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Abstract

Wójcicki introduced in the late 1970s the concept of a referential semantics for

propositional logics. Referential semantics incorporate features of the Kripke

possible world semantics for modal logics into the realm of algebraic and matrix

semantics of arbitrary sentential logics. A well-known theorem of Wójcicki as-

serts that a logic has a referential semantics if and only if it is selfextensional.

Referential semantics was subsequently studied in detail by Malinowski and the

concept of selfextensionality has played, more recently, an important role in the

field of abstract algebraic logic in connection with the operator approach to al-

gebraizability. We introduce and review some of the basic definitions and results

pertaining to the referential semantics of π-institutions, abstracting correspond-

ing results from the realm of propositional logics.

Keywords: Referential Logics, Selfextensional Logics, Leibniz operator,
Tarski operator, Suszko operator, π-institutions.

1. Introduction

Let L = ⟨Λ, ρ⟩ be a logical signature/algebraic type, i.e., a set of logical
connectives/operation symbols Λ with attached finite arities given by the
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function ρ ∶ Λ→ ω. Let, also, V be a countably infinite set of propositional
variables and T a set of reference/base points. Wójcicki [20] defines a
referential algebra A to be an L-algebra with universe A ⊆ {0,1}T .
Such an algebra determines the consequence operation CA on FmL(V ) by
setting, for all X ∪ {α} ⊆ FmL(V ), α ∈ CA(X) iff, for all h ∶ FmL(V )→A

and all t ∈ T ,

h(β)(t) = 1, for all β ∈X, implies h(α)(t) = 1.
Moreover, Wójcicki calls a propositional logic S = ⟨L, C⟩, where C =

C
A, for a referential algebra A, a referential (or referentially truth-

functional) propositional logic.
Wójcicki shows in [20] that, given a class K of referential algebras,

there exists a single referential algebra A, such that CK
∶= ⋂K∈KC

K
= C

A.
Thence follows that a propositional logic is referential if and only if it is
defined by a class of referential algebras.

Given a propositional logic S = ⟨L, C⟩, the Frege or interderivabil-

ity relation of S, denoted Λ(S), is the equivalence relation on FmL(V ),
defined, for all α,β ∈ FmL(V ), by

⟨α,β⟩ ∈ Λ(S) iff C(α) = C(β).
The Tarski congruence Ω̃(S) of S (see [8]) is the largest congruence
relation on FmL(V ) that is compatible with all theories of S. The Tarski
congruence is a special case of the Suszko congruence Ω̃S(T ) associated
with a given theory T of S, which is defined as the largest congruence
on FmL(V ) that is compatible with all theories of S that contain the
given theory T (see [3]). In fact, by definition, Ω̃(S) = Ω̃S(C(∅)), i.e.,
the Tarski congruence of S is the Suszko congruence associated with the
set of theorems of the logic S. Font and Jansana [8], extending Blok and
Pigozzi’s [1] well-known characterization of the Leibniz congruence Ω(T )
associated with a theory T of a sentential logic, have shown that, for all
α,β ∈ FmL(V ),

⟨α,β⟩ ∈ Ω̃(S) iff for all ϕ(p, q⃗) ∈ FmL(V ),
C(ϕ(α, q⃗)) = C(ϕ(β, q⃗)).

Whereas Ω̃(S) ⊆ Λ(S), for every propositional logic S, the reverse inclusion
does not hold in general. A propositional logic is called selfextensional

in [20] if Λ(S) ⊆ Ω̃(S). In fact, Wójcicki shows in what has become a
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fundamental theorem in the theory of referential semantics, Theorem 2
of [20], that a propositional logic is referential if and only if it is self-
extensional.

Several authors, inspired by this pioneering work, have subsequently
contributed to the development of referential semantics. Various related
variants and extensions of this type of semantics have also been intro-
duced. We provide below a very brief survey, as well as an overview of
some influences exerted by this work on the field of abstract algebraic logic.

Wójcicki in [21], reasserting the importance of referentiality, revis-
ited the equivalence between referentiality and selfextensionality, proving
a “weak version” by replacing the entirety of theories (equivalently, the
closure operator C) by the set of theorems. Malinowski [13] uses a coun-
terexample crafted by Dziobiak to show that not every propositional logic
admits a matrix semantics consisting only of matrices with one-element
filters. According to Malinowski [13], Wójcicki conjectured a character-
ization of such logics at the Autumn School on Strongly Finite Senten-
tial Calculi held in Miȩdzygórze in 1977, to the effect that this happens
for a logic S = ⟨L, C⟩ iff, for all X ∪ {α} ⊆ FmL(V ), if α ∈ C(X), then
C(X) = {β ∈ FmL(V ) ∶ ⟨α,β⟩ ∈ Ω̃S(C(X))}. This means that the theory
generated by a set X of formulas coincides with a class of its Suszko con-
gruence. Besides this interesting early connection between referentiality
and the seeds of abstract algebraic logic [2], this result was shown to have
some important ramifications in the study of the algebraic semantics of
referential logics in [16].

Malinowski [14], in a paper dedicated to Wójcicki, introduced the so-
called pseudo-referential matrix semantics for propositional logics in an
attempt to maintain some of the desirable features of referentiality, but
also to amend the limitation of its applicability as a strongly adequate
semantics exclusively to selfextensional logics. He showed that all propo-
sitional logics have a strongly adequate pseudo-referential semantics. His
work was continued by Marek [17], who constructed, for any generalized
matrix an equivalent discrete pseudo-referential matrix, thus, proving that
every sentential logic has a strongly adequate discrete pseudo-referential
matrix.

