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Abstract

The paper introduces the concept of B-Almost distributive fuzzy lattice (B-

ADFL) in terms of its principal ideal fuzzy lattice. Necessary and sufficient

conditions for an ADFL to become a B-ADFL are investigated. We also prove

the equivalency of B-algebra and B-fuzzy algebra. In addition, we extend PSADL

to PSADFL and prove that B-ADFL implies PSADFL.
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1. Introduction

The concept of an Almost distributive lattice was introduced by Swamy
and Rao in [9]. It is an algebraic structure which satisfies almost all the
properties of a distributive lattice with the smallest element except the
commutativity of the operations ∧ and ∨ and the right distributive of ∨
over ∧. The concept of pseudo-complementation in an Almost distributive
lattice was introduced by Swamy, Rao and Nanaji in [5] and the notion
of Brikhoff center of an Almost distributive lattice with maximal element
was introduced by Swamy and Ramesh in [8]. Heyting algebra is a dis-
tributive lattice in which, for any a, b ∈ R, the largest element a → b in
R exists with the property a ∧ (a → b) ≤ b, [5]. Heyting algebra serves as
the algebraic models of propositional intutionistic logic in the same way as
Boolean algebras model propositional classical logic. The concept of Heyt-
ing Almost distributive lattice (HADL) was introduced by Rao, Berhanu
and Ratnamani in [5]. Studying the properties of Post algebra, G. Epstein
and A. Horn, [2], introduced the concept of B-algebra as a bounded dis-
tributive lattice with center B(R) in which for any a, b ∈ R, there exists the
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largest element a⇒ b in B(R) exists with the property a∧ (a⇒ b) ≤ b. In
this paper,we introduce the concept of B-Almost distributive fuzzy lattice
(B-ADFL) as an extension of B-ADL in which the fuzzy lattice of all princi-
pal ideals of(R,A) is a B-fuzzy algebra. We also characterize necessary and
sufficient conditions for an ADFL to become a B-ADFL. Throughout this
paper (R,A) represents an ADFL which again becomes B-ADFL. BA(R)
represents a Birkhoff center of (R,A) and A : R×R→ [0, 1]

2. Preliminaries

Definition 1. [7] An algebra (R,∨,∧, 0) of type (2, 2, 0) is said to be
an Almost distributive lattice (ADL) with 0 if it satisfies the following
condition:

1. a ∨ 0 = a.

2. 0 ∧ a = 0.

3. (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c).

4. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

5. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

6. (a ∨ b) ∧ b = b for all a, b, c ∈ R.

Definition 2. [7] Let X be a non- empty set. Fix x0 ∈ X. For any

x, y ∈ X,x ∧ y =

{
xo if x = xo

y if x 6= xo

and x ∨ y =

{
y if x = xo

x if x 6= xo

.

Then (X,∨,∧, xo) is an ADL with xo as its zero element. This ADL is
called a discrete ADL.

Lemma 2.1. [7] For any a, b ∈ R we have

1. a ∧ 0 = 0 and 0 ∨ a = a

2. a ∧ a = a,a ∨ a = a

3. (a ∧ b) ∨ b = b,a ∨ (b ∧ a) = a and a ∧ (a ∨ b) = a

4. a ∧ b = b⇔ a ∨ b = a

5. a ∧ b = a⇔ a ∨ b = b

6. a ∧ b ≤ b and a ≤ a ∨ b

7. a ∧ b = b ∧ a, whenever a ≤ b

8. a ∨ (b ∨ a) = a ∨ b
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Theorem 2.2. [7] For any a, b ∈ R we have :

1. (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

2.
∧

is associative in R

3. a ∧ b ∧ c = b ∧ a ∧ c

From the above it follows that for any a ∈ R the set{a ∧ x|x ∈ R} forms
a bounded distributive lattice. In particular, we have ((a ∧ b) ∨ c) ∧ x =
((a ∨ c) ∧ (b ∨ c)) ∧ x for all a, b, c, x ∈ R. An element m ∈ R is said to be
maximal if m ≤ x implies m = x.

Lemma 2.3. [7] Let R be an ADL with 0 and m ∈ R. Then the following
are equivalent:

1. m is a maximal element with respect to a poset(R,≤).

2. m ∨ x = m for all x ∈ R.

3. m ∧ x = x for all x ∈ R.

Definition 3. [7] Let R be an ADL. Then R is said to be relatively
complemented if for any a, b ∈ R with a ≤ b, there exists x ∈ [a, b] such
that x ∧ y = a and x ∨ y = b, for some y ∈ [a, b].

Theorem 2.4. [7] The following are equivalent for any ADL with 0:

1. R is relatively complemented.

2. Given x, y ∈ R, there exists a ∈ R such that a∧x = 0 and a∨x = x∨y
3. For any x ∈ R, the interval [0, x] is complemented.

Theorem 2.5. [7] A relatively complemented ADL R is associative.

Definition 4. [7] Let R be an ADL and a∈R. Define (a]={a ∧ x|x∈R}

Lemma 2.6. [7] For any a, b ∈ R, the following holds:

1. (a] ∩ (b] = (a ∧ b] = (b ∧ a].

2. (a] ∨ (b] = (a ∨ b] = (b ∨ a].

