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Abstract

Unifiability of terms (and formulas) and structural completeness in the variety of

relation algebras RA and in the products of modal logic S5 is investigated. Non-

unifiable terms (formulas) which are satisfiable in varieties (in logics) are exhib-

ited. Consequently, RA and products of S5 as well as representable diagonal-free

n-dimensional cylindric algebras, RDfn, are almost structurally complete but not

structurally complete. In case of S5n a basis for admissible rules and the form

of all passive rules are provided.

Keywords and phrases: admissible rules, passive rules, unification, projec-
tive unification, almost structural completeness, n-modal logic S5

n, rela-
tion algebras, representable diagonal-free cylindric algebras.

0. Introduction

Unification and E-unification of terms is a fundamental tool in Automated
Deduction and Term Rewriting Systems (see e.g. [3]). It has important
applications in logic, especially in the problem of admissibility of rules.
Let E be an equational theory and t1, t2 two terms (called a “unification
problem”). A substitution σ is called a unifier for t1, t2 in E, if ⊢E σ(t1) =
σ(t2). The terms t1 and t2 are unifiable if there is a unifier for them.
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A substitution σ is more general than a substitution τ , τ � σ, if there is a
substitution θ such that ⊢E θ ◦ σ = τ .

A mgu, a most general unifier, for t1, t2, is a unifier that is more gen-
eral than any unifier for t1, t2. An theory E has unitary unification if for
every unifiable terms there is a mgu for them. Roughly speaking, a num-
ber of �-maximal unifiers for unifiable terms determines the unification
type. Unification types can be also finitary (a finite number of �-maximal
unifiers), infinitary (an infinite number of �-maximal unifiers) or nullary
(�-maximal unifiers do not exist for some unifiable terms) see [3],[10].

Unification is studied in equational classes, or varieties, of algebras,
corresponding to theories. Unification is also translated from varieties to
the corresponding logics as follows (cf. [10], [11], [2]): a unification problem
t1, t2 is reduced to a single formula ϕ and a unifier for a formula ϕ in a
logic L is a substitution σ such that ⊢L σ(ϕ). A formula ϕ is unifiable in
L, if such σ exists. If τ , σ are substitutions, than σ is more general than
τ , τ � σ, if there is a substitution θ such that ⊢L θ(σ(x))↔ τ(x).

Classical propositional logic has unitary unification, every unifiable (=
consistent) formula has a mgu. But unification in intuitionistic logic and
some modal logics is finitary, not unitary; see S. Ghilardi [11], [12]. In his
studies [11], [12],[10] Ghilardi introduced and successfully applied projective

formulas and projective unifiers. A formula ϕ is projective in a logic L if
there is a unifier σ for ϕ in L such that, for each x ∈ Var(ϕ),

ϕ ⊢L σ(x)↔ x.

and σ, in this case, is called a projective unifier for ϕ in L, see [2]. Note that
σ is a mgu. If every unifiable formula is projective in a logic, then we say
that unification is projective in L (and, hence, unitary). Projective unifiers
are useful in recognizing admissible rules. If unification in L is projective,
then L is (almost) structurally complete, that is, every admissible rule (with
unifiable premises) is derivable in L, see e.g. [7], [8], [16]. Formulas which
are not unifiable but consistent give rise to passive (hence admissible) rules
which are not derivable. In [6], by a modification of the proof of S. Burris
[4], it is observed that unification is projective in discriminator varieties.

Section 3 contains results for products for modal logic S5: a cri-
terion for non-unifiability in S5

n, description of passive rules, a basis
for admissible rules in S5

n and almost structural completeness of S5
n.

As a corollary we get analogous results for representable diagonal-free n-
dimensional cylindric algebras, RDfn, which are an algebraic face of S5n,
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see [9], [13], [14]. In Section 4 non-unifiable (but satisfiable) terms in re-
lation algebras are given. It is shown that the variety of relation algebras
are almost structurally complete but not structurally complete.

1. Algebraic Preliminaries

We use the basic notions of universal algebra, see for instance [4]. V(K)
denotes the variety generated by a class K, V(K) = HSP (K). The class
of subdirectly irreducible algebras in a variety V is denoted by VSI .

