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Abstract

In this paper, we prove that the lattice of all closure operators of a complete

Almost Distributive Lattice L with fixed maximal element m is dual atomistic.

We define the concept of a completely meet-irreducible element in a complete

ADL and derive a necessary and sufficient condition for a dual atom of Φ(L) to

be complemented.
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1. Introduction:

In [17] Swamy and Rao introduced the concept of an Almost Distributive
Lattice (ADL) as a common abstraction of almost all the existing ring
theoretic generalizations of a Boolean algebra like p-rings [12], regular rings
[11], biregular rings [16], associate rings [10], p1-rings [13], triple systems
[15], baer rings [1], m-domain rings [14] and ∗-rings [2] on one hand and the
class of distributive lattices on the other. Thus, a study of any concept in
the class of ADLs will yield results in all the classes of algebras mentioned
above. In [17], they also observed that the set PI(L) of all principal ideals
of an ADL (L,∨,∧, 0,m) with a maximal element m, forms a bounded
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distributive lattice. Through this distributive lattice PI(L), many existing
concepts of lattice theory were extended to the class of ADLs [3, 4, 5, 18].

In mathematics, closure operators play important role in topology, al-
gebra and logic and in theoretical computer sciences, closure operators have
been widely used in the semantic area, notably in domain theory, in pro-
gram semantics and in the theory of semantics approximation by abstract
interpretation. In view of the rich applications of complete lattices and the
closure operators in different fields, we introduced the concept of a com-
plete ADL L in [6] and the concept of a closure operator of a complete
ADL in [7, 8] and derived some important properties on closure operators.
In this paper, we define the concept of a completely meet irreducible el-
ement in a complete ADL (L,∨,∧, 0,m) and establish a relation between
completely meet irreducible elements in a complete ADL L and dual atoms
of the lattice (Φ(L),≤) of all closure operators of L. We derive necessary
and sufficient conditions for dual atoms in the lattice (Φ(L),≤) to have
complements.

2. Preliminaries

Definition 2.1. [17] An algebra (L,∨,∧, 0) of type (2, 2, 0) is called an
Almost distributive lattice (ADL) if, for any a, b, c ∈ L, the following con-
ditions hold:
(1) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). (4) (a ∨ b) ∧ b = b.
(2) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c). (5) a ∨ (a ∧ b) = a.
(3) (a ∨ b) ∧ a = a. (6) 0 ∧ a = 0.

Lemma 2.2. [17] If (L,∨,∧, 0) is an ADL, for any a, b ∈ L, define a ≤ b if

and only if a = a ∧ b or equivalently a ∨ b = b, then ≤ is a partial ordering

on L and for any a, b, c ∈ L, we have the following:

(1) a ∨ b = a⇔ a ∧ b = b

(2) a ∨ b = b⇔ a ∧ b = a

(3) a ∨ b = b ∨ a whenever a ≤ b

(4) ∧ is associative in L

(5) a ∧ b ∧ c = b ∧ a ∧ c

(6) (a ∨ b) ∧ c = (b ∨ a) ∧ c
(7) a ∧ b = 0 ⇔ b ∧ a = 0
(8) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
(9) a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a
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(10) a ≤ a ∨ b and a ∧ b ≤ b

(11) a ∧ a = a and a ∨ a = a

(12) 0 ∨ a = a and a ∧ 0 = 0
(13) If a ≤ c, b ≤ c, then a ∧ b = b ∧ a and a ∨ b = b ∨ a

(14) a ∨ b = (a ∨ b) ∨ a.

In the above Lemma, properties (5) and (6) are restricted commuta-
tivity of ∨ and ∧ respectively. From this we get that , for any a, b ∈ L, the
interval [a, b] := {x ∈ L | a ≤ x ≤ b} is a bounded distributive lattice.

Theorem 2.3. [17] Let (L,∨,∧, 0) be an ADL. Then, for any m ∈ L, the

following are equivalent:

(1) m is maximal

(2) m ∨ x = m for all x ∈ L

(3) m ∧ x = x for all x ∈ L.

If (L,∨,∧, 0) is an ADL and m is a fixed maximal element of L, then
we say that (L,∨,∧, 0,m) is an ADL with a maximal element m.

Definition 2.4. [17] A non empty subset I of an ADL L is said to be an
ideal of L, if a ∨ b, a ∨ x ∈ I for all a, b ∈ I, x ∈ L.

For any non empty subset S of L

(S] = {(

n∨

i=1

si) ∧ x| si ∈ S, x ∈ L, n is a positive integer}

is the smallest ideal of L containing S. In particular, for any x ∈ L, (x] =
({x}] = {x ∧ t| t ∈ L} and (x] is called the principal ideal generated by
x. The set I(L) of all ideals of L is closed under arbitrary intersection
and contains L. Thus (I(L),∨,∧) is a complete lattice where I ∨ J =
{x ∨ y | x ∈ I, y ∈ J} and I ∧ J = I ∩ J for any I, J ∈ I(L). Since, for
any x, y ∈ L, (x] ∨ (y] = (x ∨ y] and (x] ∧ (y] = (x ∧ y], the set PI(L) of
all principal ideals of L is a sublattice of I(L). The lattice PI(L) plays a
very important role in the development of the theory of ADLs. One can
extended many existing concepts from the class of distributive lattices to
the class of ADLs though this class of principal ideals.
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Definition 2.5. [6] An ADL L = (L,∨,∧, 0,m) with a maximal element
m is called a complete ADL if PI(L) is a complete sublattice of I(L), or
equivalently, [0,m] is a complete distributive lattice.

Definition 2.6. [7] Let L be a complete ADL with a maximal element m.
Then a mapping φ : L −→ L is said to be a closure operator of L if, for
any x, y ∈ L, the following conditions hold:

(1) φ(x) ≤ m

(2) φ(x) ∧ x = x

(3) If x ≤ y, then φ(x) ≤ φ(y)

(4) φ(x ∧ y) = φ(y ∧ x)

(5) φ(φ(x)) = φ(x).

Definition 2.7. [7] Let L be a complete ADL with a maximal element m,
and φ a closure operator of L. Then an element x ∈ L said to be closed
under φ, if φ(x) = x. Clearly, m is closed under every closure operator
of L.

Lemma 2.8. [7] Let L be a complete ADL with a maximal element m, let

φ be a closure operator of L and {xα | α ∈ J} a family of elements of L

closed under φ in L. Then
∧
α∈J

(xα) is also an element of L closed under φ

in L.

If we define t and ω : L −→ L by t(x) = x ∧m and ω(x) = m for all
x ∈ L, then t, ω are closure operators of L

Theorem 2.9. [7] Let Φ(L) be the set of all closure operators of L and for

any φ , ψ ∈ Φ(L), define φ ≤ ψ if and only if φ(x) ≤ ψ(x) for all x ∈ L.

Then (Φ(L),≤) is a complete lattice in which the greatest element is ω and

least element is t.

Lemma 2.10. [7] Let L be a complete ADL with a maximal element m, a ∈

L such that a∧m 6= m and define φa : L −→ L by φa(x) = a∧m, if a∧x = x

and φa(x) = m, if a ∧ x 6= x for all x ∈ L, then φa is a closure operator

of L.
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Theorem 2.11. [7] Let L be a complete ADL with a maximal element

m and Φ(L) be the set of all closure operators of L. Then we have the

following:

(1) If {φα | α ∈ J} ⊆ Φ(L) and ψ =
∨
α∈J

φα, then, for any x ∈ L,

ψ(x) = x if and only if φα(x) = x for all α ∈ J .

(2) If a ∈ L such that a ∧m 6= m, then φa is a dual atom of Φ(L).

(3) Every dual atom of Φ(L) is of the form φb for some b ∈ L such that

b < m.

(4) For φ1, φ2 ∈ Φ(L), φ1 ≤ φ2 if and only if, for any x ∈ L, φ2(x) = x

implies φ1(x) = x.

For all standard definitions and results in distributive lattices we refer
to Gratzer, G. [9].

3. Complemented Closure Operators

In this section, we deal with the dual atoms of the lattice (Φ(L),≤), where
Φ(L) is the set of all closure operators of a complete ADL L. We define
the concept of a completely meet-irreducible element in L and we prove a
necessary and sufficient conditions for a dual atom φa(where a ∈ L such
that a ∧m 6= m) to have a complement in the lattice (Φ(L),≤).