Referential semantics has given rise to two other interesting extensions:
First, Tokarz [19] introduced and studied pragmatic matrix semantics, in
which the universe of the underlying algebras of the pragmatic matrices
consists of functions from situations to situations, with some situations sin-
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gled out as facts and deciding the filter of the matrix. Second, Malinowski
[15] introduced and studied many-valued referential semantics, influenced
both by ordinary referential semantics, but, also fusing elements from both
modal logic and many-valued logic techniques. For an expert view of these
developments, we refer the reader to Malinowski’s more recent work [16].
It is also worth mentioning that Chapter 5 of Wójcicki’s monograph [22] is
devoted to an exposition of referential semantics of propositional logics.

Related to this work, but in a rather different direction, selfextension-
ality itself, together with its equivalence with referentiality, have given rise
to a substantial body of work in the field of abstract algebraic logic.

This line of work was initiated by Pigozzi [18]. During the years strad-
dling the transition to the new millennium, two groups worked tidally, in-
dependently, but also in close contact and with mutual cross-fertilization,
to advance these ideas. On the one hand, Czelakowski and Pigozzi de-
veloped the theory of Fregean logics, obtaining both general [6] and more
specialized results, pertaining, for example, to the multi-term deduction-
detachment theorem [7] and the amalgamation property [5, 4]. On the
other hand, Font and Jansana, starting with their seminal monograph on
the “general algebraic semantics of sentential logics” [8], paved the way
for Jansana’s subsequent extensive study of selfextensionality in [10, 11],
a “brief survey” of which can be found in [9]. In the categorical context,
the author followed closely the developments of both groups with work pre-
sented in [24] (see, also, the unpublished [27, 28]). In closing this summary,
one should mention the more recent work on relating referentiality with the
theory of duality, both in the universal algebraic [12] and the categorical
[25] framework.

In the present work, we return to the nascent steps of the study of
referentiality and introduce some basic concepts and ideas in the categorical
abstract algebraic logic framework of logics formalized as π-institutions,
paralleling the pioneering work of Wójcicki and the Polish School.

2. π-Institutions and Closure Systems

Let Sign be a category and SEN ∶ Sign → Set a Set-valued functor. The
clone of all natural transformations on SEN is the category U with
collection of objects {SENα ∶ α an ordinal} and collection of morphisms
τ ∶ SENα → SENβ β-sequences of natural transformations τ ∶ SENα → SEN.
Composition of ⟨τi ∶ i < β⟩ ∶ SENα → SENβ with ⟨σj ∶ j < γ⟩ ∶ SENβ → SENγ
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SENα
⟨τi ∶ i < β⟩

✲ SENβ
⟨σj ∶ j < γ⟩

✲ SENγ

is defined by

⟨σj ∶ j < γ⟩ ○ ⟨τi ∶ i < β⟩ = ⟨σj(⟨τi ∶ i < β⟩) ∶ j < γ⟩.
A subcategory of this category with objects all objects of the form SENk ∶
k < ω, and such that:

● it contains all projection morphisms pk,i ∶ SENk → SEN, i < k, k < ω,
with pk,iΣ ∶ SEN(Σ)k → SEN given by

p
k,i
Σ (φ⃗) = φi, for all φ⃗ ∈ SEN(Σ)k,

● for every family {τi ∶ SENk → SEN ∶ i < l} of natural transformations
in N , ⟨τi ∶ i < l⟩ ∶ SENk → SENl is also in N ,

is referred to as a category of natural transformations on SEN.
Consider an algebraic system F = ⟨Sign,SEN,N⟩, i.e., a triple con-

sisting of

● a category Sign, called the category of signatures;

● a functor SEN ∶ Sign→ Set, called the sentence functor;

● a category of natural transformations N on SEN.

A π-institution based on F is a pair I = ⟨F , C⟩, where C = {CΣ}Σ∈∣Sign∣
is a closure system on SEN, i.e., a ∣Sign∣-indexed collection of closure
operators CΣ ∶ PSEN(Σ) → PSEN(Σ), such that, for all Σ1,Σ2 ∈ ∣Sign∣,
all f ∈ Sign(Σ1,Σ2) and all Φ ⊆ SEN(Σ1),

SEN(f)(CΣ1
(Φ)) ⊆ CΣ2

(SEN(f)(Φ)).
This condition is sometimes referred to as structurality. In this context,
F is also referred to as the base algebraic system. Given a π-institution
I, a theory family T = {TΣ}Σ∈∣Sign∣ is a ∣Sign∣-indexed collection of sub-
sets TΣ ⊆ SEN(Σ), closed under CΣ, i.e., such that CΣ(TΣ) = TΣ, for
all Σ ∈ ∣Sign∣. The collection of all theory families of I is denoted by
ThFam(I) and it is well-known that, ordered by signature-wise inclusion,
it forms a complete lattice ThFam(I).

Note, also, that, given a base algebraic system F , the collection of
all closure systems based on F is closed under signature-wise intersections
and, hence, forms a complete lattice under the signature-wise ordering ≤:

C
1
≤ C

2 iff for all Σ ∈ ∣Sign∣ and all Φ ⊆ SEN(Σ),
C

1
Σ(Φ) ⊆ C2

Σ(Φ).
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3. Referential π-Institutions: Algebraic Systems

We assume a base algebraic system F = ⟨Sign,SEN,N⟩. Consider also an
N -algebraic system A = ⟨Sign′,SEN′,N ′⟩, i.e., one such that there exists
a surjective functor ′ ∶ N → N

′, preserving all projection natural transfor-
mations and, as a consequence, all arities of the natural transformations
involved. We denote by σ′ ∶ SEN′k → SEN′ the natural transformation in
N
′ that is the image of σ ∶ SENk → SEN in N under ′.
More specifically, we want to focus on N -algebraic systems A = ⟨Sign′,

SEN′s,N
′⟩, where SEN′s is a simple subfunctor (having the same domain)

of the inverse powerset functor
←#

P SEN′ ∶ Sign′ → Set of a contravariant
functor SEN′ ∶ Sign′ → Set

op. For Σ ∈ ∣Sign′∣, the elements of SEN′(Σ)
in this context are referred to as Σ-reference or Σ-base points (see,
e.g., [25]). An N -morphism ⟨F,α⟩ ∶ SEN → SEN′s will be viewed as a
valuation of sentences of SEN in the following way: For all Σ ∈ ∣Sign∣ and
all ϕ ∈ SEN(Σ), ϕ ∈ SEN(Σ) is true at p ∈ SEN′(F (Σ)) under ⟨F,α⟩ iff
p ∈ αΣ(ϕ).