Given an algebra A, a term t(x, y, z) is a discriminator term for A if,
for every a, b, c ∈ A,

t(a, b, c) =

{
c, if a = b,

a, if a 6= b.

A variety V is a discriminator variety if there is a class K of algebras which
generates V such that there is a term t(x, y, z) which is a discriminator term
for every algebra from K; in particular for K = VSI .

Let V be a variety. Given two terms p(x1, . . . , xn), q(x1, . . . , xn), a
substitution τ , τ(xi) = ti for i ≤ n is called a unifier of p and q in V if the
equation p(t1, . . . , tn) = q(t1, . . . , tn) holds in V, i.e.

|=V p(t1, . . . , tn) = q(t1, . . . , tn).
If such τ exists, then the terms p(x1, . . . , xn), q(x1, . . . , xn) are unifiable

in V. σ is more general than τ , if |=V ε ◦ σ = τ , for some substitution ε.
The semantic entailment |=V determined by V is defined, for two equa-

tions pi(x1, . . . , xn) = qi(x1, . . . , xn), i = 1, 2, as follows
p1(x1, . . . , xn) = q1(x1, . . . , xn) |=V p2(x1, . . . , xn) = q2(x1, . . . , xn) iff

for any A ∈ V and any a1, . . . , an ∈ A,
whenever p1(a1, . . . , an) = q1(a1, . . . , an) is true in A, then
p2(a1, . . . , an) = q2(a1, . . . , an) is true in A.
A unifier ε for p = p(x1, . . . , xn) and q = q(x1, . . . , xn) is projective in V if

(p = q) |=V ε(xi) = xi, for all i ≤ n.

A variety V (or a logic L) has projective unification if for every two
unifiable terms (for every formula) a projective unifier exists. From [4], [6]
we get

Theorem 1. Discriminator varieties have projective unification.

Corollary 2. Discriminator varieties are almost structurally complete.
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2. Unifiability, passive rules and a basis for admissible

rules in products of S5 logics.

We find an “upper bound” for formulas that are not unifiable in products of
logic S5. Based on this we describe the form of passive rules and provide
an explicit basis for admissible rules in S5

n. We also show that S5
n is

almost structurally complete but not structurally complete.
Let us consider the standard n-modal language, for arbitrary but fixed

n ∈ N. Ln denotes a n-modal language built up by means of propo-
sitional variables V ar = {x1, x2, . . . }, Boolean connectives ∧,¬ and the
constant ⊤, for truth, and by means of modal operators ♦1, . . . ,♦n, rep-
resenting ‘possibility’. The remaining classical connectives →,∨,↔,⊥ and
modal connectives �1, . . . ,�n (for ‘necessity’) are defined in the usual way;
V ar(ϕ) denotes the set of variables occurring in a formula ϕ.

The fusion of n copies of S5 modal logic, S5⊗ · · · ⊗ S5, is defined by
the set of S5-axioms, for each ♦i, i = 1, . . . , n, separately, on the top of
classical propositional logic (note that no interaction between ♦i and ♦j ,
i 6= j, occurs):

Ki : �i(ϕ→ ψ)→ (�iϕ→ �iψ),

Ti : �iϕ→ ϕ,

4i : �iϕ→ �i�iϕ,

Bi : ♦i�iϕ→ ϕ,

where, as usually, �ix↔ ¬♦i¬x, with following rules:

RNi :
ϕ

�iϕ
, MP :

ϕ→ ψ, ϕ

ψ

We use basic definitions and results on n-frames, products of normal
modal logics, in particular of S5, from the book [9]; in Chapter 3 and 8 the
notion of the product of n-copies of normal modal logics is studied.

The n-dimensional product of Kripke frames Fi = (Wi, Ri), for i =
1, . . . , n is the n-frame F1× · · · ×Fn = (W1× · · · ×Wn, R1, . . . , Rn), where
each Ri, i = 1, . . . , n, is a binary relation on W1 × · · · ×Wn such that

(u1, . . . , un)Ri(v1, . . . , vn) ⇐⇒ uiRivi and uk = vk, for all k 6= i, i ≤ n.