We begin this section with the following Definition

Definition 3.1. Let L be complete ADL with a maximal element m and
φ a closure operator of L. Define Fφ = {x ∈ L | φ(x) = x}. That is, Fφ is
the set of elements of L closed under φ.

Lemma 3.2. Let L be a complete ADL with a maximal element m, M( 6=
∅) ⊆ [0,m] such that Inf M ′ ∈ M for all M ′ ⊆ M and for each x ∈ L,

define φ : L −→ L by φ(x) = Inf Ax, where Ax = {y ∈ M | y ∧ x = x}.

Then φ is a closure operator of L.

Proof: Now, we prove that φ is a closure operator of L.
(1) Clearly, φ(x) ≤ m for all x ∈ L.
(2) By our assumption, we get that φ(x) ∈ M for all x ∈ L and hence
φ(x) ∧ x = x.
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(3) Let x1, xx ∈ L such that x1 ≤ x2. Let Ax = {y ∈ M | y ∧ x = x}.
Suppose y ∈ Ax2

. Then y∧x2 = x2 and hence y∧x1 = y∧x2∧x1 = x2∧x1 =
x1. Hence y ∈ Ax1

. Therefore Ax2
⊆ Ax1

. Thus inf Ax1
≤ inf Ax2

. Hence
φ(x1) ≤ φ(x2).
(4) Let z ∈ Ax∧y. Then z∧x∧y = x∧y and hence z∧x∧y∧x = x∧y∧x.
Therefore z ∧ y ∧ x = y ∧ x. Hence z ∈ Ay∧x. Thus Ax∧y ⊆ Ay∧x. By
symmetry, we get that Ay∧x ⊆ Ax∧y. Therefore Ax∧y = Ay∧x. Hence
φ(x ∧ y) = φ(y ∧ x).
(5) Since φ(x)∧x = x,we get that x∧m ≤ φ(x) and hence φ(x) ≤ φ(φ(x)).
We have, φ(x)∧ φ(x) = φ(x), we get that φ(x) ∈ Aφ(x). Hence inf Aφ(x) ≤
φ(x). Therefore φ(φ(x)) ≤ φ(x). Thus φ(φ(x)) = φ(x). Therefore φ is a
closure operator of L.

Now, we prove the following Theorem

Theorem 3.3. Let L be a complete ADL with a maximal element m and

M( 6= ∅) ⊆ [0,m]. Then there is a closure operator φ of L such thatM = Fφ

if and only if Inf M ′ ∈M for all M ′ ⊆M .

Proof: Suppose φ is a closure operator of L and M = Fφ. Let M
′ ⊆ M .

Suppose x = Inf M ′. Since every element of M ′ is closed under φ and
by Lemma 2.8, the infimum of closed elements under φ is again closed
under φ, we get that x ∈ M . Conversely, suppose that inf M ′ ∈ M for all
M

′ ⊆ M . Now, we prove that there exists a closure operator φ of L such
that M = Fφ. For each x ∈ L, define φ : L −→ L by φ(x) = Inf {y ∈

M | y ∧ x = x}. Then by Lemma 3.2, we get that φ is a closure operator
of L. Let x ∈ Fφ. Then φ(x) = x. Now, {y ∈ M | y ∧ x = x} ⊆ M

implies that φ(x) = Inf {y ∈ M | y ∧ x = x} ∈ M , by our assumption.
Thus φ(x) ∈ M . That is, x ∈ M . Hence Fφ ⊆ M . Now, suppose x ∈ M .
So that φ(x) ≤ x. Thus φ(x) = φ(x) ∧ x = x. Therefore x ∈ Fφ. Hence
M ⊆ Fφ. Thus M = Fφ.

Lemma 3.4. Let L be a complete ADL with a maximal element m.

Let φ, ψ ∈ Φ(L). Then φ ≤ ψ if and only if Fψ ⊆ Fφ.