An N -algebraic system of this special form is called a referential N -
algebraic system. By slightly abusing terminology, we use the same term
to refer to an (interpreted) referential N -algebraic system, which is a
pair A = ⟨A, ⟨F,α⟩⟩, with ⟨F,α⟩ ∶ F → A an N -morphism. We sometimes
drop the subscript s when referring to the subfunctor to make notation less
cumbersome, provided that this is unlikely to cause any confusion.

Let F = ⟨Sign,SEN,N⟩ be a base algebraic system and A = ⟨A, ⟨F,α⟩⟩
an interpreted referential N -algebraic system. Then A determines a closure
system C

A on SEN (or on F ) according to the following definition:
For all Σ ∈ ∣Sign∣ and all Φ ∪ {ϕ} ⊆ SEN(Σ), ϕ ∈ CAΣ (Φ) iff, for all

Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),
⋂
φ∈Φ

αΣ′(SEN(f)(φ)) ⊆ αΣ′(SEN(f)(ϕ))
(φ and ϕ, here, are intentionally different).

Proposition 1. Let F = ⟨Sign,SEN,N⟩ be a base algebraic system and

A = ⟨A, ⟨F,α⟩⟩ an interpreted referential N -algebraic system. Then CA is

a closure system on SEN.

Proof: One needs to check that, for all Σ ∈ ∣Sign∣, CAΣ ∶ PSEN(Σ) →
PSEN(Σ) is a closure operator and, also, that the structurality condition
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holds. Reflexivity of CAΣ is obvious. Monotonicity follows from the fact
that, if Φ⊆Ψ⊆SEN(Σ), then⋂ψ∈Ψ αΣ′(SEN(f)(ψ))⊆⋂φ∈Φ αΣ′(SEN(f)(φ)),
for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′). For transitivity, to see that
C
A
Σ (CAΣ (Φ)) ⊆ CAΣ (Φ), note that the following hold, for all Σ′ ∈ ∣Sign∣,

all f ∈ Sign(Σ,Σ′) and all ϕ ∈ CAΣ (CAΣ (Φ)): ⋂ψ∈CA
Σ
(Φ) αΣ′(SEN(f)(ψ)) ⊆

αΣ′(SEN(f)(ϕ)) and, also, for all ψ ∈ CAΣ (Φ), ⋂φ∈Φ αΣ′(SEN(f)(φ)) ⊆
αΣ′(SEN(f)(ψ)), whence

⋂φ∈Φ αΣ′(SEN(f)(φ)) ⊆ ⋂ψ∈CA
Σ

αΣ′(SEN(f)(ψ))
⊆ αΣ′(SEN(f)(ϕ)).

This proves ϕ ∈ CAΣ (Φ). Finally, for structurality we must show that for all
Σ1,Σ2 ∈ ∣Sign∣, f ∈ Sign(Σ1,Σ2) and all Φ ⊆ SEN(Σ1), SEN(f)(CAΣ1

(Φ)) ⊆
C
A
Σ2
(SEN(f)(Φ)). Suppose ϕ′ ∈ SEN(f)(CAΣ1

(Φ)). Then, there exists

ϕ ∈ C
A
Σ1
(Φ), such that ϕ′ = SEN(f)(ϕ). Thus, for all g ∈ Sign(Σ1,Σ

′),
⋂φ∈Φ αΣ′(SEN(g)(φ)) ⊆ αΣ′(SEN(g)(ϕ)).

Σ1

f
✲ Σ2

Σ′
✛ g

′g ✲

But then, for all g′ ∈ Sign(Σ2,Σ
′), we get ⋂φ∈Φ αΣ′(SEN(g′)SEN(f)(φ)) ⊆

αΣ′(SEN(g′)SEN(f)(ϕ)) or
⋂

φ′∈SEN(f)(Φ)

αΣ′(SEN(g′)(φ′)) ⊆ αΣ′(SEN(g′)(ϕ′)).
This proves that ϕ′ ∈ CAΣ2

(SEN(f)(Φ)).
Since CA is a closure system on F , the pair IA = ⟨F , CA⟩ is a π-

institution. We call an institution having this form a referential π-insti-
tution. Such π-institutions correspond in the theory of categorical abstract
algebraic logic to the referential propositional logics of Wójcicki [20].

4. Referentiality via Classes of Algebraic Systems

Consider, again, a base algebraic system F = ⟨Sign,SEN,N⟩.
Given categories Sign

′i, i ∈ I, we denote by ∏i∈I Sign
′i the product

category of the categories {Sign′i ∶ i ∈ I}.
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Suppose SENi ∶ Sign′i → Set
op, i ∈ I, is a collection of functors

