] as Lo-module satisfies in the conditions of Theorem 3.7.
THEOREM 3.9. Ewvery non cyclic Ly-module can be embeded in an injective
Lo-module.

PROOF: Let M be a non cyclic Ly-module. It is clear that M # 0 and so

there is 0 # a € M. Consider A-ideal (a] of M. We define « : (a] — [0, 1]

by a(z) = mg, where £ ¢ [0,1] and by using of Corollary 2.7,
q q

m =min{n | x <n(Ba), for some integer n >0 and B € Lo}

It is easy to see that a is well defined. We show that « is an MV-
homomorphism. Since «(0) = 0, (H1) is true. Let 1,22 € (a]. Then
my = min{n : x1 < n(Ba), for some integer n > 0 and B € Ly} and
mo = min{n : x9 < n(Ba), for some integer n > 0 and 8 € Lo}. Let
m = my + meo and ¢ be the smallest common multiple of m,m; and ms.
Then

a(x1®xs) :mg =(my —&—mg)g :m1§+m2§ =a(z1)ta(re)=a(x)Ba(zs)
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and so (H2) is true. Now, let S e [0,1] and = € (a]. Since z < n(Ba),

g
for some integer n > 0 and S € Lo, by Lemma 2.8 (b) and (f), we have
Se < f(n(ﬂa)) = (nf)(ﬂa) and so m = kf, where
g g

k =min{n | ‘e < n(f)(ﬂa), for some integer n >0 and 8 € Lo}
g g

Hence a(fx) =m = szg, where ¢1]k. On the other hand, f04(91:) =
g a1 q g

Sk2L and so (H4) is true. Since M is not cyclic, 1 ¢ (a] and so =’ ¢
g 41
(a], for every = € (a]. It means that (H3) is true. Hence « is an MV-

homomorphism. If we consider the inclusion map p : (a] — M, then by
Example 3.8 and Theorem 3.7, the following diagram

(a] —=[0,1]

A

M
is commutative, that is Sy = «a. It is routine to see that § is an A-
monomorphism. Hence M is embeded in an injective Lo-module. O

OPEN PROBLEM. Under what suitable an A-module can be embeded in
an injective A-module?

THEOREM 3.10. Let A be unital, a.b = b implies that a = 1, for every a,b €
A and for every A-module C, every A'-homomorphism o : C — M and
A’-monomorphism p : C — B there is an A-homomorphism 8 : B — M
such that the diagram

C—2>M

i

B

is commutative, that is B = a. Then M is an injective A-module.

PROOF: Let for every A-module C and every A’-homomorphism «: C' —
M and A’-monomorphism p : C — B there is an A-homomorphism 3 :
B — M such that Sy = «. Also, let m € M and 0 # a € A. Consider
a:A— Mby a(l) =m (or a(t) =tm) and u: A — A by u(l) =a
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(or p(t) = ta), for every t € A. Tt is easy to see that « and p are A’-
homomorphism. Let x € kerpy. Then p(x) = za = 0 and so ’'a ® a’ =
1. It means that a < 2’a < @ and so z'a = a. Hence 2’ = 1 and so
x = 0. It results that kerp = {0} and so by Lemma 2.3 (i7), p is an
A’-monomorphism. Then by hypothesis, there is an A-homomorphism f :
A — M such that Sy = «. Since A is an A-module, we have

m = a(l) = pu(l) = B(u(1)) = Ba) = Bal) = af(1).
Now, consider ¢ = §(1) and so M is an injective A-module. O

EXAMPLE 3.11. The example 3.4 satisfies in the condition : a.b = b implies
that a =1, for every a,b € A (note that 14 = 3).

LEMMA 3.12. Every A’-homomorphism f : I — Q extends to an A’-
homomorphism F : A — Q, for any ideal I of A if and only if for every A’-
homomorphisms f: M — N and g : M — Q, there is A-homomorphism
¢ : N — Q such that the diagram

M#-Q

| A

N

is commutative, that is of = g.

PROOF: (=) Let Q ={(C,¢) : M CCCN, ¢:C —Q, ¢ |m=g} A
routine application of Zorn’s lemma shows that 2 has a maximal element
(D, ¢). We show that D = N and therefore ¢ would be required extension
of g. Let n € N. Then by the proof of Theorem 3.7, I,, = {a € A : an € D}
is an ideal of A. Define «: I, — @ by «a(a) = ¢(an). Note that

a(d)=p(a'n)=(p(an+n)) = (plan)+p(n)) = (a(a)+((1))") = (a(a))".

Hence (H') is true. The proof of (H1), (H3) and (H4) are routine. Then «
is an A’-homomorphism and so a extends to A’-homomorphism 3 : I,, —
Q. Define ¢’ : D® An — Q by ¢’ (d® an) = ¢(d) ® B(a), for every d € D
and a € A. Since 8(a) = a(a) = ¢(an), for every a € I,, and B(a) = ¢(an),
for every a € I,,, we conclude that ¢’ is well defined. It is routine to see that
¢’ is an A’-homomorphism. Since (D, ) < (D @ An,¢’), by maximality
(D, ), we have D = D & An and so D = N.

(<) The proof is clear. O
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THEOREM 3.13. Let A be unital, all ideals of A be principle and a.b = 1
implies that a = 1, for every a,b € A. Then M is an injective A-module.

PROOF: Let I be an ideal of A and f : I =< a »— M be an A’-
homomorphism. Define F : A — M by F(x) = f(z.a). It is clear that
F is well defined. We show that F' is an A’-homomorphism. The proofs of
(Hy) and (Hj) are routine. We have

F(a') = f(@".a) = (f(z.a+d)) = (f(z.a) + f(a)) =
= (F(z) + (f(a))) = (F(z) + (F(1))) = (F(=))".

Therefore, F' is an A’-homomorphism and so by Lemma 3.12 and Theorem
3.10, M is an injective A-module. U

4. Essential extensions

In this section, we define the notions of essential A-homomorphisms and
essential extension of an A-homomorphism, where A is a PMV-algebra
and we obtain more results on them. Then by these notions, we obtain
some results on injective MV -modules.

DEFINITION 4.1. Let u : M — B be an A’-monomorphism such that
w(M)N H # {0}, for every no zero A-ideal H of B. Then u is called an
essential A-homomorphism. In special case, if M is an A-ideal of B (u is
inclusion map), then B is called an essential extension of p.
PROPOSITION 4.2. [9] Let A be a PMV -algebra. Then £ A is a PMV -
algebra.

EXAMPLE 4.3. By Proposition 4.2, A® A is an MV -algebra. If operation
e AX (A® A) — (A® A) is defined by a e (b,c) = (a.b,a.c), for every
a,b,c € A, then it is easy to show that A @ A is an A-module. consider
A=1Ly and ¢ : A® A — Ly, where $(1,0) = %, ¢(0,1) = 2, $(0,0) =0
and ¢(1,1) = 1. Then it is clear that ¢ is well defined. It is easy to show
that ¢ is an A’-homomorphism. Since ¢(Lo ® Lo) = Ly, ¢ is an essential
A-homomorphisms.

THEOREM 4.4. Let M be an A-module and B be an A-ideal of M. Then
M is an essential extension of B if and only if for every 0 # b € M, there
exist a € A and ¢ € B such that ¢ < n(ab), for some integer n.

PROOF: (=) Let M be an essential extension of B and 0 # b € M. Then
H = (b] is a non zero A-ideal of M and so BNH # {0}. It results that there
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exists 0 # ¢ € M N H. Since ¢ € H, there is a € A such that ¢ < n(ab), for
some integer n.

(<) Let for every 0 # b € M, there exists a € A and ¢ € B such that
¢ < n(ab), for some integer n. Also, let H be a non zero A-ideal of M.
Then there is 0 # b € H such that ¢ < n(ab) € H and so ¢ € H. Hence
BN H # {0} and so B is an essential extension of B. O

PROPOSITION 4.5. Let M be an A-module and B be a non zero A-ideal of
M. Then there is a mazimal essential extension E of B such that B C
E C M.

PrROOF: Let

K ={C; | Ciis an A—ideal of M that is an essential extension of B}

Since B € K, K # 0. For every chain {C;};cs of elements of K, C =
Uiel C; is an A-ideal of M. Now, let b € B. Since C; is an essential
extension of B, there are a € A and ¢ € C; such that ¢ < n(ab), for every
1 € I and for some integer n. Hence, for every b € B, there are a € A
and ¢ € C such that ¢ < n(ab) and so by Theorem 4.4, C' is an essential
extension of B. Now, by Zorn’s Lemma, K has a maximal elements as F
that is essential extension of B inclusion in M. (]

In the follow, we will show that every maximal essential extension of
an A-ideal of injective A-module I is injective if it was included in I. The
first we prove the following lemma that we call the short five lemma and
its corollaries in MV -modules:

DEFINITION 4.6. Let {M;};er be a family of A-modules and {f; : M; —
M1 : 1 € I} be a family of A-module homomorphism. Then

_>M7,'71 fi—_)l Mz ﬁ)MiJrl — e
is exact if Imf; = Kerfiy1, for every i € 1. In special case,

0—>M12M2£M3—>0

is called a short exact sequence.
EXAMPLE 4.7. (i) Let M be an A-module and N be an A-ideal of M. Then

O%NgMQ%%O

is a short exact sequence.
(i3) Let f: My — My be an A-module homomorphism. Then
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M,y
Kerf

0 Kerf S M 5 =0
is a short exact sequence.
LEMMA 4.8. (i) Let

O%AlgBlgC&%O

and
0—)142%32302%0

be two exact sequences of A-modules, o : Ay — Ay and v : C; — Cy be
A-isomorphism, 8 : By — By be an A-homomorphism, B o fi1 = fooa and
yogy =geofB. Then B is an A-isomorphism.

(ii) For the short exact sequence

O%Al*f)BE)AQ%O

of A-modules, if there is an A-homomorphism k : B — Ay such that kf =1
(I is identity map), then B ~ A1 @ Ay, where A1 ® Ay = {a; @ as : a1 €
Ay az € Ay} (we say 0 — Ay —f B =8 Ay — 0 is split exact).

(i5i) If J is a unitary A-module, then J is an injective A-module if and
only if every short exact sequence

0—-J—-T—-B—0

of A-modules is split exact.

PROOF: (i) It is routine to see that 8 is an A-monomorphism. We show
that 8 is an A-epimorphism. Consider arbitrary element z € Bs. Then
g2(x) € Cy and so there is z € C; such that y(z) = g2(x). Since g; is an A-
epimorphism, there is by € By such that g1(b1) = z and so yg1(b1) = ga(x).
It results that g23(b1) = g2(x) and so by Lemma 2.3, 8(b1) ©z € Kergs =
Imgfs. Hence there is a € Ay such that fa(a) = 8(b1) © x. Since a € As,
there is d € A; such that a(d) = a and so foa(d) = B(b1) © x. It results
that 8(f1(d)) = B(b1) © x. Now, let y = b1 & f1(d). Then
Bly) = BV & f1(d))') = (B(by ® f1(d)))" = (B(b1) & B(f1(d)))" =

B e pb)cz) =) =1
Therefore, 3 is an A-epimorphism and so 3 is an A-isomorphism.
(i), (414) The proofs are routine. O
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THEOREM 4.9. Let I be an injective A-module, B be an A-ideal of I and
FE be a mazximal essential extension of B such that E C I. Then E is an
injective A-module.

ProOOF: Let

D={H: Hisan A—ideal of ,HNE ={0}}

Since {0} € D, we have D # (. By Zorn’s Lemma, D has maximal element
H’. Then H' N E = {0}. Now, consider the mapping 7 : I — % If
0 = 7 |g, then J is an A-monomorphism. We show that ¢ is an essential
monomorphism. Consider A-ideal % of #, where H' C K (It is not
possible K = H’). Then there is 0 2 b € KNFE and b ¢ H' and so
§(b) = & # 1. It means that 5(E) N & # {0} and so J is an essential
extension of F. Since E can not accept any essential A-monomorphism
except trivial A-monomorphism, 6 : £ — % is an A-isomorphism. Now,
consider the exact sequence

—1

0 H SI°S"E—0
If f: E — I be conclusion mapping, then 6 'nf(a) = § '7w(a) =
6~ 1(f%) = a, for every a € I. Hence 6 'nf = Iy and so by Lemma
4.8 (iii), the above sequence is a split exact sequence. It results that

I~ E@®H' Since I is an injective A-module, E is an injective A-module,
too. (]

5. Conclusion

The categorical equivalence between MV -algebras and [u-groups leads to
the problem of defining a product operation on MV -algebras, in order
to obtain structures corresponding to [l-rings. In fact, by defining MV-
modules, MV -algebras were extended. Hence, MV-modules are funda-
mental notions in algebra. IN 2016, free MV -modules were defined [10].
We introduced injective MV -modules and obtained some essential proper-
ties in this field. The obtained results encourage us to continue this long
way. It seems that one can introduces notion of projective MV-module
and obtain the relationship between free MV-modules and projective (or
injective) MV-modules. In fact, there are many questions in this field that
should be verified.
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