Theorem 2.7. [7] For any a, b ∈ R we have the following:

1. (a] = {a ∧ x|x ∈ R}.
2. a ∈ (b]⇔ b ∧ a = a⇔ (a] ⊆ (b].
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Definition 5. [5] Let (R,∨,∧, 0,m) be an ADL with maximal element m.
Suppose → is a binary operation on R satisfying the following condition:

1. a→ a = m.

2. (a→ b) ∧ b = b.

3. a ∧ (a→ b) = a ∧ b ∧m.

4. a→ (b ∧ c) = (a→ b) ∧ (a→ c).

5. (a ∨ b)→ c = (a→ c) ∧ (b→ c), for all a, b, c ∈ R.

Then (R,∨,∧,→, 0,m) is called Heyting Almost Distributive Lattice
(HADL).

Lemma 2.8. [5] Let (R,∨,∧,→, 0,m) be an HADL,x, y, a ∈ R and x ≤ y.
Then the following conditions hold:

1. a→ x ≤ a→ y.

2. y → a ≤ x→ a.

Definition 6. [3] Let X be a non-empty set. (X,A) is called fuzzy partially
ordered set if it satisfies the following:

1. A(x, x) = 1. That is A is reflexive.

2. A(x, y) > 0 and A(y, x) > 0 implies that x = y. That is A is
antisymmetric.

3. A(x, z) ≥ Supy∈Xmin[A(x, y), A(y, z)] > 0. That is A is transitive.

If A is a fuzzy partial order relation in a set X, then (X,A) is called a
fuzzy partial order relation or fuzzy poset.

Definition 7. [3] Let (X,A) be a fuzzy poset. Then (X,A) is a fuzzy
lattice if and only if x ∨ y and x ∧ y exist, for all x, y ∈ X.

Definition 8. [3] Let (X,A) be a fuzzy lattice. Then (X,A) is distributive
if and only if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and (x ∨ y) ∧ (x ∨ z) =
x ∨ (y ∧ z), for all x, y, z ∈ X.

Definition 9. [4] Let (X,A) be a fuzzy lattice and Y ⊆ X. Then Y is an
ideal of (X,A).

1. If x ∈ X and y ∈ Y and A(x, y) > 0, then x ∈ Y .

2. If x, y ∈ Y , then x ∨ y ∈ Y .
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Definition 10. [8] Let R be an ADL with a maximal element m and
B(R) = {a ∈ R|a∧ b = 0 and a∨ b is maximal, for someb ∈ R}. Then
(B(R),∨,∧) is a relatively complemented ADL and is called Birkhoff center
of R.

Definition 11. [2] Let R be a distributive lattice with 0, 1, and let B(R)
be the Birkhoff center of R. If for any a, b ∈ R, there exists the greatest
element y ∈ B(R) such that a ∧ y ≤ b, then R is called a B-algebra .

The element y is denoted by a⇒ b.

Definition 12. [6] An ADL R is called a B-ADL if its principal ideal
lattice PI(R) is a B-algebra.

Theorem 2.9. [6] Let R be an ADL with Birkhoff center B(R). Then R
is a B-ADL if and only if for any a, b ∈ R,there exists y ∈ B(R) satisfying
the following condition:

R1 : b ∧ a ∧ y = a ∧ y.

R2 : If z ∈ B(R) such that b ∧ a ∧ z = a ∧ z, then y ∧ z = z.

Definition 13. Let R be an ADL with Birkhoff center B(R). Then R is
called a dual B-ADL if for any a, b ∈ R, there exists y ∈ B(R) satisfying
the following:

1. (a ∨ y) ∧ b = b

2. If z ∈ B(R) such that (a ∨ z) ∧ b = b, then z ∧ y = y.

Definition 14. [2] Let R be a distributive lattice with 0, 1 and let B(R)
be the Birkhoff center of R. If for any a, b ∈ R there exists the least element
y ∈ B(R) such that b ≤ a ∨ y, then R is called dual B-algebra.

The element y is denoted by a⇐ b.

Definition 15. [1] Let (R,∨,∧, 0) be an algebra of type (2, 2, 0). (R,A)
is an Almost Distributive Fuzzy Lattice (ADFL) if the following conditions
are satisfied:

1. A(a, a ∨ 0) = A(a ∨ 0, a) = 1.

2. A(0, 0 ∧ a) = A(0 ∧ a, 0) = 1.

3. A((a ∨ b) ∧ c, (a ∧ c) ∨ (b ∧ c)) = A((a ∧ c) ∨ (b ∧ c), (a ∨ b) ∧ c) = 1.

4. A(a ∧ (b ∨ c), (a ∧ b) ∨ (a ∧ c)) = A((a ∧ b) ∨ (a ∧ c), a ∧ (b ∨ c)) = 1.
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5. A(a ∨ (b ∧ c), (a ∨ b) ∧ (a ∨ c)) = A((a ∨ b) ∧ (a ∨ c), a ∨ (b ∧ c)) = 1.

6. A((a ∨ b) ∧ b, b) = A(b, (a ∨ b) ∧ b) = 1, for all a, b, c ∈ R.

Definition 16. [1] Let (R,A) be an ADFL. Then for any a, b ∈ R a ≤ b
if and only if A(a, b) > 0.

3. B-Almost Distributive Fuzzy Lattice (B − ADFL)

Definition 17. Let (R,A) be an ADFL with a maximal element m and
BA(R) = {a ∈ R|A(a ∧ b, 0) > 0 and A((a ∨ b) ∨ x, a ∨ b) > 0 for some
b ∈ R and for all x ∈ R}. Then (BA(R),∨,∧) is a relatively complemented
ADFL and BA(R) is called the Birkhoff center of an ADFL (R,A).

Throughout this section R stands for a B-ADL (R,∨,∧,⇒, 0) with a
maximal element m and Birkhoff center B(R).

Definition 18. Let ([0,m], A) be a distributive fuzzy lattice and for any
b ∈ [0,m], b ∧m is complemented in [0,m] whose complement is (b ∧m)

′

such that A((b ∧m) ∧ (b ∧m)
′
, 0) > 0 and A(m, (b ∧m) ∨ (b ∧m)

′
) > 0.

Definition 19. Let (R,A) be a distributive fuzzy lattice with 0, 1, and let
BA(R) be a Birkhoff center of (R,A). If, for any a, b ∈ R, there exists the
greatest element y ∈ BA(R) such that A(a∧ y, b) > 0, then (R,A) is called
a B-fuzzy algebra.

The element y is denoted by a⇒ b.

Lemma 3.1. Let (R,A) be a distributive fuzzy lattice with 0, 1. Then R is
a B-algebra if and only if (R,A) is a B-fuzzy algebra.

Proof. Assume that R is a B-algebra. For any a, b ∈ R, there exist
the greatest element y ∈ B(R) such that a ∧ y ≤ b. Let (R,A) be an
ADFL and let BA(R) be a Birkhoff center of (R,A). Then, by assumption,
for any a, b ∈ (R,A), there exists y ∈ BA(R) such that a ∧ y ≤ b. Hence
A(a∧y, b) > 0. Therefore, (R,A) is a B-fuzzy algebra. Conversely, suppose
that (R,A) is a distributive fuzzy lattice with 0, 1, BA(R) is Birkhoff center
of (R,A) and (R,A) is a B-fuzzy algebra. For any a, b ∈ R, there exists the
greatest element y ∈ BA(R) such that A(a∧ y, b) > 0. So we get a∧ y ≤ b,
which implies that y ∈ B(R). Thus R is a B-algebra.
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Definition 20. Let (R,A) be an ADFL with maximal element. Then
(PI(R), A) is the set of all principal ideal fuzzy lattice of (R,A), where
PI(R) is the set of principal ideal lattice of an ADL (R,∨,∧, 0) with max-
imal element.

Definition 21. An ADFL (R,A) is called a B-ADFL if its principal ideal
fuzzy lattice (PI(R), A) is a B-fuzzy algebra.

In the following theorem we give an elementwise characterization for
an ADFL to become a B-ADFL.

Theorem 3.2. Let (R,A) be an ADFL with Birkhoff center BA(R). Then
(R,A) is a B-ADFL if and only if for any a, b ∈ R, there exists y ∈ BA(R)
satisfying the following conditions:

L1 : A(a ∧ y, b ∧ a ∧ y) > 0.

L2 : If z ∈ BA(R) such that A(a ∧ z, b ∧ a ∧ z) > 0, then A(z, y ∧ z) > 0.

Proof. Suppose that (R,A) is a B-ADFL and a, b ∈ R. Then (PI(R), A)
is a B-fuzzy algebra, so (a]A ⇒ (b]A = (y]A for some y ∈ BA(R). Now,
(a]A ∩ (y]A ⊆ (b]A⇔ (a ∧ y]A ⊆ (b]A and hence a ∧ y ∈ (b]A, which implies
A(a∧y, b∧a∧y) > 0. Now, (b∧a∧y)∧a∧y = b∧((a∧y)∧(a∧y) = b∧a∧y
by idempotence and associativity of ∧. (b ∧ a ∧ y) ∨ (a ∧ y) = a ∧ y by the
absorption property. Hence b∧ a∧ y ≤ a∧ y, we get A(b∧ a∧ y, a∧ y) > 0.
So we have b∧a∧y = a∧y by the antisymmetry property of A. Therefore,
A(a∧y, b∧a∧y) > 0. Let z ∈ BA(R) such that A(a∧z, b∧a∧z) > 0. Then
(a]A∩(z]A ⊆ (b]A⇔ (a∧z]A ⊆ (b]A ⇒ a∧z ∈ (b]A. Hence A(a∧z, b∧a∧z) >
0. Since b∧a∧z ≤ a∧z, we have A(b∧a∧z, a∧z) > 0. Hence b∧a∧z = a∧z
by antisymmetry of A and we have A(a ∧ z, b ∧ a ∧ z) > 0. Consequently,
(z]A ⊆ (y]A, which implies that z ∈ (y]A. Hence A(z, y ∧ z) > 0 and since
y∧z ≤ z, we get A(y∧z, z) > 0, so that we have y∧z = z by antisymmetry
of A. Therefore A(z, y ∧ z) > 0. Conversely, suppose that (R,A) satisfies
L1 and L2, and let (a], (b] ∈ (PI(R), A), where a, b ∈ R . Then there
exists y ∈ BA(PI(R)) satisfying L1 and L2. Again, (y] ∈ BA(PI(R)) and
A(a∧ y, b∧a∧ y) > 0 implies that (a]A ∩ (y]A ⊆ (b]A⇔ (a∧ y]A ⊆ (b]A and
hence a∧y ∈ (b]A. Therefore, A(a∧y, b∧a∧y) > 0. Since b∧(a∧y) ≤ a∧y,
we have A(b∧a∧y, a∧y) > 0. Therefore, b∧a∧y = a∧y by antisymmetry
of A. Hence A(a∧y, b∧a∧y) > 0, which implies that (a]A∩(y]A ⊆ (b]A. We
know that (z] ∈ BA(PI(R)) such that (a]A∩ (z]A ⊆ (b]A ⇔ (a∧z]A ⊆ (b]A
implies that a∧z ∈ (b]A. Hence A(a∧z, b∧a∧z) > 0. Since b∧a∧z ≤ a∧z,
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we have A(b ∧ a ∧ z, a ∧ z) > 0. Therefore, b ∧ a ∧ z = a ∧ z implies that
A(a ∧ z, b ∧ a ∧ z) > 0. So (z]A ⊆ (y]A implies that z ∈ (y]A and hence
A(z, y ∧ z) > 0 and we get (z]A ⊆ (y]A. Therefore, (PI(R), A) is a B-fuzzy
algebra. Consequently, (R,A) is a B-ADFL. From Theorem 3.2 we derive
the following corollaries.

Corollary 3.3. Let (R,A) be a B-ADFL with a maximal element m and
Birkhoff center BA(R). If, for any a, b ∈ R, there exist y, z ∈ BA(R)
satisfying L1 and L2 of Theorem 3.2, then A(y ∧m, z ∧m) = A(z ∧m, y ∧
m) = 1.

Proof. Let a, b ∈ R and y, z ∈ BA(R) such that

L1 : A(a ∧ y, b ∧ a ∧ y) > 0.

L2 : If z ∈ BA(R) such that A(a ∧ z, b ∧ a ∧ z) > 0, then A(z, y ∧ z) > 0.

Now, A(z ∧m, y ∧m) = A((a⇒ b) ∧m, (a⇒ b) ∧m) = A(a⇒m b, a⇒m

b) = 1. Hence A(z ∧ m, y ∧ m) = 1. Similarly, A(y ∧ m, z ∧ m) = 1.
Therefore, A(z ∧m, y ∧m) = A(y ∧m, z ∧m) = 1. Here afterwards (R,A)
stands a B-ADFL with maximal element m and Birkhoff center BA(R).

Definition 22. Let a, b ∈ (R,A). If y ∈ BA(R) satisfies L1 and L2 of
Theorem 3.2, then we denote y ∧ m by a ⇒m b or simply a ⇒ b, where
there is no ambiguity.

Corollary 3.4. For any a, b ∈ R, we have the following:

1. A(b ∧ a ∧ (a⇒ b), a ∧ (a⇒ b)) = A(a ∧ (a⇒ b), b ∧ a ∧ (a⇒ b)) = 1
and, consequently, A(a ∧ (a⇒ b), b ∧m) > 0.

2. If z ∈ BA(R),A(a ∧ z, b ∧m) > 0, then A(z ∧m, a⇒ b) > 0.

3. A(a ∧m, b ∧m) > 0 if and only if A(a⇒ b,m) = A(m, a⇒ b) = 1.

Corollary 3.5. For any a, b ∈ R, we have the following:

1. A(0⇒ a,m) = A(m, 0⇒ a) = 1.

2. A(a⇒ a,m) = A(m, a⇒ a) = 1.

3. A(a⇒ m,m) = A(m, a⇒ m) = 1.

4. A(a ∧ b)⇒ a,m) = A(m, (a ∧ b)⇒ a) = 1. and A((a ∧ b)⇒ b,m) =
A(m, (a ∧ b)⇒ b) = 1.

5. A(a⇒ (a ∨ b),m) = A(m, a⇒ (a ∨ b)) = 1 and A(a⇒ (b ∨ a),m) =
A(m, a⇒ (b ∨ a)) = 1.

6. A((a ∧ b)⇒ (a ∨ b),m) = A(m, (a ∧ b)⇒ (a ∨ b)) = 1.
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Theorem 3.6. Let (R,A) be a B-ADFL. If a ∈ R and b ∈ BA(R), then
the following hold:

1. A(a ∧ (a⇒ b), a ∧ b ∧m) = A(a ∧ b ∧m, a ∧ (a⇒ b)) = 1.

2. A(a∧(a⇒(b⇒ c), a∧(b⇒ c)) = A(a∧(b⇒ c), a∧(a⇒(b⇒ c)) = 1.

3. A(b ∧ (a⇒ b), b ∧m) = A(b ∧m, b ∧ (a⇒ b)) = 1.

4. A((a⇒ b) ∧ b, b) = A(b, (a⇒ b) ∧ b) = 1.

Proof. Let a, b ∈ R.

1. By Corollary 3.4 A(a∧(a⇒ b), b∧m) > 0, so A(a∧(a⇒ b), a∧b∧m) >
0. Since b ∈ BA(R) and A(a ∧ b ∧m, , b ∧m) > 0 by Corollary 3.4
again, A(b ∧m, a⇒ b) > 0 and hence A(a ∧ b ∧m, a ∧ (a⇒ b)) > 0.
Therefore, a ∧ (a ⇒ b) = a ∧ b ∧m by antisymmetry property of A.
Hence A(a ∧ (a⇒ b), a ∧ b ∧m) = A(a ∧ b ∧m, a ∧ (a⇒ b)) = 1.

2. By Corollary 3.4 we have A(m, b ⇒ c) = A(b ⇒ c,m) = 1. Then
A(a ∧ (a ⇒ (b ⇒ c), a ∧ (b ⇒ c)) = A(a ∧ (a ⇒ m), a ∧m) = A(a ∧
m, a ∧m) = 1since a⇒ m = m. Hence A(a ∧ (a⇒ (b⇒ c), a ∧ (b⇒
c)) = 1. Similarly, A(a ∧ (b ⇒ c), a ∧ (a ⇒ (b ⇒ c)) = 1. Therefore
A(a∧(a⇒ (b⇒ c), a∧(b⇒ c)) = A(a∧(b⇒ c), a∧(a⇒ (b⇒ c)) = 1.

3. Assume that A(b ∧m, a ⇒ b) > 0. We get A(b ∧m, b ∧ (a ⇒ b))>
0, since b∧m = b∧m∧ (a⇒ b) = b∧ (a⇒ b). Similarly, A(b∧ (a⇒
b), b∧m) > 0. Thus, A(b∧(a⇒ b), b∧m) = A(b∧m, b∧(a⇒ b)) = 1.

4. Now, A(b, (a⇒ b)∧b) = A(b∧m∧b, (a⇒ b)∧b) since b = b∧m∧b.=
A(b∧(a⇒ b)∧b, (a⇒ b)∧b) = A((a⇒ b)∧b, (a⇒ b)∧b) = 1. Hence
A(b, (a ⇒ b) ∧ b) = 1. Similarly A((a ⇒ b) ∧ b, b) = 1. Therefore,
A(b, (a⇒ b) ∧ b) = A((a⇒ b) ∧ b, b) = 1.

Theorem 3.7. Let a, b, c ∈ R be any element and let m be a maximal
element of R. Then the following hold:

1. If A(a ∧m, b ∧m) > 0, then A(c ⇒ a, c ⇒ b) > 0 and A(b ⇒ c, a ⇒
c) > 0.

2. A(c⇒ (a ∧ b), (c⇒ a) ∧ (c⇒ b)) =
= A((c⇒ a) ∧ (c⇒ b), c⇒ (a ∧ b)) = A(c⇒ (a ∧ b), c⇒ (b ∧ a)) =
A(c⇒ (b ∧ a), c⇒ (a ∧ b)) = 1.

3. A((a∨ b)⇒ c, (a⇒ c)∧ (b⇒ c)) = A((a⇒ c)∧ (b⇒ c), (a∨ b)⇒ c)
= A((a ∨ b)⇒ c, (b ∨ a)⇒ c) = A((b ∨ a)⇒ c, (a ∨ b)⇒ c) = 1.

4. A(c⇒ (a ∨ b), c⇒ (b ∨ a)) = A(c⇒ (b ∨ a), c⇒ (a ∨ b)) = 1.

5. A((a ∧ b)⇒ c, (b ∧ a)⇒ c) = A((b ∧ a)⇒ c, (a ∧ b)⇒ c) = 1.
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Proof. Let a, b, c ∈ R.

1. If A(a∧m, b∧m) > 0, then A(c∧(c⇒ a), a∧m) > 0 and A(a∧m, b∧
m) > 0, A(c ∧ (c ⇒ a), b ∧m) > 0. So we get A(c ⇒ a, c ⇒ b) > 0.
Also we have A(a ∧ (b ⇒ c), b ∧ (b ⇒ c)) > 0, take m = b ⇒ c.
A(b ∧ (b ⇒ c), c ∧ m) > 0,A(a ∧ (b ⇒ c), c ∧ m) > 0 and hence
A(b⇒ c, a⇒ c) > 0.

2. From (1), we get A(c⇒ (a∧ b), (c⇒ a)∧ (c⇒ b)) > 0 since a∧ b ≤ b
imply that c ⇒ (a ∧ b) ≤ c ⇒ a, c ⇒ (a ∧ b) ≤ c ⇒ b. On the other
hand, we have A(c ∧ (c ⇒ a) ∧ (c ⇒ b), a ∧ b ∧m) > 0. So A((c ⇒
a)∧(c⇒ b), c⇒ (a∧b)) > 0. Hence c⇒ (a∧b) = (c⇒ a)∧(c⇒ b) by
antisymmetry property of A. Therefore, A(c⇒ (a∧b), (c⇒ a)∧(c⇒
b)) = A((c⇒ a) ∧ (c⇒ b), c⇒ (a ∧ b)) = 1.

3. Assume that A(a∧m, (a∨ b)∧m) > 0 and A(b∧m, (a∨ b)∧m) > 0,
by (1) above A((a∨ b)⇒ c, (a⇒ c)∧ (b⇒ c)) > 0, since A((a∨ b)⇒
c, a ⇒ c) > 0, and A((a ∨ b) ⇒ c, b ⇒ c) > 0. On the other hand,
A((a∨ b)∧ (a⇒ c)∧ (b⇒ c), c∧m) > 0 and hence A((a⇒ c)∧ (b⇒
c), (a ∨ b) ⇒ c) > 0. Hence (a ∨ b) ⇒ c = (a ⇒ c) ∧ (b ⇒ c) by
antisymmetry of A. Therefore, A((a ∨ b) ⇒ c, (a ⇒ c) ∧ (b ⇒ c)) =
A((a⇒ c) ∧ (b⇒ c), (a ∨ b)⇒ c) = 1.

4. Assume that A((a∨b)∧c, (b∨a)∧c) = A((b∨a)∧c, (a∨b)∧c) = 1 and
A(c∧(c⇒ (a∨b)), (a∨b)∧m) = A(c∧(c⇒ (a∨b)), (b∨a)∧m) = A((a∨
b)∧m, (c∧ (c⇒ (a∨ b))) > 0. We get A(c⇒ (a∨ b), c⇒ (b∨a)) > 0.
Interchanging a and b, we have A(c ∧ (c ⇒ (b ∨ a)), (b ∨ a) ∧m) =
A(c∧(c⇒ (b∨a)), (a∨b)∧m)=A((b∨a)∧m, c∧(c⇒ (b∨a))) > 0. We
get A(c⇒ (b∨a), c⇒ (a∨b)) > 0 and hence c⇒ (a∨b) = c⇒ (b∨a)
by antisymmetry of A. Therefore, A(c⇒ (a∨b), c⇒ (b∨a)) = A(c⇒
(b ∨ a), c⇒ (a ∨ b)) = 1.

5. Suppose that A(a ∧ b ∧ c, b ∧ a ∧ c) = A(b ∧ a ∧ c, a ∧ b ∧ c) = 1 and
A((a∧b)∧((b∧a)⇒ c), (b∧a)∧((b∧a)⇒ c)) = A((b∧a)∧((b∧a)⇒
c), (a∧b)∧((b∧a)⇒ c) = 1. Also, A((b∧a)∧((b∧a)⇒ c), c∧m) > 0
and A((a∧b)∧((b∧a)⇒ c), c∧m) > 0. Since (a∧b)∧((b∧a)⇒ c) =
(b∧a)∧((b∧a)⇒ c) ≤ c∧m, then A((b∧a)⇒ c, (a∧b)⇒ c) > 0 (∗).
Interchanging a and b, we get A((a ∧ b) ⇒ c, (b ∧ a) ⇒ c) > 0 (∗∗).
Hence (a ∧ b) ⇒ c = (b ∧ a) ⇒ c by antisymmetry of A. Therefore,
A((a ∧ b)⇒ c, (b ∧ a)⇒ c)=A((b ∧ a)⇒ c, (a ∧ b)⇒ c) = 1.
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Corollary 3.8. For any a, b ∈ R the following hold:

1. A(a⇒ (a ∧ b), a⇒ (b ∧ a)) = A(a⇒ (b ∧ a), a⇒ (a ∧ b))
=A(a⇒ (a ∧ b), a⇒ b) = A(a⇒ b, a⇒ (a ∧ b))
=A(a⇒ b, a⇒ (b ∧ a)) = A(a⇒ (b ∧ a), a⇒ b) = 1.

2. A(a⇒ (b ∧m), a⇒ b) = A(a⇒ b, a⇒ (b ∧m)) = 1.

3. A((a ∨ b)⇒ b, (b ∨ a)⇒ b) = A((b ∨ a)⇒ b, (a ∨ b)⇒ b)
=A((a ∨ b)⇒ b, a⇒ b) = A(a⇒ b, (a ∨ b)⇒ b)
=A(a⇒ b, (b ∨ a)⇒ b) = A((b ∨ a)⇒ b, a⇒ b) = 1.

4. A((a ∨ b)⇒ (a ∧ b), (b⇒ a) ∧ (a⇒ b))
= A((b⇒ a) ∧ (a⇒ b), (a ∨ b)⇒ (a ∧ b)) = 1.

5. A((a ∧m)⇒ b, a⇒ b) = A(a⇒ b, (a ∧m)⇒ b) = 1.

6. A((a ∧m)⇒ (b ∧m), a⇒ b) = A(a⇒ b, (a ∧m)⇒ (b ∧m)) = 1.

Proof. Let a, b ∈ R.

1. A(a ⇒ (a ∧ b), a ⇒ b)=A((a ⇒ a) ∧ (a ⇒ b), a ⇒ b)=A(m ∧ (a ⇒
b), a ⇒ b) = A(a ⇒ b, a ⇒ b) = 1 since a ⇒ a = m and m ∧
(a ⇒ b) = a ⇒ b. Hence A(a ⇒ (a ∧ b), a ⇒ b) = 1. Similarly,
A(a ⇒ b, a ⇒ (a ∧ b)) = 1. Therefore, A(a ⇒ (a ∧ b), a ⇒ b)
= A(a ⇒ b, a ⇒ (a ∧ b)) = 1. A(a ⇒ (b ∧ a), a ⇒ b)=A((a ⇒
b) ∧ (a⇒ a), a⇒ b) = A((a⇒ b) ∧m, a⇒ b), since a⇒ a = m and
m ≤ a ⇒ b. A(m ∧ (a ⇒ b), a ⇒ b) = A(a ⇒ b, a ⇒ b) = 1, since
m ∧ (a ⇒ b) = a ⇒ b. Hence A(a ⇒ (b ∧ a), a ⇒ b) = 1. Similarly,
A(a⇒ b, a⇒ (b ∧ a)) = 1. Therefore, A(a⇒ (b ∧ a), a⇒ b)=A(a⇒
b, a ⇒ (b ∧ a)) = 1. Thus, A(a ⇒ (a ∧ b), a ⇒ (b ∧ a)=A(a ⇒
(b ∧ a), a⇒ (a ∧ b)) = 1.

2. A(a ⇒ (b ∧ m), a ⇒ b) = A((a ⇒ b) ∧ (a ⇒ m), a ⇒ b). By
1, A(a ⇒ b, a ⇒ b) = 1, since m ∧ (a ⇒ b) = a ⇒ b. Hence
A(a ⇒ (b ∧m), a ⇒ b) = 1. Similarly, A(a ⇒ b, a ⇒ (b ∧m)) = 1.
Therefore, A(a⇒ (b ∧ a), a⇒ b) = A(a⇒ b, a⇒ (b ∧ a)) = 1.

3. A((a ∨ b) ⇒ b, a ⇒ b) = A((a ⇒ b) ∧ (b ⇒ b), a ⇒ b) = A((a ⇒ b) ∧
m, a ⇒ b), since b ⇒ b = m=A(m ∧ (a ⇒ b), a ⇒ b)=A(a ⇒ b, a ⇒
b) = 1, since m ∧ (a⇒ b) = a⇒ b. Hence A((a∨ b)⇒ b, a⇒ b) = 1.
Similarly, A(a ⇒ b, (a ∨ b) ⇒ b) = 1. Therefore, A((a ∨ b) ⇒ b, a ⇒
b)= A(a ⇒ b, (a ∨ b) ⇒ b) = 1. Again, A((b ∨ a) ⇒ a, a ⇒ b) =
A((b ⇒ a) ∧ (a ⇒ a), a ⇒ b) = A((b ⇒ a) ∧ m, a ⇒ b), since a ⇒
a = m = A(m ∧ (b ⇒ a), a ⇒ b) = A(b ⇒ a, a ⇒ b)=A(a ⇒ b.a ⇒
b) = 1 since (a ∨ b)⇒ b = (b ∨ a)⇒ a) implies that b⇒ a = a⇒ b.
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Hence A((b∨a)⇒ a, a⇒ b) = 1. Similarly, A(a⇒ b, (b∨a)⇒ a) = 1.
Therefore, A((b ∨ a)⇒ a, a⇒ b)=A(a⇒ b, (b ∨ a)⇒ a) = 1.

4. A((a∨ b)⇒ (b∧ a), (a⇒ b)∧ (b⇒ a)) = A([(a∨ b)⇒ b]∧ [(a∨ b)⇒
a], (a⇒ b)∧(b⇒ a))=A([(a⇒ b)∧(b⇒ b)]∧[(a⇒ a)∧(b⇒ a)], (a⇒
b)∧(b⇒ a)) = A([(a⇒ b)∧m]∧[m∧(b⇒ a)], (a⇒ b)∧(b⇒ a)), since
a⇒ a = m, b⇒ b = mA(m∧(a⇒ b),m∧(b⇒ a))=A((a⇒ b)∧(b⇒
a), (a⇒ b) ∧ (b⇒ a))=A((a⇒ b) ∧ (b⇒ a), (a⇒ b) ∧ (b⇒ a)) = 1.
Hence A((a ∨ b) ⇒ (a ∧ b), (a ⇒ b) ∧ (b ⇒ a)) = 1. Similarly,
A((a ⇒ b) ∧ (b ⇒ a), (a ∨ b) ⇒ (a ∧ b)) = 1. Therefore, A((a ∨ b) ⇒
(a∧b), (a⇒ b)∧(b⇒ a))=A((a⇒ b)∧(b⇒ a), (a∨b)⇒ (a∧b)) = 1.

5. A((a∧m)⇒ b, a⇒ b) = A((m∧a)⇒ b, a⇒ b)=A(a⇒ b, a⇒ b) = 1
since m ∧ a = a. Hence A((a ∧ m) ⇒ b, a ⇒ b) = 1. Similarly,
A(a ⇒ b, (a ∧ m) ⇒ b) = 1. Therefore, A((a ∧ m) ⇒ b, a ⇒ b)=
A(a⇒ b, (a ∧m)⇒ b) = 1.

6. A((a∧m)⇒ (b∧m), a⇒ b) = A((m∧ a)⇒ (m∧ b), a⇒ b)=A(a⇒
b, a ⇒ b) = 1. Since m ∧ a = a,m ∧ b = b, then A((a ∧ m) ⇒
(b ∧ m), a ⇒ b) = 1. Similarly, A(a ⇒ b, (a ∧ m) ⇒ (b ∧ m)) = 1.
Therefore, A((a∧m)⇒(b∧m), a⇒ b)=A(a⇒ b, (a∧m)⇒(b∧m))=1.

Definition 23. Let (R,A) be an ADFL with a maximal element m and
Birkhoff center BA(R). Then (R,A) is called Pseudo-supplemented Almost
Distributive Fuzzy Lattice (PSADFL) if, for each a ∈ R, there exists
y ∈ BA(R) such that

P1 : A(y, a ∧ y) > 0.

P2 : If z ∈ BA(R) and A(z, a ∧ z) > 0, then A(z, y ∧ z) > 0.

Now, we prove that every B-ADFL is a PSADFL in the following the-
orem.

Theorem 3.9. Let (R,A) be a B-ADFL with a maximal element m and
Birkhoff center BA(R). Then (R,A) is a PSADFL.

Proof. Suppose that (R,A) is a B-ADFL and a ∈ R. Then we have
A(y,m ⇒ a) = A(m ⇒ a, y) = 1. Then y ∈ BA(R) and A(y, a ∧m) > 0.
Now, A(y, a∧y) = A(y∧y, a∧y) = A(y∧a∧m∧y, a∧y)=A(y∧a∧y, a∧y),
since m∧y = y=A(a∧y, a∧y) = 1 since m∧a = a. Hence A(y, a∧y) = 1.
Similarly, A(a ∧ y, y) = 1. Therefore, A(y, a ∧ y)= A(a ∧ y, y) = 1. So we
get A(y, a ∧ y) > 0.
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(2) Suppose that z ∈ BA(R) such that A(z, a∧ z) > 0. Then A(z∧m, a∧
m) > 0 and hence A(z∧m,m⇒ a = y) > 0. A(z, y∧z) = A(z∧m∧z, y∧z)
= A(z ∧m∧ a∧ z, y ∧ z) since z ∧m = a∧m∧ z ∧m. =A(y ∧ z ∧m, y ∧ z)
=A(y ∧ z, y ∧ z) = 1. Hence A(z, y ∧ z) = 1. Similarly, A(y ∧ z, z) = 1.
Therefore, A(z, y ∧ z) = A(y ∧ z, z) = 1). We get A(z, y ∧ z) > 0 and
A(y ∧ z, z) > 0. So we have z = y ∧ z. Therefore, A(z, y ∧ z) > 0. Thus,
(R,A) is a PSADFL. The following Lemma can be proved easily since for
a maximal element m the interval ([0,m], A) is a distributive fuzzy lattice.

Theorem 3.10. Let (R,A) be an ADFL with a maximal element m and
Birkhoff center BA(R). Then, for any a, b ∈ R and y ∈ BA(R):

1. A(b∧m, [(y∧m)
′∨a]∧m) > 0 if and only if A((y∧b)∧m, a∧m) > 0.

2. A((y∧m)
′ ∧a∧m, y∧m) > 0 if and only if A(a∧m.(y∨ b)∧m) > 0,

where (y ∧m)
′

is the complement of y ∧m in [0,m].

Proof.

1. Suppose that A(b ∧m, [(y ∧m)
′ ∨ a] ∧m) > 0. Then

A(y ∧m ∧ b ∧m, (y ∧m) ∧ (y ∧m)
′
∨ a] ∧m)

=A(y ∧m ∧ b ∧m, [(y ∧m) ∧ (y ∧m)
′
] ∨ [(y ∧m) ∧ a] ∧m)

=A(y ∧m ∧ b ∧m, 0 ∨ [(y ∧m) ∧ a] ∧m)

=A(y ∧m ∧ b ∧m, (y ∧ a) ∧m)

=A(y ∧ b ∧m, (y ∧ a) ∧m)

=A(y ∧ b ∧m, y ∧ (a ∧m))

=A(y, y) = 1 > 0,

since y ∧ b∧m = y and y ∧ a∧m = y. As A(y ∧ (a∧m), a∧m) > 0,
we have A(y ∧ b ∧m, a ∧m) > 0 y ∧ a ∧m = y ∧ b ∧m.
Conversely, suppose that A(y ∧ b ∧m, a ∧m) > 0.

A(m ∧ b, ((y ∧m)
′
∨ a) ∧m

≥(y ∧m)
′
∨ (y ∧ b ∧m))

=A(m ∧ b, (y ∧m)
′
∨ y ∧m) ∧ ((y ∧m)

′
∨ b))

=A(m ∧ b,m ∧ ((y ∧m)
′
∨ b))

=A(m ∧ b, (m ∧ (y ∧m)
′
∨ (m ∧ b))

≥A(m ∧ b,m ∧ b) = 1.
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It implies that A(b∧m, ((y∧m)
′ ∨a)∧m) = 1. Hence A(b∧m, ((y∧

m)
′ ∨ a) ∧m) > 0.

2. Suppose that A((y ∧m)
′ ∧ a ∧m, y ∧m) > 0.

A(a ∧m, (y ∨ b) ∧m) =A(a ∧m, ((y ∧m) ∨ (b ∧m)

≥(y ∧m) ∨ ((y ∧m)
′
∧ a ∧m)))

=A(a ∧m, (y ∧m) ∨ (y ∧m)
′

∧ [(y ∧m) ∨ (a ∧m)])

=A(a ∧m,m ∧ (y ∧m) ∨ (a ∧m)])

=A(a ∧m,m ∧ [(y ∨ a) ∧m])

≥A(a ∧m, a ∧m) = 1.

So that A(a ∧m, (y ∨ b) ∧m) = 1 Hence A(a ∧m, (y ∨ b) ∧m) > 0.
Conversely, suppose A(a ∧m, (y ∨ b) ∧m) > 0. Then
A((y ∧m)

′ ∧ a ∧m, b ∧m) > 0 since

A(b ∧m, (y ∧m)
′
∧ a ∧m) ≤A(b ∧m, (y ∧m)

′
∧ ((y ∨ b) ∧m))

=A(b ∧m, [(y ∧m)
′
∧ y)

∨ ((y ∧m)
′
∧ b)] ∧m)

=A(b ∧m, ((y ∧m)
′
∧ b) ∧m)

≤A(b ∧m, b ∧m) = 1.

4. Coclusion

In this paper we have extended B-ADL to B-ADFL. In a distributive fuzzy
lattice with 0 and 1, B − algebra and B − fuzzy algebra are equivalent.
B-ADFL with a maximal element m and Birkhoff center BA(R) implies
PSADFL. In general, it is also posible to extend B-ADFL to dual B-ADFL.
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