and SEN′i ∶ Sign′i → Set corresponding simple subfunctors of
←#

P SENi ∶
Sign

′i
→ Set, for all i ∈ I. (Here, we use SEN′i instead of SENis to distin-

guish the two functors.) Consider the functor ⊔SENi ∶∏i∈I Sign
′i
→ Set

op,
defined, for all i ∈ I and all Σi ∈ ∣Sign′i∣, by

⊔SENi(⟨Σi ∶ i ∈ I⟩) =⊎
i∈I

SENi(Σi),
where ⊎i∈I SEN

i(Σi) denotes the disjoint union of sets, and, for all i ∈ I,
Σ1
i ,Σ

2
i ∈ ∣Sign′i∣ and fi ∈ Sign′i(Σ1

i ,Σ
2
i ), ϕ ∈ ⊔SENi(⟨Σ1

i ∶ i ∈ I⟩),
⊔SENi(⟨fi ∶ i ∈ I⟩)(ϕ) = SENi(fi)(ϕ), if ϕ ∈ SENi(Σ1

i ).
Let SEN′ ∶ ∏i∈I Sign

′i
→ Set denote the simple subfunctor of

←#

P ⊔SENi ∶

∏i∈I Sign
′i
→ Set specified by setting, for all i ∈ I and all Σi ∈ ∣Sign′i∣,

SEN′(⟨Σi ∶ i ∈ I⟩) = {Φ ⊆ ⊔SENi(⟨Σi ∶ i ∈ I⟩) ∶
Φ ∩ SENi(Σi) ∈ SEN′i(Σi), i ∈ I}.

Proposition 2. The definition of SEN′ ∶∏i∈I Sign
′i
→ Set is sound, i.e.,

for all fi ∶ Σ
1
i → Σ2

i , i ∈ I, and all Φ ∈ SEN′(⟨Σ1
i ∶ i ∈ I⟩),

⊔SENi(⟨fi ∶ i ∈ I⟩)(Φ) ∈ SEN′(⟨Σ2
i ∶ i ∈ I⟩).

Proof: By definition,

⊔SENi(⟨fi ∶ i ∈ I⟩)(Φ) =⊎
i∈I

SENi(fi)−1(Φ ∩ SENi(Σ1
i )).

Since Φ∩SENi(Σ1
i ) ∈ SENi(Σ1

i ), i ∈ I, we have SENi(fi)−1(Φ∩SENi(Σ1
i )) ∈

SEN′i(Σ2
i ). Now, noting that SEN′(⟨fi ∶ i ∈ I⟩)(Φ)∩SENi(Σ2

i ) ∈ SEN′i(Σ2
i ),

we conclude that SEN′(⟨fi ∶ i ∈ I⟩)(Φ) ∈ SEN′(⟨Σ2
i ∶ i ∈ I⟩), as required.

Corollary 3. For all i ∈ I, all fi ∶ Σ
1
i → Σ2

i and all Φ ∈ SEN′(⟨Σ1
i ∶ i ∈ I⟩),

SEN′i(fi)(Φ ∩ SENi(Σ1
i )) = SEN′(⟨fi ∶ i ∈ I⟩)(Φ) ∩ SENi(Σ2

i ).
Proof: By the proof of Proposition 2.

Next, for all σ ∶ SENk → SEN in N , let σ′ ∶ SEN′k → SEN′ be defined,
for all Σi ∈ ∣Sign′i∣, i ∈ I, and all Φ0, . . . ,Φk−1 ∈ SEN

′k(⟨Σi ∶ i ∈ I⟩), by
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σ
′

⟨Σi∶i∈I⟩
(Φ0, . . . ,Φk−1) =⊎

i∈I

σ
′i
Σi

(Φ0 ∩ SEN
i(Σi), . . . ,Φk−1 ∩ SENi(Σi)).

We show that this is a bona fide natural transformation: Consider fi ∶ Σ
1
i →

Σ2
i in Sign

′i, i ∈ I, and let Φ0, . . . ,Φk−1 ∈ SEN
′k(⟨Σ1

i ∶ i ∈ I⟩). Then:
SEN′k(⟨Σ1

i ∶ i ∈ I⟩)
σ
′

⟨Σ1

i
∶i∈I⟩

✲ SEN′(⟨Σ1
i ∶ i ∈ I⟩)

SEN′k(⟨Σ2
i ∶ i ∈ I⟩)

SEN′k(⟨fi ∶ i ∈ I⟩)
❄

σ
′

⟨Σ2

i
∶i∈I⟩

✲ SEN′(⟨Σ2
i ∶ i ∈ I⟩)
SEN′(⟨fi ∶ i ∈ I⟩)
❄

SEN′(⟨fi ∶ i ∈ I⟩)(σ′⟨Σ1

i
∶i∈I⟩
(Φ0, . . . ,Φk−1))

= SEN′(⟨fi ∶ i ∈ I⟩)(⊎i∈I σ′iΣ1

i

(Φ0 ∩ SEN
i(Σ1

i ), . . . ,Φk−1 ∩ SENi(Σ1
i )))

= ⊎i∈I SEN
′i(fi)(σ′iΣ1

i

(Φ0 ∩ SEN
i(Σ1

i ), . . . ,Φk−1 ∩ SENi(Σ1
i )))

= ⊎i∈I σ′iΣ2

i

(SEN′i(fi)(Φ0 ∩ SEN
i(Σ1

i )), . . . ,SEN′i(fi)(Φk−1 ∩ SENi(Σ1
i )))

= ⊎i∈I σ′iΣ2

i

(SEN′(⟨fi ∶ i ∈ I⟩)(Φ0) ∩ SENi(Σ2
i ), . . . ,

SEN′(⟨fi ∶ i ∈ I⟩)(Φk−1) ∩ SENi(Σ2
i ))

= σ
′

⟨Σ2

i
∶i∈I⟩
(SEN′(⟨fi ∶ i ∈ I⟩)(Φ0), . . . ,SEN′(⟨fi ∶ i ∈ I⟩)(Φk−1)).

Let N ′ be the category of natural transformations on SEN′ determined by
these natural transformations. The triple

A
′
= ⟨∏

i∈I

Sign
′i
,SEN′,N ′⟩

is a referential N -algebraic system, called the pasting of the referential
N -algebraic systems A′i = ⟨Sign′i,SEN′i,N ′i⟩, i ∈ I.

This construction may be further extended to interpreted referential
N -algebraic systems. Suppose, maintaining the notation used previously,
that A′i = ⟨A′i, ⟨F i, αi⟩⟩, i ∈ I, is a collection of interpreted referential N -
algebraic systems, with A

′i
= ⟨Sign′i,SEN′i,N ′i⟩, i ∈ I. Then, we construct

the pasting A
′
= ⟨∏i∈I Sign′i,SEN′,N ′⟩, as above, and define the pair⟨F,α⟩ as follows:

● F ∶ Sign → ∏i∈I Sign
′i is given by F (Σ) = ⟨F i(Σ) ∶ i ∈ I⟩, for all

Σ ∈ ∣Sign∣, and F (f) = ⟨F i(f) ∶ i ∈ I⟩, for all f ∈ Sign(Σ1,Σ2).
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● α ∶ SEN → SEN′ ○ F is the natural transformation, such that, for all
Σ ∈ ∣Sign∣, αΣ ∶ SEN(Σ) → SEN′(⟨F i(Σ) ∶ i ∈ I⟩) is determined, for
all ϕ ∈ SEN(Σ), by

αΣ(ϕ) =⊎
i∈I

α
i
Σ(ϕ), for all ϕ ∈ SEN(Σ).

We check that the latter is a natural transformation. Let f ∶ Σ1 → Σ2 be a
morphism in Sign and ϕ ∈ SEN(Σ1). Then

SEN(Σ1) αΣ1✲ SEN′(⟨F i(Σ1) ∶ i ∈ I⟩)

SEN(Σ2)
SEN(f)

❄

αΣ2

✲ SEN′(⟨F i(Σ2) ∶ i ∈ I⟩)
SEN′(⟨F i(f) ∶ i ∈ I⟩)
❄

αΣ2
(SEN(f)(ϕ)) = ⊎i∈I αiΣ2

(SEN(f)(ϕ))
= ⊎i∈I SEN(F i(f))(αiΣ1

(ϕ))
= SEN′(⟨F i(f) ∶ i ∈ I⟩)(⊎i∈I αiΣ1

(ϕ))
= SEN′(⟨F i(f) ∶ i ∈ I⟩)(αΣ1

(ϕ)).
We also call the pairA′ = ⟨A′, ⟨F,α⟩⟩ the pasting referentialN -algebraic
system of the collection of interpreted referential N -algebraic systems
A′i = ⟨A′i, ⟨F i, αi⟩⟩, i ∈ I.

We have now paved the way for proving an analog of Theorem 1 of
[20]. In the proof of Theorem 4, we maintain the notation introduced in
the preceding definitions.

Theorem 4. Let F = ⟨Sign,SEN,N⟩ be a base N -algebraic system. Let

A = {A′i = ⟨A′i, ⟨F i, αi⟩⟩ ∶ i ∈ I}, be a collection of interpreted referential

N -algebraic systems and A′ = ⟨A′, ⟨F,α⟩⟩ their pasting. Then CA
′

= C
A.

Proof: Suppose, first, that Σ ∈ ∣Sign∣ and Φ∪{ϕ} ⊆ SEN(Σ), such that ϕ ∈
C

A
Σ(Φ). This happens iff, for all i ∈ I, Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

⋂
φ∈Φ

α
i
Σ′(SEN(f)(φ)) ⊆ αiΣ′(SEN(f)(ϕ)).

Suppose, next, that, for some p ∈ SEN′(F (Σ′)), p ∈ ⋂φ∈Φ αΣ′(SEN(f)(φ)).
Thus, keeping in mind the disjointness of the unions in the construction of
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the pasting, there exists i ∈ I, such that p ∈ ⋂φ∈Φ αiΣ′(SEN(f)(φ)). Then,
by hypothesis, p ∈ αiΣ′(SEN(f)(ϕ)). Therefore, ⋂φ∈Φ αΣ′(SEN(f)(φ)) ⊆
αΣ′(SEN(f)(ϕ)), i.e., ϕ ∈ CA′Σ (Φ).

Suppose, conversely, that Σ ∈ ∣Sign∣, Φ ∪ {ϕ} ⊆ SEN(Σ), such that

ϕ ∈ C
A
′

Σ (Φ). Thus, for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′),
⋂
φ∈Φ

αΣ′(SEN(f)(φ)) ⊆ αΣ′(SEN(f)(ϕ)).
Next, let i ∈ I, Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and p ∈ SEN′i(F i(Σ′)), such
that p ∈ ⋂φ∈Φ αiΣ′(SEN(f)(φ)). Then, since, by definition, αΣ′(SEN(f)(φ))
= ⊎i∈I αiΣ′(SEN(f)(φ)), we have p ∈ ⋂φ∈Φ αΣ′(SEN(f)(φ)). So, by hypoth-

esis, p ∈ αΣ′(SEN(f)(ϕ)) = ⊎i∈I αiΣ′(SEN(f)(ϕ)). Since p ∈ SEN′i(F i(Σ′)),
we conclude that p ∈ αiΣ′(SEN(f)(ϕ)). We have, therefore, shown that

⋂φ∈Φ αiΣ′(SEN(f)(φ)) ⊆ αiΣ′(SEN(f)(ϕ)). Since this holds for all i ∈ I, all
Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), we get ϕ ∈ CA

Σ(Φ).
We conclude that, even if multiple referential algebraic systems are used

in the definition of its closure system, a π-institution retains its referential
character, an analog of the corollary following Theorem 1 of [20]:

Corollary 5. Let F = ⟨Sign,SEN,N⟩ be a base algebraic system. A π-

institution I = ⟨F , C⟩ is referential iff it is defined by a class {A′i}i∈I of

interpreted referential N -algebraic systems.

5. Referential π-Institutions: Operators

Let F = ⟨Sign,SEN,N⟩ be a base algebraic system and I = ⟨F , C⟩ a π-
institution based on F . We define the Frege equivalence system Λ(I) of
I, also known as the interderivability equivalence system, by setting,
for all Σ ∈ ∣Sign∣ and all ϕ,ψ ∈ SEN(Σ),

⟨ϕ,ψ⟩ ∈ ΛΣ(I) if and only if CΣ(ϕ) = CΣ(ψ).
The Tarski congruence system Ω̃(I) of I ([8] for the universal algebraic
notion and [26] for its categorical extension) is the largest N -congruence
system on SEN that is compatible with every theory family T ∈ ThFam(I).

Clearly, it is always the case that Ω̃(I) ≤ Λ(I). We call the π-
institution I self-extensional if Λ(I) ≤ Ω̃(I). In view of the preceding
remark, I is self-extensional if and only if Λ(I) = Ω̃(I).
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We prove, next, a generalization to π-institutions of Wójcicki’s Theo-
rem (see Theorem 2 of [20], but, also, Theorem 2.2 of [12] for a complete
proof), providing a characterization of referential sentential logics. We split
the proof into two lemmas.

Lemma 6. Every referential π-institution I = ⟨F , C⟩ is self-extensional.

Proof: Suppose that I is referential, i.e., that C = CA, for some inter-
preted referential N -algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign′,
SEN′,N ′⟩. Let Σ ∈ ∣Sign∣, ϕ,ψ ∈ SEN(Σ), such that ⟨ϕ,ψ⟩ ∈ ΛΣ(I).
Then, by definition, CΣ(ϕ) = CΣ(ψ), whence, since C = CA, we obtain
C
A
Σ (ϕ) = CAΣ (ψ). Thus, by the definition of CA, for all Σ′ ∈ ∣Sign∣ and all

f ∈ Sign(Σ,Σ′),
αΣ′(SEN(f)(ϕ)) = αΣ′(SEN(f)(ψ)).

Thus, for all σ ∶ SENk → SEN in N , all Σ′′ ∈ ∣Sign∣, all g ∈ Sign(Σ′,Σ′′)
and all χ⃗ ∈ SEN(Σ′)k, we get

Σ
f

✲ Σ′
g

✲ Σ′′

σ
′

F (Σ′′)(αΣ′′(SEN(gf)(ϕ)), αΣ′′(SEN(g)(χ⃗)))
= σ
′

F (Σ′′)(αΣ′′(SEN(gf)(ψ)), αΣ′′(SEN(g)(χ⃗)))
⇒ αΣ′′(σΣ′′(SEN(gf)(ϕ),SEN(g)(χ⃗)))

= αΣ′′(σΣ′′(SEN(gf)(ψ),SEN(g)(χ⃗)))
⇒ αΣ′′(SEN(g)(σΣ′(SEN(f)(ϕ), χ⃗)))

= αΣ′′(SEN(g)(σΣ′(SEN(f)(ψ), χ⃗)))
⇒ C

A
Σ′(σΣ′(SEN(f)(ϕ), χ⃗)) = CAΣ′(σΣ′(SEN(f)(ψ), χ⃗))

⇒ CΣ′(σΣ′(SEN(f)(ϕ), χ⃗)) = CΣ′(σΣ′(SEN(f)(ψ), χ⃗))
⇒ ⟨ϕ,ψ⟩ ∈ Ω̃Σ(I),

where the last implication follows by a well-known characterization of the
Tarski congruence system of a π-institution, Theorem 4 of [26].

The following lemma proves the converse:

Lemma 7. Every self-extensional π-institution I = ⟨F , C⟩ is referential.

Proof: Suppose that I = ⟨F , C⟩ is selfextensional, i.e., that Λ(I) = Ω̃(I).
We construct the following canonical referential N -algebraic system

A = ⟨Sign′,SEN′,N ′⟩ as follows:
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● Sign
′

= Sign;

● Take as the set of Σ-points the collection of all Σ-theories ThΣ(I)
of I. Thus, for Σ ∈ ∣Sign∣, SEN′(Σ) = ThΣ(I) and, for f ∶ Σ1 → Σ2

in Sign, SEN′(f) ∶ ThΣ2
(I) → ThΣ1

(I) is given by SEN′(f)(T ) =
SEN(f)−1(T ), for all T ∈ ThΣ2

(I).
● We now define SEN′s as a subfunctor of

←#

P SEN′ ∶ P(SEN′(Σ1)) →
P(SEN′(Σ2)), but we keep the same symbol SEN′ instead of writing
SEN′s. For Σ ∈ ∣Sign∣ and ϕ ∈ SEN(Σ), let ThΣ(ϕ) = {T ∈ ThΣ(I) ∶
ϕ ∈ T} and set

SEN′(Σ) = {ThΣ(ϕ) ∶ ϕ ∈ SEN(Σ)}.
● Finally, define, for all σ ∶ SENk → SEN in N , all Σ ∈ ∣Sign∣ and all
ϕ0, . . . , ϕk−1 ∈ SEN(Σ),

σ
′

Σ(ThΣ(ϕ0), . . . ,ThΣ(ϕk−1)) = ThΣ(σΣ(ϕ0, . . . , ϕk−1)).
Let N ′ be the category of natural transformations consisting of all
the σ′ ∶ SEN′k → SEN′, for σ ∶ SENk → SEN in N .

It is not difficult to see that SEN′ is a subfunctor of the inverse powerset

functor
←#

P SEN′ ∶ Sign → Set
op defined above. To check this, it suffices to

show that for all Σ1,Σ2 ∈ ∣Sign∣, f ∈ Sign(Σ1,Σ2), and ϕ ∈ SEN(Σ1),
SEN′(f)(ThΣ1

(ϕ)) = ThΣ2
(SEN(f)(ϕ)).

In fact, we have

T ∈ ThΣ2
(SEN(f)(ϕ)) iff SEN(f)(ϕ) ∈ T

iff φ ∈ SEN(f)−1(T )
iff SEN(f)−1(T ) ∈ ThΣ1

(ϕ)
iff T ∈ SEN′(f)(ThΣ1

(ϕ)).
Moreover, the “natural” transformations are well-defined because of the as-
sumption of selfextensionality of the π-institution I. More precisely, if Σ ∈∣Sign∣, ϕ0, . . . , ϕk−1, ψ0, . . . , ψk−1 ∈ SEN(Σ), such that ThΣ(ϕi) = ThΣ(ψi),
i < k, then, ⟨ϕi, ψi⟩ ∈ ΛΣ(I), whence ⟨ϕi, ψi⟩ ∈ Ω̃Σ(I), by selfextensionality.
Since the latter is an N -congruence system, it follows that

⟨σΣ(ϕ0, . . . , ϕk−1), σΣ(ψ0, . . . , ψk−1)⟩ ∈ Ω̃Σ(I) = ΛΣ(I).
Hence, we obtain



46 George Voutsadakis

σ
′

Σ(ThΣ(ϕ0), . . . ,ThΣ(ϕk−1)) = ThΣ(σΣ(ϕ0, . . . , ϕk−1))
= ThΣ(σΣ(ψ0, . . . , ψk−1))
= σ

′

Σ(ThΣ(ψ0), . . . ,ThΣ(ψk−1)).
And, moreover, they are indeed natural:

SEN′k(Σ1) σ
′

1 ✲ SEN′(Σ1)

SEN′k(Σ2)
SEN′(f)k

❄

σ
′

2

✲ SEN′(Σ2)
SEN′(f)
❄

SEN′(f)(σ′Σ1
(ThΣ1

(ϕ0), . . . ,ThΣ1
(ϕk−1))

= SEN′(f)(ThΣ1
(σΣ1

(ϕ0, . . . , ϕk−1)))
= ThΣ2

(SEN(f)(σΣ1
(ϕ0, . . . , ϕk−1)))

= ThΣ2
(σΣ2

(SEN(f)(ϕ0), . . .SEN(f)(ϕk−1)))
= σ
′

Σ2
(ThΣ2

(SEN(f)(ϕ0)), . . . ,ThΣ2
(SEN(f)(ϕk−1)))

= σ
′

Σ2
(SEN′(f)(ThΣ1

(ϕ0)), . . . ,SEN′(f)(ThΣ1
(ϕk−1))).

The next step is to create an interpreted referential N -algebraic system
based on A by defining an interpretation ⟨ISign, α⟩ ∶ F → A, where α ∶
SEN→ SEN′ is the natural transformation, given, for all Σ ∈ ∣Sign∣ and all
ϕ ∈ SEN(Σ),

αΣ(ϕ) = ThΣ(ϕ).
Having laid the groundwork, it is now easy to verify the this is a natural
transformation and that it respects all natural transformations in N , i.e.,⟨F,α⟩ is an N -morphism.

It only remains to see that CA = C, where A = ⟨A, ⟨F,α⟩⟩. We have,
for all Σ ∈ ∣Sign∣, Φ ∪ {ϕ} ⊆ SEN(Σ), ϕ ∈ CAΣ (Φ) if and only if, for all Σ′ ∈∣Sign∣, all f ∈ Sign(Σ,Σ′), ⋂φ∈Φ αΣ′(SEN(f)(φ)) ⊆ αΣ′(SEN(f)(ϕ)) if
and only if, for all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′), ⋂φ∈ΦThΣ′(SEN(f)(φ)) ⊆
ThΣ′(SEN(f)(ϕ)) if and only if ϕ ∈ CΣ(Φ).
Theorem 8. A π-institution I = ⟨F , C⟩ is referential if and only if it is

self-extensional.

Proof: The left-to-right implication is given in Lemma 6 and the right-
to-left implication in Lemma 7.
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6. Referential π-Institutions: Matrix Systems

Let F = ⟨Sign,SEN,N⟩ be a base algebraic system. Consider an inter-
preted N -algebraic system A = ⟨A, ⟨F,α⟩⟩, where A = ⟨Sign′,SEN′,N ′⟩.
A sentence family of A (or of A or of SEN′) is a ∣Sign′∣-indexed collec-
tion T

′
= {T ′Σ}Σ∈∣Sign′∣, such that T ′Σ ⊆ SEN′(Σ), for all Σ ∈ ∣Sign′∣. The

pair A = ⟨A, T ′⟩ is called an N -matrix system.
Given an N -matrix system A, the closure system C

A on F is defined,
for all Σ ∈ ∣Sign∣ and all Φ ∪ {ϕ} ⊆ SEN(Σ), by ϕ ∈ CA

Σ (Φ) if and only if,
for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

αΣ′(SEN(f)(Φ)) ⊆ T ′F (Σ′) implies αΣ′(SEN(f)(ϕ)) ∈ T ′F (Σ′).
Given a π-institution I = ⟨F , C⟩, the N -matrix system A = ⟨A, T ′⟩

is called an I-matrix system or a matrix system model of I in case
C ≤ C

A, i.e., if, for all Σ ∈ ∣Sign∣ and all Φ ∪ {ϕ} ⊆ SEN(Σ),
ϕ ∈ CΣ(Φ) implies ϕ ∈ C

A

Σ (Φ).
Using the same notation, given an N -algebraic system A = ⟨A, ⟨F,α⟩⟩, we
may consider a collection T ′ = {T i}i∈I of sentence families of A and, in this
way, we form an N -generalized matrix system, or N -gmatrix system

for short, A = ⟨A,T ′⟩ based on A. The closure system C
A on F defined by

this N -gmatrix system is given, for all Σ ∈ ∣Sign∣ and all Φ∪{ϕ} ⊆ SEN(Σ),
by ϕ ∈ CA

Σ(Φ) iff, for all T ′ ∈ T ′, all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
αΣ′(SEN(f)(Φ)) ⊆ T ′F (Σ′) implies αΣ′(SEN(f)(ϕ)) ∈ T ′F (Σ′).

Note that this is equivalent to saying that

ϕ ∈ C
A

Σ(Φ) iff ϕ ∈ C
A

Σ (Φ), for all A = ⟨A, T ′⟩, T ′ ∈ T ′,
or, more succinctly, CA

= ⋂A∈AC
A, where we write A = ⟨A, T ′⟩ ∈ ⟨A,T ′⟩ = A

as an alias for T ′ ∈ T ′ and ⋂ is meant to represent signature-wise intersec-
tion. Given a π-institution I = ⟨F , C⟩ based on F , we say that A = ⟨A,T ′⟩
is a generalized matrix system model of I or an I-gmatrix system if
C ≤ C

A. Note that, since CA is a closure system, the pair IA = ⟨F , CA⟩ is a
π-institution. If A is an I-gmatrix system, then IA is a π-institution model

of I, according to the definitions in [23], where those models are studied in
some detail.

The following is a version of the well-known Completeness Theorem for
sentential logics lifted to the level of π-institutions:
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Proposition 9. Let F = ⟨Sign,SEN,N⟩ be a base algebraic system and

I = ⟨F , C⟩ a π-institution based on F . Then, there exists an N -gmatrix

system A = ⟨A,T ′⟩, such that C = CA.

Proof: Set A = F and ⟨F,α⟩ ∶ F → A be the identity N -morphism⟨ISign, ι⟩. In addition, set T = ThFam(I), the collection of all theory fam-
ilies of the π-institution I. Define A = ⟨⟨F , ⟨ISign, ι⟩⟩,ThFam(I)⟩. Then,
by definition, for all Σ ∈ ∣Sign∣ and all Φ ∪ {ϕ} ⊆ SEN(Σ), ϕ ∈ CA

Σ (Φ) if
and only if, for all T ∈ ThFam(I), all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),
SEN(f)(Φ) ⊆ TΣ′ implies SEN(f)(ϕ) ∈ TΣ′ , which is equivalent to ϕ ∈

CΣ(Φ).
We consider, next, the special case in which the N -algebraic system A =⟨A, ⟨F,α⟩⟩, with A = ⟨Sign′,SEN′,N ′⟩, is a referential N -algebraic system.

We construct the canonical referential N -gmatrix system A = ⟨A,T ′⟩
associated with A. This construction abstracts to the categorical level
one introduced by Wójcicki in [20] in the context of referential propositional
logics.

Let us assume, for simplicity, that sets of base points over different
signatures are disjoint. Let Σ ∈ ∣Sign′∣ and let p be a Σ-reference or Σ-base
point of SEN′(Σ). We write p ♭SEN

′(Σ) to denote that p is a Σ-reference
point of SEN′. (This helps ameliorate the overloading of notation adopted
when SEN′ was supposed to denote both the contravariant base functor
and the covariant subfunctor of its inverse powerset functor, which should
have been formally denoted by SEN′ and SEN′s, respectively.)

Given Σ∗ ∈ ∣Sign′∣ and p ♭SEN
′(Σ∗), define the sentence family T p ={T pΣ}Σ∈∣Sign′∣ of SEN′ by setting

T
p
Σ = { {ϕ

′
∈ SEN′(Σ) ∶ p ∈ ϕ′}, if Σ = Σ∗

SEN(Σ), if Σ ≠ Σ∗

Finally, define

T
′
= {T p ∶ p ♭SEN′(Σ∗),Σ∗ ∈ ∣Sign′∣},

and let the canonical referential N -gmatrix system associated with the
referential N -algebraic system A be the N -gmatrix system A = ⟨A,T ′⟩.
Proposition 10. Let F = ⟨Sign,SEN,N⟩ be a base algebraic system and

A = ⟨A, ⟨F,α⟩⟩ a referential N -algebraic system, with A = ⟨Sign′,SEN′,N ′⟩.
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Then, CA = CA, where A is the canonical referential N -gmatrix system as-

sociated with A.

Proof: Let Σ ∈ ∣Sign∣ and Φ∪{ϕ} ⊆ SEN(Σ). Then, we have the following
chain of equivalences: ϕ ∈ CA

Σ(Φ) iff, for all Σ∗ ∈ ∣Sign′∣, all p ♭SEN′(Σ∗),
all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

αΣ′(SEN(f)(Φ)) ⊆ T pF (Σ′) implies αΣ′(SEN(f)(ϕ)) ∈ T pF (Σ′),
iff, for all Σ′ ∈ ∣Sign∣, all f ∈ Sign(Σ,Σ′) and all p ♭SEN

′(F (Σ′)),
p ∈ ⋂

φ∈Φ

αΣ′(SEN(f)(φ)) implies p ∈ αΣ′(SEN(f)(ϕ)),
iff ⋂φ∈Φ αΣ′(SEN(f)(φ)) ⊆ αΣ′(SEN(f)(ϕ)) iff ϕ ∈ CAΣ (Φ).
Corollary 11. Let F = ⟨Sign,SEN,N⟩ be a base algebraic system and

I = ⟨F , C⟩ a referential π-institution based on F . Then, there exists an

N -gmatrix system A = ⟨A,T ′⟩, such that C = CA.

Proof: Directly from Proposition 10.
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[20] R. Wójcicki, Referential Matrix Semantics for Propositional Calculi, