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Abstract

This paper presents a way of formalising definite descriptions with a binary quan-

tifier ι, where ιxrF,Gs is read as ‘The F is G’. Introduction and elimination rules

for ι in a system of intuitionist negative free logic are formulated. Procedures for

removing maximal formulas of the form ιxrF,Gs are given, and it is shown that

deductions in the system can be brought into normal form.
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1. Introduction

The definite description operator ι, the formal analogue of the definite
article ‘the’, is usually taken to be a term forming operator: if A is a
predicate, then ιxA is a term denoting the sole A, if there is one, or nothing
or an arbitrary object if there is no or more than one A. This paper
follows a different approach to definite descriptions by formalising them
instead with a primitive binary quantifier: ι forms a formula from two
predicates, and ‘The F is G’ is formalised as ιxrFx,Gxs. The notation, and
the way of treating definite descriptions that comes with it, was suggested
by Dummett [2, p.162].1

1Bostock considers a similar approach and explains definite descriptions as a special
case of restricted quantification, where the restriction is to a single object. [1, Sec. 8.4]
Bostock writes pIx : Fxq Gx for ‘The F is G’, but prefers to treat definite descriptions
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The current paper treats definite descriptions purely proof theoretically.
The proof theory of a term forming ι operator has been investigated in
the context of sequent calculi for classical free logic by Indrzejczak [3, 4].
Tennant gives rules for such an operator in natural deduction [7, p.110].2

The approach followed here may be new to the literature.
In this paper, I investigate the binary quantifier ι in the context of a

system of natural deduction for intuitionist negative free logic. The appli-
cation of the present treatment of definite descriptions to other systems of
logic and their comparisons to systems known from the literature are left
for further papers. To anticipate, using a negative free logic, the approach
proposed here lends itself to a natural formalisation of a Russellian theory
of definite descriptions, while it provides a natural formalisation of Lam-
bert’s minimal theory of definite descriptions when the logic is positive and
free.

First, notation. I will use Axt to denote the result of replacing all
free occurrences of the variable x in the formula A by the term t or the
result of substituting t for the free variable x in A. t is free for x in A
means that no (free) occurrences of a variable in t become bound by a
quantifier in A after substitution. In using the notation Axt I assume that
t is free for x in A or that the bound variables of A have been renamed to
allow for substitution without ‘clashes’ of variables, but for clarity I also
often mention the condition that t is free for x in A explicitly. I also use
the notation Ax to indicate that x is free in A, and At for the result of
substituting t for x in A.

2. Natural Deduction for ι in Intuitionist Logic

The introduction and elimination rules for the propositional logical con-
stants of intuitionist logic I are:

A B
^I:

A^B
A^B

^E:
A

A^B
B

with a term forming operator. I owe the reference to Bostock to a referee for this journal,
who also pointed me to the paper by Scott to be referred to in footnote 4 and made
valuable comments on this paper.

2Tennant is not explicit whether the logic in this paper is classical or intuitionist.
However, as he is partial to anti-realism and constructive mathematics, we are justified
in assuming that his preferred route is to add these rules to a system of intuitionist free
logic. The rules are also in [8, Ch. 7.10], where the logic is classical.
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i
A
Π
B

Ñ I: i
AÑ B

AÑ B A
Ñ E:

B

A
_I:

A_B
B

A_B A_B

i
A
Π
C

i
B
Σ
C

_E: i
C

K
KE:

B

where the conclusion B of KE is restricted to atomic formulas.
The introduction and elimination rules for the quantifiers of I are:

Axy
@I:

@xA

@xA
@E:

Axt

where in @I, y is not free in any undischarged assumptions that Axy depends
on, and either y is the same as x or y is not free in A; and in @E, t is free
for x in A.

Axt
DI:

DxA DxA

i
Axy

Π
C

DE: i
C

where in DI, t is free for x in A; and in DE, y is not free in C nor any
undischarged assumptions it depends on in Π except Axy , and either y is
the same as x or it is not free in A.

The introduction and elimination rules for identity are:

“ I: t “ t
t1 “ t2 Axt1

“ E:
Axt2

where A is an atomic formula. To exclude vacuous applications of “ E, we
can require that x is free in A and that t1 and t2 are different. An induction
over the complexity of formulas shows that the rule holds for formulas of
any complexity.
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To formalise definite descriptions, one could add the binary quantifier
ι to I. Its introduction and elimination rules would be:

F xt Gxt

i
F xz
Π

z “ t
ιI : i

ιxrF,Gs

where t is free for x in F and in G, and z is different from x, not free in t
and does not occur free in any undischarged assumptions in Π except F xz .3

ιxrF,Gs

F xz
i
, Gxz

i

loooooomoooooon

Π
C

ιE1 : i
C

where z is not free in C nor any undischarged assumptions it depends on
except F xz and Gxz , and either z is the same as x or it is not free in F nor
in G.

ιxrF,Gs F xt1 F xt2
ιE2 : t1 “ t2

where t1 and t2 are free for x in F .

For simplicity we could require that x occurs free in F and G. If we don’t,
the truth or falsity of ιxrF,Gs may depend on properties of the domain of
quantification: if F is true and does not contain x free, then ιxrF,Gs is
false if there is more than one thing in the domain of quantification, and
it is true if there is only one thing and G is true (of the one thing, if x is
free in G).

ιxrF,Gs and DxpF ^ @ypF xy Ñ y “ xq ^ Gq are interderivable. Notice
that the rules for identity are not applied in the two deductions to follow.

3A more precise and general statement of the introduction rule for ι would result if
we were to require Π to be a deduction of py “ tqyz from pFx

y q
y
z , where y is different from

x and not free in t, and either z is the same as y or z is not free in Fx
y nor in y “ t.
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1. ιxrF,Gs $ DxpF ^ @ypF xy Ñ y “ xq ^Gq

Let y be different from x and not free in F or G:

ιxrF,Gs

ιxrF,Gs
1

F xy
2

F
ιE2

y “ x
1

pF xy Ñ y “ xq

@ypF xy Ñ y “ xq
2

F

F ^ @ypF xy Ñ y “ xq
2

G

pF ^ @ypF xy Ñ y “ xq ^Gq

DxpF ^ @ypF xy Ñ y “ xq ^Gq
2 ιE1

DxpF ^ @ypF xy Ñ y “ xq ^Gq

2. DxpF ^ @ypF xy Ñ y “ xq ^Gq $ ιxrF,Gs

Let y be different from x and not free in F or G, and let
Ç

be the formula
pF ^ @ypF xy Ñ y “ xq ^Gq:

Dx
Ç

2Ç

F

2Ç

G

2Ç

@ypF xy Ñ y “ xq

F xy Ñ y “ x
1

F xy
y “ x

1 ιI
ιxrF,Gs

2
ιxrF,Gs

3. Intuitionist Free Logic

It is more interesting to add the ι quantifier to a free logic. I will use
formalisations of intuitionist free logic with a primitive predicate D!, to be
interpreted as ‘x exists’ or ‘x refers’ or ‘x denotes’. The introduction and
elimination rules for the quantifiers are:
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i
D!y

Π
Axy

@I : i
@xA

@xA D!t
@E :

Axt

where in @I, y does not occur free in any undischarged assumptions of Π
except D!y, and either y is the same as x or y is not free in A; and in @E,
t is free for x in A.

Axt D!t
DI :

DxA
DxA

Axy
i
, D!y

i

looooomooooon

Π
C

DE : i
C

where in DI, t is free for x in A; and in DE, y is not free in C nor any
undischarged assumptions of Π, except Axy and D!y, and either y is the
same as x or it is not free in A.

The elimination rule for identity in intuitionist free logic is the same as
in I.

In intuitionist positive free logic IPF, identity has the same introduc-
tion rule as in intuitionist logic, i.e. $ t “ t, for any term t. Semantically
speaking, in positive free logic any statement of self-identity is true, irre-
spective of whether a term refers or not.

In intuitionist negative free logic INF the introduction rule for identity
is weakened and requires an existential premise:

D!t
“ In : t “ t

In INF the existence of ti may be inferred if ti occurs in an atomic formula:

At1 . . . tn
AD :

D!ti

where A is an n-place predicate letter (including identity) and 1 ď i ď n.
Speaking semantically, for an atomic sentence, including identities, to be
true, all terms in it must refer. If the language has function symbols, there
is also the rule of functional denotation:
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D!ft1 . . . tn
FD :

D!ti

where f is an n-place function letter and 1 ď i ď n. Speaking semantically,
for the value of a function to exist, all of its arguments must exist. “ In,
AD and FD are called the rules of strictness.4

Hintikka’s Law D!t Ø Dx x “ t, where x not in t, is provable in INF
and IPF. In IPF, it suffices to observe the following:

t “ t D!t
Dx x “ t

Dx x “ t

1
x “ t

1
D!x

D!t
1

D!t

In INF, conclude t “ t from D!t.
The degree of a formula is the number of connectives occurring in it.

K, being a connective, is of degree 1. This excludes the superfluous case in
which K is inferred from K by KE. D!t is an atomic formula of degree 0.

The major premise of an elimination rule is the premise with the con-
nective that the rule governs. The other premises are minor premises. A
maximal formula is one that is the conclusion of an introduction rule and
the major premise of an elimination rule for its main connective. A seg-
ment is a sequence of formulas of the same shape, all minor premises and
conclusions of _E or DE, except the first and the last one; the first is only
a minor premise, the last only a conclusion. A segment is maximal if its
first formula has been derived by an application of an introduction rule
for its main connective, and its last formula is the major premise of an
elimination rule. A deduction is in normal form if it contains neither max-
imal formulas nor maximal segments. A normalisation theorem establishes
that any deduction can be brought into normal form by applying reduction
procedures for the removal of maximal formulas from deductions and per-
mutative reduction procedures for reducing maximal segments to maximal
formulas.

Notice that the conditions imposed on applications of “ E have the
consequence that there are no maximal formulas of the form t1 “ t2.

4INF is the system introduced by Scott [6] and called Nie by Troelstra and Schwicht-
enberg [9, 200] but with a simpler theory of identity. It is the system that results if
classical reductio ad absurdum, the rule that licenses the derivation of A if  A entails a
contradiction, is not taken to form part of the system Tennant presents in [8, Ch. 7.10].
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AD and FD have the characteristics of introduction rules for D!, and
“ Im has the characteristics of an elimination rule for it. In a sense @E and
DI of free logic also eliminate formulas of the form D!t. I will, however, not
count these rules as introduction and elimination rules for D!, as there is no
general way of removing formulas of the form D!t that have been concluded
by AD or FD and are premises of “ In, @E or DI.

Proofs of the normalisation theorem for intuitionist logic, such as those
given by Prawitz [5, Ch. IV.1] and Troelstra and Schwichtenberg
[9, Ch. 6.1], can be modified to carry over to the intuitionist free logics
considered here.

A normalisation theorem for intuitionist negative free logic with a term
forming ι operator can be reconstructed from material Tennant provides
in [8]. In particular, as in the case of I, we can assume that every appli-
cation of @I and DE has its own variable, that is, the free variable y of
an application of such a rule occurs only in the hypotheses discharged by
the rule and formulas concluded from them and, for @I, in the premise of
that rule and the formulas it has been derived from. This way we avoid
‘clashes’ between the restrictions on the variables of different application of
these rules when reduction procedures are applied to a deduction contain-
ing maximal formulas. Applying the reduction procedures for quantifiers
of free logic can only introduce maximal formulas of lower degree than the
one removed. I leave the details to the reader.

4. Natural Deduction for ι in INF

The interderivability of ιxrF,Gs and DxpF^@ypF xy Ñ x “ yq^Gq is the hall
mark of a Russellian theory of definite descriptions, in which any statement
of the form ‘The F is G’ is false if there is no F or if there is more than one.
It is the generally accepted treatment of definite descriptions in negative
free logic. To establish how to modify the rules for ι given in Section
2 to yield a Russellian theory of definite descriptions when the logic is
intuitionist negative free logic, we analyse the deductions establishing the
interderivability of ιxrF,Gs and DxpF ^ @ypF xy Ñ x “ yq ^ Gq in I given
at the end of that section.

Looking at the derivation of DxpF^@ypF xy Ñ x “ yq^Gq from ιxrF,Gs,
had the application of the universal quantifier introduction rule be one of
free logic, it would have allowed the discharge of an assumption D!y, and
had the existential quantifier introduction rule been one of free logic, a
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further assumption D!x would have been required. Both lend themselves as
additional premises of ιE2, as premises analogous to the existence assump-
tions in the rules of the quantifiers of free logic. D!y would be discharged by
the application of the universal quantifier introduction rule of free logic, so
in order for the conclusion of the deduction not to depend on D!x, it would
have to be discharged, and the only option here is that it is discharged by
the application of ιE1. This is also a natural option, corresponding, as it
does, to the discharge of existence assumptions by the quantifier rules of
free logic.

Generalising the first observation, we add the premises D!t1 and D!t2 to
ιE2:

ιxrF,Gs D!t1 D!t2 F xt1 F xt2
ιE2 : t1 “ t2

where t1 and t2 are free for x in F .
To implement the second observation, we add D!z as an additional dis-

charged assumption to ιE1:

ιxrF,Gs

F xz
i
, Gxz

i
, D!z

i

looooooooooomooooooooooon

Π
C

ιE1 : i
C

where is z not free in C nor any undischarged assumptions it depends on
except F xz , Gxz and D!z, and either z is the same as x or it is not free in F
nor in G.

To find suitable modifications of the introduction rule for ι, we look at
the derivation of ιxrF,Gs from DxpF ^@ypF xy Ñ x “ yq^Gq in I. Had the
application of the universal quantifier elimination rule been one of free logic,
a further assumption D!y would have been required, and had the existential
quantifier elimination rule been one of free logic, it would have allowed the
discharge of an assumption D!x. The latter lends itself as an additional
premise of ιI, the former as an additional assumption discharged by that
rule, which is again analogous to the existence assumptions required and
discharged in applications of the rules for the quantifiers of free logic.
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Generalising the second observation, we add D!t as a further premise,
and to implement the first observation we add D!z as a further discharged
assumption to ιI:

F xt Gxt D!t

F xz
i
, D!z

i

loooooomoooooon

Π
z “ t

ιI : i
ιxrF,Gs

where t is free for x in F and in G, and z is different from x, not free in t
and does not occur free in any undischarged assumptions in Π except F xz
and D!z.5

It is obvious that ιxrF,Gs and DxpF ^ @ypF xy Ñ x “ yq ^ Gq are
interderivable in INF when ι is governed by the modified rules, but we
give the deductions for convenience.

1. ιxrF,Gs $ DxpF ^ @ypF xy Ñ y “ xq ^Gq

Let x and y be different variables, where y is not free in F nor in G:

ιxrF,Gs

ιxrF,Gs
2

D!y
3

D!x
1

F xy
3

F
ιE2

y “ x
1

pF xy Ñ y “ xq
2

@ypF xy Ñ y “ xq
3

F

F ^ @ypF xy Ñ y “ xq
3

G

F ^ @ypF xy Ñ y “ xq ^G
3

D!x

DxpF ^ @ypF xy Ñ y “ xq ^Gq
3 ιE1

DxpF ^ @ypF xy Ñ y “ xq ^Gq

5A more precise and general statement of the introduction rule for ι would result
if we were to require Π to be a deduction of py “ tqyz from pFx

y q
y
z and D!z, where y is

different from x and not free in t, and either z is the same as y or z is not free in Fx
y

nor in y “ t.
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2. DxpF ^ @ypF xy Ñ y “ xq ^Gq $ ιxrF,Gs

Let
Ç

be the formula pF ^@ypF xy Ñ y “ xq^Gq, where y is different from
x and not free in F or G:

Dx
Ç

2Ç

F

2Ç

G
2

D!x

2Ç

@ypF xy Ñ y “ xq
1

D!y

F xy Ñ y “ x
1

F xy
y “ x

1 ιI
ιxrF,Gs

2
ιxrF,Gs

Let INFι denote the systems of intuitionist negative free logic augmented
with the rules for ι given in this section.

In order to prove a normalisation theorem for INFι, we first observe
that KE can be restricted to atomic conclusions in this system:

1. Instead of inferring @xA from K, infer Axy , for some y not occurring
in any assumption that K depends on, and apply @I, discharging
vacuously.

2. Instead of inferring DxA from K, infer Axt , for some t that is free for
x in A, infer D!t, and apply DI.

3. Instead of inferring ιxrF,Gs from K, infer F xt , Gxt , D!t and z “ t,
for some t that is free for x in F and in G and some z that is not
free in any assumption that K depends on, and apply ιI, discharging
vacuously.

Next, “ E can be restricted to atomic formulas in INFι. Consider an
application of this rule with premise ιxrF,Gsyt1 :

t1 “ t2 ιxrF,Gsyt1
ιxrF,Gsyt2

where t1 and t2 are free for y in ιxrF,Gs. The exclusion of vacuous appli-
cations of “ E means that y must be different from x, and so ιxrF,Gsyt1
is ιxrF yt1 , G

y
t1s. Let v and z be different variables not occurring in F , G,

t1, t2. The induction step applying “ E to subformulas of ιxrF,Gsyt1 is the
following:
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ιxrF yt1 , G
y
t1s

A B C D
ιxrF yt2 , G

y
t2s

2 ιE1 ,
ιxrF yt2 , G

y
t2s

where

A “
t1 “ t2

2
pF yt1q

x
z

pF yt2q
x
z

B “ t1 “ t2
2

pGyt1q
x
z

pGyt2q
x
z

C “ 2
D!z

D “ ιxrF yt1 , G
y
t1s

1
D!v

2
D!z

1
pF yt1q

x
v

2
pF yt1q

x
z

ιE2 .
v “ z

As for applications of @I and DE, we can assume that every application
of ιI and ιE1 has its own free variable, i.e. the variable z of an application
of ιI or ιE2 occurs only in the premises discharged by the rule and formulas
derived from the discharged premises, and nowhere else in the deduction.

I will now give the reduction procedures for maximal formulas of the
form ιxrF,Gs and the permutative reduction procedures for maximal seg-
ments consisting of a formula of that form.

There are two cases of reduction procedures for maximal formulas of
the form ιxrF,Gs to be considered. First, the conclusion of ιI is the major
premise of ιE1:

Σ1

F xt

Σ2

Gxt

Σ3

D!t

F xz
i
, D!z

i

loooooomoooooon

Π
z “ t

i
ιxrF,Gs

F xv
j
, Gxv

j
, D!v

j

loooooooooooomoooooooooooon

Ξ
C

j
C

Transform such steps in a deduction into the following, where Ξvt is the
deduction resulting from Ξ by replacing the variable v everywhere with the
term t:

F xt

Σ1

, Gxt

Σ2

, D!t
Σ3

loooooomoooooon

Ξvt
C
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The conditions on variables ensure that no clashes arise from the replace-
ment.

Second, the conclusion of ιI is the major premise of ιE2:

Σ1

F xt1

Σ2

Gxt1

Σ3

D!t1

F xz
i
, D!z

i

loooooomoooooon

Π
z “ t1

i
ιxrF,Gs

Ξ1

D!t2

Ξ2

D!t3

Ξ3

F xt2

Ξ4

F xt3
t2 “ t3

Transform such steps in a deduction into the following, where Πz
t2 and

Πz
t3 are the deductions resulting from Π by replacing z with t2 and t3,

respectively, and the last rule is an application of “ E:

F xt3

Ξ4

, D!t3

Ξ2

looomooon

Πz
t3

t3 “ t1

F xt2

Ξ3

, D!t2

Ξ1

looomooon

Πz
t2

t2 “ t1
t2 “ t3

The conditions on variables ensure that no clashes arise from the replace-
ments.

The second reduction procedure for maximal formulas of the form
ιxrF,Gs is slightly unusual, as it appeals to a rule for another logical con-
stant, i.e. identity. However, as the conclusion of ιE2 is an identity, it is
to be expected that its rules may have to be appealed to in the workings
of the rules for ι.

I only give two examples of permutative reduction procedures for for-
mulas of the form ιxrF,Gs that are the conclusion of _E, DE or ιE1 and
the major premise of ιE1 or ιE2. As in previous cases, clashes between
variables are avoidable by choosing different variables for the applications
of DE and the elimination rules for ι.
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First example. The major premise of ιE1 is concluded by DE:

DvA

i
Avy

Σ
ιxrF,Gs

i
ιxrF,Gs

F xz
j
, Gxz

j
, D!z

j

loooooooooooomoooooooooooon

Π
C

j
C

Replace such steps in a deduction by:

DvA

i
Avy

Σ
ιxrF,Gs

F xz
j
, Gxz

j
, D!z

j

loooooooooooomoooooooooooon

Π
C

j
C

i
C

Second example. The major premise of ιE2 is the conclusion of DE:

DvA

i
Avy

Σ
ιxrF,Gs

i
ιxrF,Gs D!t1 D!t2 F xt1 F xt2

t1 “ t2

Replace such steps in a deduction by:

DvA

i
Avy

Σ
ιxrF,Gs D!t1 D!t2 F xt1 F xt2

t1 “ t2
i

t1 “ t2

The remaining cases are similar.
I am not counting ιE2 as an introduction rule for “. There is no general

way of removing formulas t1 “ t2 concluded by ιE2 and eliminated by “ E,
as the following illustrates:
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ιxrF,Gs D!t1 D!t2 F xt1 F xt2
t1 “ t2 Axt1

Axt2

Thus there are no further maximal formulas to be considered in INFι.
After the theorem, I will give an alternative second elimination rule for ι
that avoids this problem.

We have the following:

Theorem 1. For any deduction Π of A from Γ in INFι there is a deduction
of the same conclusion from some of the formulas in Γ that is in normal
form.

Proof: By induction over the rank of proofs. The length of a segment is
the number of formulas it consists of and its degree the number of logical
constants in that formula. Let a maximal formula be a maximal segment of
length 1. The rank of a deduction is the pair xd, ly, where d is the highest
degree of a maximal segment or 0 if there is none, and l is the sum of the
lengths of maximal segments of highest degree. xd, ly ă xd1, l1y iff either
(i) d ă d1 or (ii) d “ d1 and l ă l1. Applying the reduction procedures to
a suitably chosen maximal segment of highest degree and longest length
reduces the rank of a deduction. 2

We can reformulate the second elimination rule for ι to incorporate an
application of Leibniz’ Law instead of concluding with an identity:

ιxrF,Gs D!t1 D!t2 F xt1 F xt2 Axt1
ιE2A : Axt2

A can be restricted to atomic formulas, an induction over the complexity of
formulas showing that the general version with A a formula of any degree
is admissible. Call the system resulting from INFι by replacing ιE2 with
ιE2A INFι1.

ιE2 and ιE2A are interderivable in virtue of the rules for identity:

1. To derive ιE2A, given premises ιxrF,Gs, D!t1, D!t2, F xt1 and F xt2 , derive
t1 “ t2 by ιE2 and apply “ E to it and the premise Axt1 to derive
Axt2 .

2. To derive ιE2, let A be t1 “ x, so that Axt1 is t1 “ t1: derive it from
D!t1 by “ In, apply ιE2A to derive Axt2 , i.e. t1 “ t2.

Thus INFι and INFι1 are equivalent.
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In INFι1, steps in a deduction that conclude t1 “ t2 by ιE2A (with
t1 “ t1 as Axt1) and using it as the identity in Leibniz’ Law are redundant:
ιE2A can instead be applied with the premise and conclusion of Leibniz’
Law. Such identities can therefore be removed from deductions, and we
are now at liberty to count them amongst the maximal formulas.

If a maximal formula arises from introducing ιxrF,Gs by ιI and elimi-
nating it by ιE2A, we have the following situation:

Σ1

F xt1

Σ2

Gxt1

Σ3

D!t1

F xz
i
, D!z

i

loooooomoooooon

Π
z “ t1

i
ιxrF,Gs D!t2

Ξ1

D!t3

Ξ2

F xt2

Ξ3

F xt3

Ξ4

Axt2

Ξ5

Axt3

We now have two options for removing the maximal formula. We can
proceed as previously: conclude t2 “ t3 by an application of Leibniz’ Law
to the conclusions t2 “ t1 of Πz

t1 and t3 “ t1 of Πz
t2 , and then apply

Leibniz’ Law once more with Axt2 as further premise and Axt3 as conclusion.
Alternatively, we can first conclude Axt1 from the conclusion t2 “ t1 of Πz

t1
and Axt2 , and then conclude Axt3 from Axt2 and the conclusion t3 “ t1 of
Πz
t2 . Thus deductions in the system resulting by replacing ιE2 by ιE2A

also normalise, and it has the additional advantage of avoiding identities
concluded by ιE2 and eliminated by Leibniz’ Law.

Thus we have the following:

Theorem 2. For any deduction Π of A from Γ in INFι1 there is a de-
duction of the same conclusion from some formulas in Γ that is in normal
form.

Deductions in INFι1 have slightly neater proof-theoretic properties than
those in INFι, as deductions in normal form in INFι1 do not contain
redundant identities introduced by ιE2 and eliminated by “ E. Deductions
in INFι are, however, slightly simpler if we are interested in establishing
identities, and this will be the case if we are interested in comparing the
present system with the standard treatment of ι as a term forming operator:
axioms and rules for the latter invariably appeal to identity.
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