For each i = 1, . . . , n, let Li be a Kripke complete modal logic deter-
mined by a class of all L-frames Fri. The n-dimensional product of modal

logics Li, for i = 1, . . . n, is the n-modal logic determined by frames of the
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form F1×· · ·×Fn, where Fi ∈ Fri, for each i = 1, . . . , n. Given the product
of frames: (W1 × · · · ×Wn, R1, . . . , Rn), a model based on it is defined in
a standard way.

S5
n denotes the n-fold product S5 × · · · × S5. It is known that for

n-times fusion we have: S5⊗ · · · ⊗ S5 ⊂ S5
n, and the inclusion is proper.

The commutativity law, that states an interaction between ♦i and ♦j :

commij : ♦i♦jx↔ ♦j♦ix, for i, j = 1, . . . , n

is valid in every product of modal logics, in particular in S5
n, but is not

provable in the fusion S5⊗· · ·⊗S5. Note that S5⊗· · ·⊗S5+commij ⊂ S5
n.

For n = 2 the equality holds, S5⊗ S5+ commij = S5
2.

Uni-modal logic S5 is determined by the universal frames: (W,W ×W ). n-
modal logic S5

n is determined by products of n-copies of frames (Wi, Ri),
where Ri =Wi ×Wi, for i = 1, . . . , n, see [9], p. 129.
A frame of the form (Wn

, R1, . . . , Rn), where (u1, . . . , un)Ri(v1, . . . , vn) iff
ui, vi ∈ W and uk = vk, for all k 6= i, i ≤ n, is called the cubic universal

product frame. In this case, having a string ♦1 . . .♦n of all diamonds, any
point (w′

1, . . . , w
′
n) of Wn can be accessed from any point (w1, . . . , wn) of

W
n, i.e. Wn is a ‘♦1 . . .♦n-cluster’. We will use Prop. 3.12 of [9]:

Proposition 3. S5
n is determined by the cubic universal product frames.

Due to the commutativity law ♦i♦jx↔ ♦j♦ix, for i, j ≤ n, the order
of operators ♦i is not essential; hence, for fixed n, we use abbreviations:

♦̂ϕ = ♦1 . . .♦nϕ and �̂ϕ = �1 . . .�nϕ.

Recall that Γ ⊢S5n ϕmeans that ϕ can be derived from Γ and S5
n-theorems

using the rules MP and RNi : ψ/�iψ, for every i ≤ n; ⊢S5n is a global

consequence relation. Moreover, the Deduction Theorem holds.

Theorem 4 (Deduction Theorem). For every Γ, ϕ, ψ in Ln,

Γ, ϕ ⊢S5n ψ iff Γ ⊢S5n �̂ϕ→ ψ.

Using the following lemma on non-unifiable formulas we will find the
basis for admissible passive rules. Some of the following lemmas are modi-
fications of similar facts in monomodal logics over S4.3, see [7], [8].
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Lemma 5. If ϕ is not unifiable in S5
n and V ar(ϕ) ⊆ {x1, . . . , xk}, then

ϕ ⊢S5n (♦̂x1 ∧ ♦̂¬x1) ∨ · · · ∨ (♦̂xk ∧ ♦̂¬xk).

Proof: Let us proceed by induction on k. The formula is true for k =
0, as ϕ must be ⊥. Suppose the condition holds for each formula in k

variables and suppose that ϕ(x1, . . . , xk+1) is not unifiable in S5
n. So are

ϕ(x1, . . . , xk,⊤) and ϕ(x1, . . . , xk,⊥) (henceforth we omit ‘S5n’). We have
(xk+1 ↔ ⊤) ⊢ ϕ(x1, . . . , xk+1)↔ ϕ(x1, . . . , xk,⊤)
(xk+1 ↔ ⊥) ⊢ ϕ(x1, . . . , xk+1)↔ ϕ(x1, . . . , xk,⊥)
By induction hypothesis

ϕ(x1, . . . , xk,⊤) ⊢ (♦̂x1∧♦̂¬x1)∨· · ·∨(♦̂xk∧♦̂¬xk), and ϕ(x1, . . . , xk,⊥) ⊢

(♦̂x1 ∧ ♦̂¬x1) ∨ · · · ∨ (♦̂xk ∧ ♦̂¬xk). Hence, we get

xk+1, ϕ(x1, . . . , xk+1) ⊢ (♦̂x1 ∧ ♦̂¬x1) ∨ · · · ∨ (♦̂xk ∧ ♦̂¬xk)

¬xk+1, ϕ(x1, . . . , xk+1) ⊢ (♦̂x1 ∧ ♦̂¬x1) ∨ · · · ∨ (♦̂xk ∧ ♦̂¬xk)
, and

ϕ(x1, . . . , xk+1) ⊢ �̂xk+1 → (♦̂x1 ∧ ♦̂¬x1) ∨ · · · ∨ (♦̂xk ∧ ♦̂¬xk)

ϕ(x1, . . . , xk+1) ⊢ �̂¬xk+1 → (♦̂x1 ∧ ♦̂¬x1) ∨ · · · ∨ (♦̂xk ∧ ♦̂¬xk)

from which it follows that ϕ ⊢ (♦̂x1∧♦̂¬x1)∨· · ·∨(♦̂xk+1∧♦̂¬xk+1).

We use ub(k) as an abbreviation of (♦̂x1∧♦̂¬x1)∨· · ·∨(♦̂xk∧♦̂¬xk) as
this formula is an upper bound, in the ordering of the Lindenbaum-Tarski
algebra, for non-unifiable formulas; so lemma 5 says: ϕ ⊢S5n ub(k).

Let F0 be an n-frame which consists of a single 1-element cluster
{(u, u, . . . , u)}, and (u, u, . . . , u)Ri(u, u, . . . , u) for all i ≤ n, that is, F0

is the product of n copies of a 1-element unimodal reflexive frame. In F0

modal operators ♦i are inessential, satisfiability of ϕ in F0 is equivalent to
satisfiability of ϕ (with all operators ♦i deleted) in classical logic. Note that
F0 is a model of S5n and {⊤,⊥} is a subalgebra of the Lindenbaum-Tarski
algebra for S5n.

Lemma 6. In S5
n the following conditions are equivalent:

1. ϕ is unifiable,

2. τ0ϕ↔ ⊤, for some substitution τ0 : V ar(ϕ)→ {⊤,⊥},

3. ϕ is satisfiable in F0.

Corollary 7. In S5
n unifiability of formulas and recognizing passive rules

is decidable.
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In F0: ♦̂ψ ∧ ♦̂¬ψ ↔ ⊥, hence τ(ub(k)) is not satisfiable in F0. Thus, if

ϕ ⊢S5n (♦̂x1 ∧ ♦̂¬x1) ∨ · · · ∨ (♦̂xk ∧ ♦̂¬xk), then ϕ is not unifiable in S5
n.

Corollary 8. ϕ is not unifiable in S5
n, with V ar(ϕ) ⊆ {x1, . . . , xk}, iff

ϕ ⊢S5n (♦̂x1 ∧ ♦̂¬x1) ∨ · · · ∨ (♦̂xk ∧ ♦̂¬xk).

Lemma 9. If ϕ is not unifiable in S5
n, then there is a formula ψ such that

ϕ ⊢S5n ♦̂ψ ∧ ♦̂¬ψ.

Proof: Let V ar(ϕ) ⊆ {x1, . . . , xk}. We use Lemma 5. We define, by
induction on k, a formula ψk such that: ψ1 = x1 and
ψk+1 = (xk+1 ∧ ♦̂¬xk+1) ∨ (�̂xk+1 ∨ �̂¬xk+1) ∧ ψk.

Its negation is: ¬ψk+1 = (¬xk+1 ∨ �̂ xk+1) ∧
(
(♦̂¬xk+1 ∧ ♦̂xk+1) ∨ ¬ψk

)
.

Now we prove, by induction on k, that ⊢S5n �̂ub(k)→ ♦̂ψk ∧ ♦̂¬ψk, i.e.:

(◦) (♦̂x1 ∧ ♦̂¬x1) ∨ · · · ∨ (♦̂xk ∧ ♦̂¬xk) ⊢S5n ♦̂ψk ∧ ♦̂¬ψk.

By the definition, (◦) holds for k = 1.
For the induction step, suppose that ψk satisfies (◦) and we show that:

w 
 �̂ub(k + 1) implies w 
 ♦̂ψk+1 ∧ ♦̂¬ψk+1, for any w ∈ W
n. So,

using Proposition 3, let us take a cubic universal product model for S5
n,

(Wn
, R1, . . . , Rn,
), and assume that w 
 �̂ub(k + 1), i.e. that

(AS) w 
 �̂
(
(♦̂x1 ∧ ♦̂¬x1)∨ · · · ∨ (♦̂xk+1 ∧ ♦̂¬xk+1)

)
for any w ∈Wn

.

There are two cases: (Case 1) either for each element y in the set Wn.

(1) y 
 �̂xk+1 ∨ �̂¬xk+1,
or (Case 2): the negation of (Case 1) holds.

(Case 1) Since ub(k+1) = ub(k)∨¬(�̂xk+1∨�̂¬xk+1) we get, by (AS),

w 

(
(♦̂x1∧♦̂¬x1)∨· · ·∨(♦̂xk∧♦̂¬xk)

)
; hence, by the induction hypothesis,

there exists ψk such that w 
 ♦̂ψk ∧ ♦̂¬ψk, for each w in Wn. Hence,
(1.1) ∃y1∈Wn y1 
 ψk and (1.2) ∃y2∈Wn y2 
 ¬ψk.

Thus, by (1.1), y1 
 (�̂xk+1 ∨ �̂¬xk+1)∧ψk, i.e. w 
 ♦̂ψk+1, for w ∈W
n.

Now, by (1), y2 
 (�̂¬xk+1 ∨ �̂ xk+1), in S5
n: y2 
 (¬xk+1 ∨ �̂ xk+1),

and by (1.2), we get y2 

(
(♦̂¬xk+1 ∧ ♦̂xk+1)∨¬ψk

)
, hence y2 
 (¬xk+1 ∨

�̂ xk+1) ∧
(
(♦̂¬xk+1 ∧ ♦̂xk+1) ∨ ¬ψk

)
, i.e. w 
 ♦̂¬ψk+1, for any w ∈ W

n.

Consequently, w 
 ♦̂ψk+1 ∧ ♦̂¬ψk+1, for any w ∈W
n in (Case 1).
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(Case 2) - the negation of (Case 1); we have two conditions:
(2.1) ∃z1∈Wn z1 
 ¬xk+1 and (2.2) ∃z2∈Wn z2 
 xk+1.

Then, since z1, z2 ∈W
n, z2 
 xk+1 ∧ ♦̂¬xk+1, hence w 
 ♦̂ψk+1.

Now we show that z1 
 ¬ψk+1. By (2.1), z1 
 ¬xk+1 ∨ �̂ xk+1, the first

part of ¬ψk+1. For the second part observe that, by (2.2), z1 
 ♦̂ xk+1.

Now by (2.1), z1 
 ♦̂¬xk+1, hence z1 
 ♦̂ xk+1∧♦̂¬xk+1, thus, z1 
 ¬ψk+1.

Therefore w 
 ♦̂ψk+1 ∧ ♦̂¬ψk+1, for any w ∈W
n, in (Case 2) too.

From [5], 6.26, 6.29, (see also [2]) we have

Lemma 10. Unification in S5
n is projective. For every unifiable formula

ϕ with a ground unifier τ0 : Ln → {⊥,⊤} a unifier for ϕ of the following

form is projective:

σ(x) = (�̂ϕ→ x) ∧ (�̂ϕ ∨ τ0(x)), for x ∈ V ar(ϕ).

Let us consider the following rule, which can be seen as a generalization
of the rule P2 in monomodal logic, see e.g. [17], [7].

P
n
2 :

♦1 . . .♦nϕ ∧ ♦1 . . .♦n¬ϕ

⊥
, in an abbreviated form:

♦̂ϕ ∧ ♦̂¬ϕ

⊥
.

Recall that a rule ϕ/ψ is passive in a logic L if ϕ is not unifiable in L.

The rule Pn
2 is passive and hence, admissible, in S5

n. But ♦̂x ∧ ♦̂¬x is

satisfiable, hence ♦̂x ∧ ♦̂¬x 6⊢S5n ⊥, i.e. P
n
2 is not derivable in S5

n.

Corollary 11. n-modal logic S5
n is almost structurally complete but not

structurally complete.

From lemma 9 we get that Pn
2 is the strongest of all passive rules in S5

n.

Corollary 12. A modal consequence relation over S5
n obtained by ex-

tending an n-modal logic L ⊇ S5
n with the rule Pn

2 is structurally complete.

The rule Pn
2 forms a basis for all passive (admissible) rules in S5

n.

For unimodal logics containing S4 a similar description of non-unifiable
formulas as in Lemma 9 and a similar basis for passive rules in unimodal
logics was given in [18], [19]. Now we give a form of passive rules in S5

n.
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Theorem 13. Each passive rule in S5
n is equivalent to a rule of the form

♦̂ψ ∧ ♦̂¬ψ

θ

for some formulas ψ, θ.

Proof: Let ϕ/λ be a passive rule in S5
n and assume that λ = �̂λ. By

lemma 9 we have ϕ ⊢S5n ♦̂ψ∧ ♦̂¬ψ, for some ψ, and hence ϕ is deductively
equivalent, in the sense of ⊢S5n , to (♦̂ψ∧ ♦̂¬ψ)∧ (♦̂ψ∧ ♦̂¬ψ → ϕ) (we will
omit S5n from ⊢S5n below).

Let us observe that (♦̂ψ ∧ ♦̂¬ψ → ϕ) is unifiable and hence, by lemma
10, there is a projective unifier σ for this formula. We will show that the
following two rules are equivalent

ϕ

λ

and
♦̂σ(ψ) ∧ ♦̂¬σ(ψ)

σ(λ)

(→) Suppose that the rule ϕ/λ holds, i.e. ϕ ⊢ λ. Then, σ(ϕ) ⊢ σ(λ).

Since σ is a unifier for ♦̂ψ∧ ♦̂¬ψ → ϕ, this gives ♦̂σ(ψ)∧ ♦̂¬σ(ψ) ⊢ σ(λ).

(←) Assume that ♦̂σ(ψ)∧ ♦̂¬σ(ψ) ⊢ σ(λ). Since ϕ ⊢ ♦̂ψ ∧ ♦̂¬ψ → ϕ and

σ is projective, i.e. (♦̂ψ ∧ ♦̂¬ψ → ϕ) ⊢ x↔ σ(x), we get ϕ ⊢ ψ ↔ σ(ψ),

and hence, using ϕ ⊢ ♦̂ψ ∧ ♦̂¬ψ we get ϕ ⊢ ♦̂ϕ(ψ) ∧ ♦̂¬σ(ψ). This gives
ϕ ⊢ σ(λ), and hence, using again projectivity of σ, we get ϕ ⊢ λ.

We conclude that an arbitrary passive rule in S5
n is a subrule of the

rule Pn
2 . Since θ can be taken independently of ψ, infinitely many different

rules of the form ♦̂ψ ∧ ♦̂¬ψ/θ can be found.
Let us note that the variety RDfn of n-dimensional diagonal-free rep-

resentable cylindric algebras forms an algebraic semantics for S5n, see [9],
8.1, [13], [14]. A diagonal-free cylindric algebra of n-dimension is an al-
gebra C = (C, 0, 1,∧,∨,−, ci)i∈{1,...,n}, where (C, 0, 1,∧,∨,−) is a Boolean
algebra and the operations of cylindrification ci, for i ≤ n, satisfy the fol-
lowing axioms, for every x, y ∈ C, i, j ≤ n:
(1) ci0 = 0, (2) x ≤ cix, (3) ci(x ∧ ciy) = cix ∧ ciy, (4) cicjx = cjcix.
A representable (diagonal-free) cylindric algebra is a cylindric algebra that
is isomorphic to a subdirect product of (diagonal-free) cylindric set alge-
bras, see [14], [13].

If one substitutes ♦i for ci then the axioms (1) - (4) become provable
in S5

n, see [9]. The following quasi-identity:
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Pn
2 : c1 . . . cnx ∧ c1 . . . cn − x = 1 ⇒ 1 = 0

holds in the ω-generated free RDfn-algebra but does not hold in the variety
RDfn. Similarly, expressions like c1 . . . cnx ∧ c1 . . . cn − x = 1 ⇒ p(y) =
q(z) hold in the free RDfn-algebra but may not hold in RDfn.

By [4] the variety RDfn is a discriminator variety, hence it is almost
structurally complete (see also [6]). Thus we have

Corollary 14. The variety RDfn is almost structurally complete but not

structurally complete.

There is a major difference between RDfn (or S5n), for n = 2 and for
n ≥ 3 . For n ≥ 3, RDfn is undecidable (R. Maddux 1980), it is not finitely
axiomatizable (J. Johnson 1969) and it does not have the f.m.p. (I. Nemeti
1984, A. Kurucz 2002). But S5

2 (and RDf2) is finitely axiomatizable by
Sahlqvist-formulas, it has the f.m.p. (N. Bezhanishvili, M. Marx 2003) and
it is decidable by D. Scott, and satisfiability is NEXPTIME complete, (M.
Marx 2003). Hence we have

Corollary 15. Admissibility of rules is decidable in S5
2 and in RDf2.

3. Almost structural completeness in relation algebras

We will show that the theory of relation algebras, RA, is almost structurally
complete but not structurally complete. A. Tarski presented the axioms
for an equational theory of relation algebras in 1941, see [20], which consist
of the axioms for Boolean algebras and axioms for relational operations:
composition, conversion and identity.

Let X be a set. An algebra (S,∪,′ , X2
, ∅, ◦,−1

, ıδ), where S ⊆ P(X2),
with operations ◦,−1

, ıδ (binary, unary and nullary, respectively) is called
a proper relation algebra, (PRA), if:

1. (S,∪,′ , X2
, ∅) is a field of sets,

2. (S, ◦,−1
, ıδ) is an involutive monoid, with the composition ◦, the

converse −1, and the identity ıδ (which is =).

3. ◦ and −1 are monotone operators,

4. ◦ and −1 satisfy the so called De Morgan theorem K, that is

[(x ◦ y) ≤ z]⇒ [(x−1 ◦ −z) ≤ −y] and [(−z ◦ y−1) ≤ −x].
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A relation algebra (RA) is an algebra (A,∨,−, 1, 0, ◦,` , e) such that
(A,∨,−, 1, 0) is a Boolean algebra and the operators: ◦ (binary), `(unary)
and e (a constant) satisfy the following conditions:

1. x ◦ (y ∨ z) = (x ∨ y) ◦ (x ∨ z),

2. x ◦ (y ◦ z) = (x ◦ y) ◦ z,

3. x ◦ e = x = e ◦ x,

4. (x ∨ y)` = x
` ∨ y`,

5. (x`)` = x,

6. (−x)` = −(x`),

7. e` = e,

8. (x ◦ y)` = y
` ◦ x`,

9. (x` ◦ −(x ◦ y)) ∨ −y = −y.

A relation algebra is called a representable relation algebra (RRA), if it is
isomorphic to a subalgebra of a proper relation algebra. Not every relation
algebra is representable (R. Lyndon 1950), see [14], [15].

The equational theory of relation algebras, RA, is undecidable (A.
Tarski [20]). But unifiablility of terms in RA is decidable, see 3.4 in [4].

Theorem 16 ([4]). Terms p and q are unifiable in RA, iff the equation

p = q has a solution in the relation algebras with at most four elements.

There are two four-element algebras on {1, 0, e,−e}, see [1],[14]; in [14]
they are called the two-atom algebras. Two definitions of ◦ on {1, 0, e,−e}
are possible, since the result of −e ◦ −e can be e or 1:

◦ 1 0 e −e
1 1 0 1 1
0 0 0 0 0
e 1 0 e −e
−e 1 0 −e e

◦ 1 0 e −e
1 1 0 1 1
0 0 0 0 0
e 1 0 e −e
−e 1 0 −e 1

Using these two-atom algebras we can effectively check unifiablility of
terms in RA.

Theorem 17. The terms

(x ◦ y) ∩ (−x ◦ y) ∩ (x ◦ −y) ∩ (−x ◦ −y) and 1

are not unifiable in RA, but the equation
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(x ◦ y) ∩ (−x ◦ y) ∩ (x ◦ −y) ∩ (−x ◦ −y) = 1

is satisfiable in RA.

Proof: Every calculation of the term in both four-element algebras give
the result 0:

(1, 1): (1 ◦ 1) ∩ (0 ◦ 1) ∩ (1 ◦ 0) ∩ (0 ◦ 0) = 1 ∩ 0 ∩ 0 ∩ 0 = 0,

(1, 0): (1 ◦ 0) ∩ (0 ◦ 0) ∩ (1 ◦ 1) ∩ (0 ◦ 1) = 0 ∩ 0 ∩ 1 ∩ 0 = 0,

(0, 0): (0 ◦ 0) ∩ (1 ◦ 0) ∩ (0 ◦ 1) ∩ (1 ◦ 1) = 0 ∩ 0 ∩ 0 ∩ 1 = 0,

(0, e): (0 ◦ e) ∩ (1 ◦ e) ∩ (0 ◦ −e) ∩ (1 ◦ −e) = 0 ∩ 1 ∩ 0 ∩ 1 = 0,

(1, e): (1 ◦ e) ∩ (0 ◦ e) ∩ (1 ◦ −e) ∩ (0 ◦ −e) = 1 ∩ 0 ∩ 1 ∩ 0 = 0,

(0,−e): (0 ◦ −e) ∩ (1 ◦ −e) ∩ (0 ◦ e) ∩ (1 ◦ e) = 0 ∩ 1 ∩ 0 ∩ 1 = 0,

(1,−e): (1 ◦ −e) ∩ (0 ◦ −e) ∩ (1 ◦ e) ∩ (0 ◦ e) = 1 ∩ 0 ∩ 1 ∩ 0 = 0,

(−e,−e): (−e ◦ −e) ∩ (e ◦ −e) ∩ (−e ◦ e) ∩ (e ◦ e) = ? ∩ − e ∩ −e ∩ e = 0,

(e,−e): (e ◦ −e) ∩ (−e ◦ −e) ∩ (e ◦ e) ∩ (−e ◦ e) = −e∩ ? ∩e ∩ −e = 0,

(−e, e): (−e ◦ e) ∩ (e ◦ e) ∩ (−e ◦ −e) ∩ (e ◦ −e) = −e ∩ e∩ ? ∩ − e = 0,

(e, e): (e ◦ e) ∩ (−e ◦ e) ∩ (e ◦ −e) ∩ (−e ◦ −e) = e ∩ −e ∩ −e∩ ? = 0.

The results of (−e ◦ −e) are indicated by ?, as they have different values
in the two four-element algebras, but the final value is 0. Hence the two
terms are not unifiable in RA.

On the other hand, the equation

(x ◦ y) ∩ (−x ◦ y) ∩ (x ◦ −y) ∩ (−x ◦ −y) = 1

is satisfiable in the following proper relation algebra with 16 atoms,
(P({0, 1, 2, 3}2),∪,′ , {0, 1, 2, 3}2, ∅, ◦,−1

, {(0, 0), (1, 1), (2, 2), (3, 3)}),
with the valuation:
x = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 2), (1, 2), (2, 2), (3, 2)}
y = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3)}

The relations are shown on the following graph, with x as a dotted line
and y as a solid line:
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Hence, the following quasi-identity:

(x ◦ y) ∩ (−x ◦ y) ∩ (x ◦ −y) ∩ (−x ◦ −y) = 1 ⇒ 1 = 0

holds in the ω-generated free relation algebra but does not hold in RA.
By the result of A.Tarski, see [14], [4], [13], [15] it is known that

Theorem 18 (A.Tarski). The variety RA of relation algebras is a dis-

criminator variety.

Corollary 19. The variety RA of relation algebras is almost structurally

complete but not structurally complete.

We would like to thank the reviewers for their comments and sugges-
tions that helped improving the paper.
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