Proof: Let φ, ψ ∈ Φ(L). Suppose φ ≤ ψ. Then φ(x) ≤ ψ(x) for each
x ∈ L. Let x ∈ Fψ. Then ψ(x) = x and hence φ(x) ≤ x. So that
φ(x) = φ(x) ∧ x = x. Therefore x ∈ Fφ. Thus Fψ ⊆ Fφ. Conversely,
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suppose that Fψ ⊆ Fφ. Now, we prove that φ ≤ ψ. Let x ∈ L such that
ψ(x) = x. Then x ∈ Fψ. Hence x ∈ Fφ. Therefore φ(x) = x. Thus φ ≤ ψ,
by Theorem 2.11(4).

Lemma 3.5. Let L be a complete ADL with a maximal element m. Let

{φα | α ∈ J} ⊆ Φ(L). Then F ∨

α∈J

φα =
⋂
α∈J

Fφα

Proof: Let x ∈ L. Then x ∈ F
∨

α∈J

φα ⇔ (
∨
α∈J

φα)(x) = x ⇔ φα(x) = x

for all α ∈ J (by Theorem 2.11(1)) ⇔ x ∈ Fφα for all α ∈ J⇔ x ∈
⋂
α∈J

Fφα .

Thus F ∨

α∈J

φα =
⋂
α∈J

Fφα .

Definition 3.6. Let X be a complete lattice. An element a ∈ X is said
to be dual atomistic, if it is the infimum of set of all dual atoms above it.

Definition 3.7. A closure operator φ of a complete ADL L is called dual
atom if φ ≤ ψ ≤ ω for any closure operator ψ of L, then either ψ = φ or
ψ = ω.

Now, we prove the following Theorem.

Theorem 3.8. Let L be a complete ADL with a maximal element m. Then

the lattice (Φ(L),∨,∧) is dual atomistic.

Proof: Let ψ ∈ Φ(L) and ψ 6= ω. Write Aψ = {x ∈ L | ψ(x) = x and x 6=
m}. Choose y ∈ L such that ψ(y) 6= m. Write x = ψ(y) .Then ψ(x) = x

and x 6= m. Therefore x ∈ Aψ. Hence Aψ 6= ∅. Also, by Lemma 2.11(2),
φx is a dual atom of Φ(L) for all x ∈ Aψ. Now, we prove that ψ =

∧
x∈Aψ

φx.

Let x ∈ Aψ and y ∈ L such that φx(y) = y and hence y = x(x ∧m = x)
or y = m. If y = x, then ψ(y) = ψ(x) = x = y(since x ∈ Aψ). If y = m,
then ψ(m) = m. That is, ψ(y) = y. Therefore ψ ≤ φx for all x ∈ Aψ.
Hence ψ ≤

∧
x∈Aψ

φx. Let y ∈ L such that ψ(y) = y. If y 6= m, then y ∈ Aψ.

Now, (
∧

x∈Aψ

φx)(y) ≤ φy(y) = y. Hence (
∧

x∈Aψ

φx)(y) =(
∧

x∈Aψ

φx)(y) ∧

y = y. Thus
∧

x∈Aψ

φx ≤ ψ. Therefore ψ =
∧

x∈Aψ

φx. Let B = {φ ∈
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Φ(L) | φ is a dual atom and ψ ≤ φ}. Let C = {φx | x ∈ Aψ}. Let
x ∈ Aψ. Then ψ ≤ φx and φx is dual atom. Therefore φx ∈ B and hence
C ⊆ B. Thus ψ ≤

∧
φ∈B

φ ≤
∧

x∈Aψ

φx = ψ. Therefore ψ =
∧
φ∈B

φ. Thus ψ

is the infimum of set of all dual atoms about it. Hence (Φ(L),≤) is dual
atomistic.

We note that, for any closure operator φ of a complete almost distribu-
tive lattice L and x ∈ L, φ(x) = φ(m ∧ x) = φ(x ∧m) by condition (4) of
Definition 2.6. Now, we prove the following Lemma.

Lemma 3.9. Let L be a complete ADL with a maximal element m and

a ∈ L such that a ∧m 6= m. If φa is a complemented element of Φ(L) and
if φ′a is the complement of φa, then a ∧m < φ

′
a(a).

Proof: Since φ′a ∈ Φ(L), we get that a ∧m ≤ φ
′
a(a). Suppose φ′a(a) =

a ∧m. Also, we have φa(a) = a ∧m. Then, by Theorem 2.11(1), we get
that m = ω(a) = (φa ∨φ

′
a)(a) = a∧m, which is a contradiction. Therefore

a ∧m < φ
′
a(a)

Definition 3.10. Let L be a complete ADL with a maximal element m.
Let a ∈ L such that a∧m 6= m. Then a∧m is said to be meet-irreducible,
if a ∧m = b ∧ c ∧m, then either a ∧m = b ∧m or a ∧m = c ∧m.

Definition 3.11. Let L be a complete ADL with a maximal element m
and x ∈ L such that x ∧ m 6= m. Then x ∧ m is said to be completely
meet-irreducible, if x ∧m =

∧
α∈J

(xα ∧m), where {xα | α ∈ J} ⊆ L, then

x ∧m = xα ∧m for some α ∈ J .

Now, we prove the following Theorem

Theorem 3.12. Let L be a complete ADL with at least two elements and

let a ∈ L such that a∧m 6= m. Then φa is complemented element of Φ(L)
if and only if a ∧m is completely meet-irreducible element of L.

Proof: Let a ∈ L such that a ∧ m 6= m. Suppose φa ∈ Φ(L) is com-
plemented element of Φ(L) and suppose φ′a is the complement of φa. Let
{xα | α ∈ J} ⊆ L such that a ∧ m =

∧
α∈J

(xα ∧ m). We prove that
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a ∧m = xα ∧m for some α ∈ J . We have a ∧m ≤ xα ∧m for all α ∈ J .
Suppose a ∧ m < xα ∧ m for all α ∈ J . Then a ∧ m 6= m. Hence, by
Lemma 3.9, we get that a∧m < φ

′
a(a). Now, xα ∧m = t(xα ∧m) = t(xα)

= (φa ∧ φ
′
a)(xα) = φa(xα) ∧ φ

′
a(xα). Since a ∧ xα ∧m = a ∧m < xα ∧m,

we get that φa(xα) = m. Hence, xα ∧m = m ∧ φ′a(xα) = φ
′
a(xα). Now,

φ
′
a(a) = φ

′
a(a ∧m) = φ

′
a(

∧
α∈J

(xα ∧m)) ≤
∧
α∈J

φ
′
a(xα ∧m) =

∧
α∈J

(xα ∧m)

= a ∧m. Hence φ′a(a) = φ
′
a(a) ∧ a ∧m = a ∧m, which is a contradiction.

Therefore, there exists α ∈ J such that a ∧m = xα ∧m. Thus a ∧m is
completely meet-irreducible. Conversely, assume that a ∧m is completely
meet-irreducible. Let B = {b ∈ L | b∧m 6= a∧m}. Sincem 6= a∧m, we get
thatm ∈ B. Hence B 6= ∅. Let ψ =

∧
b∈B

φb. Now, we prove that ψ is a com-

plement of φa in the lattice (Φ(L),∨,∧). Let x ∈ L. If x∧m = a∧m, then
(φa∧ψ)(x) = φa(x)∧ψ(x) = x∧m∧ψ(x) = x∧ψ(x) = x∧ψ(x)∧m (since
ψ(x) ≤ m) = ψ(x) ∧ x ∧m = x ∧m = t(x). If x ∧m 6= a ∧m, then x ∈ B

and hence ψ ≤ φx. Now, (φa ∧ ψ)(x) = φa(x) ∧ ψ(x) ≤ ψ(x) ≤ φx(x)
= x ∧ m. Hence (φa ∧ ψ)(x) = (φa ∧ ψ)(x) ∧ x ∧ m = x ∧ m. Thus
(φa ∧ ψ)(x) = x ∧m = t(x) for all x ∈ L. Therefore φa ∧ φ = t. Now, we
prove that φa ∨ψ = ω. Let b ∈ B. Then a∧m 6= b∧m and a∧m 6= m. So
that φb(a) 6= a∧m for all b ∈ B. Since a∧m is completely meet-irreducible,
we get that (

∧
b∈B

φb)(a) 6= a ∧m. Thus ψ(a) 6= a ∧m. Let x ∈ Fφa ∩ Fψ.

Then φa(x) = x and hence x = a ∧m or x = m. Suppose x = a ∧m. We
have x ∈ Fψ. So that ψ(x) = x and hence ψ(a ∧m) = a ∧m. Therefore
ψ(a) = a ∧m. Which is not true. Hence x = m. Thus Fφa ∩ Fψ = {m}.
So that Fφa ∩ Fψ = Fω (since Fω = {x ∈ L | ω(x) = x} = {m}). Hence,
by Lemma 3.5, Fφa∨ψ = Fω and, by Lemma 3.4, φa ∨ ψ = ω. Therefore ψ
is the complement of φa in the lattice (Φ(L),∨,∧) .

Theorem 3.13. If L is a complete ADL with at least two elements and

a ∈ L such that a∧m 6= m, then φa ∈ Φ(L) is complemented if and only if

a ∧m <

∧
b∈B

φb(a), where B = {b ∈ L | b ∧m 6= a ∧m}.

Proof: Let a ∈ L such that a∧m 6= m. Then, by Theorem 2.11(2), φa is
a dual atom of L. Suppose φa is complemented. Let ψ =

∧
b∈B

(φb). Then

from the proof of the Theorem 3.12, we get that ψ is a complement of φa
and ψ(a) > a ∧m.
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Hence (
∧
b∈B

φb)(a) = ψ(a) > a ∧m. Thus
∧
b∈B

(φb(a)) > a ∧m. Conversely,

assume the condition. Now, we prove that φa is complemented. It is
enough to prove that a ∧ m is completely meet-irreducible element in L.
Let {aα | α ∈ J} ⊆ L such that a∧m =

∧
α∈J

(xα ∧m). We prove that there

exists α ∈ J such that a ∧m = xα ∧m. Suppose a ∧m 6= xα ∧m for all
α ∈ J and hence a∧m < xα∧m for all α ∈ J . Therefore {xα | α ∈ J} ⊆ B.
Now, a ∧ m <

∧
b∈B

(φb(a)) = (
∧
b∈B

φb)(a) ≤ (
∧
α∈J

φxα)(a) =
∧
α∈J

(φxα(a))

=
∧
α∈J

(xα ∧m) = a ∧m (since xα ∧m ∧ a ∧m = a ∧m).

Thus a ∧m <

∧
α∈J

(xα ∧m) = a ∧m, which is a contradiction. Therefore

there exists α ∈ J such that a ∧m = xα ∧m. Hence a ∧m is completely
meet-irreducible. Therefore φa is complemented.

Theorem 3.14. If φ0 is a dual atom of Φ(L), then there is at most one

complement of φ0.

Proof: Suppose 0 is not completely meet-irreducible, then by Theorem
3.12, we get that φ0 is not complemented. Suppose 0 is completely meet-
irreducible, then by the proof of the Theorem 3.12, φ0 is complemented.
Also ψ =

∧
b∈B

φb, where B = {b ∈ L | b ∧ m 6= 0} is the complement of

φ0 and ψ(0) 6= 0. Now, we prove that φ0 has at most one complement.
Suppose φ′0 is another complement of φ0. Let x ∈ L − {0}. If x /∈ B,
then x ∧ m = 0 and hence x = x ∧ m ∧ x = 0 ∧ x = 0, which is a
contradiction. Therefore x ∈ B. We have ψ =

∧
b∈B

φb, so that ψ(x) = (
∧
b∈B

φb)(x) ≤ φx(x) = x∧m. Hence ψ(x) = ψ(x)∧x∧m = x∧m, by condition
(2) of Definition 2.6. We have x ∧m ≤ φ

′
0(x) for all x ∈ L. If x = 0, then

0 = 0∧m < φ
′
0(0). If x 6= 0, then x∧m ≤ φ

′
0(x). Therefore φ

′
0(x) 6= 0 for all

x ∈ L and hence φ′0(x) ∈ L− {0} = B. Hence ψ(φ′0(x)) = (
∧
b∈B

φb)(φ
′
0(x))

≤ φφ′

0
(x)(φ

′
0(x)) = φ

′
0(x) ∧m = φ

′
0(x), since φ

′
0(x) ∧ φ

′
0(x) = φ

′
0(x). Since

x ∧m ≤ φ
′
0(x) for all x ∈ L, we get that ψ(x) ≤ ψ(φ′0(x)) ≤ φ

′
0(x) for all

x ∈ L. Hence ψ ≤ φ
′
0. Let a ∈ L− {0}. Then a ∧m = t(a) = (φ0 ∧ φ

′
0)(a)

= φ0(a) ∧ φ
′
0(a) = m ∧ φ′0(a), since 0 ∧ a 6= a, so that φ0(a) = m = φ

′
0(a).

Suppose φa(x) = x for x ∈ L − {0} = B. Case (i) a ∧ x = x. Then
x = a ∧ m. Hence φ′0(x) = φ

′
0(a ∧ m) = φ

′
0(a) = a ∧ m = x. Case (ii)
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a ∧ x 6= x. Then x = m. Hence φ′0(x) = φ
′
0(m) = m = x. Thus we have

proved that φa(x) = x ⇒ φ
′
0(x) = x for all x ∈ B. By Theorem 2.11(4),

we get that φ′0 ≤ φx for all x ∈ B. Hence φ′0 ≤
∧
x∈B

φx = ψ. Therefore

φ
′
0 ≤ ψ. Thus φ′0 = ψ.

Lemma 3.15. Let L be a complete almost distributive lattice. Then, for

any φ, ψ ∈ Φ(L) and x ∈ L we have

(i) (φ ∨ ψ)(x) ≥ ψ(φ(x))
(ii) (φ ∨ ψ)(x) ≥ ψ(φ(ψ(x))).

Proof: Let φ, ψ ∈ Φ(L) and x ∈ L. Then (φ ∨ ψ)(x) ≥ ψ(x) and hence
(φ ∨ ψ)((φ ∨ ψ)(x)) ≥ (φ ∨ ψ)(ψ(x))≥ ψ(φ(x)). Therefore (φ ∨ ψ)(x) ≥

ψ(φ(x)). Since (φ ∨ ψ)(x) ≥ φ(ψ(x)) and hence (φ ∨ ψ)(φ ∨ ψ)(x)) ≥

(φ ∨ ψ)(φ(ψ(x)))≥ ψ(φ(ψ(x))).

Corollary 3.16. Let L be a complete almost distributive lattice. Then,

for any φ, ψ ∈ Φ(L) and x ∈ L we have

(i) (φ ∨ ψ)(x) ≥ φ(ψ(x))
(ii) (φ ∨ ψ)(x) ≥ φ(ψ(φ(x)))

Finally, we conclude with the following Theorem.

Theorem 3.17. If φa ∈ Φ(L) is complemented, then there is at least one

complement of φa preceding φ0.

Proof: Let 0 6= a ∧m 6= m. Let φ′a be a complement of φa. Let x ∈ L.
Then (φa ∧ (φ′a ∧ φ0))(x) = (φ′a ∧ φa ∧ φ0)(x) = (t ∧ φ0)(x) = t(x). Hence
(φa ∧ (φ′a ∧ φ0)) = t. Now, we prove that (φa ∨ (φ′a ∧ φ0)) = ω. Case
(i) a ∧ x = x. Then φa(x) = a ∧ m. By above Lemma 3.15, we get
that (φa ∨ (φ′a ∧ φ0))(x) ≥ φa((φ

′
a ∧ φ0)(φa(x))) = φa((φ

′
a ∧ φ0)(a ∧ m))

= φa(φ
′
a(a)∧ φ0(a)) = φa(φ

′
a(a)∧m) = φa(φ

′
a(a)) = m = ω(x). Therefore

(φa ∨ (φ′a ∧ φ0)) = ω. Case (ii) if a ∧ x 6= x, then φa(x) = m. Again,
by above Lemma 3.15, we get that (φa ∨ (φ′a ∧ φ0))(x) ≥ (φ′a ∧ φ0)(φa(x))
= φ

′
a(m) ∧ φ0(m) = m ∧m = m = ω(x). Therefore (φa ∨ (φ′a ∧ φ0)) = ω.

Thus (φa ∨ (φ′a ∧ φ0)) = ω.
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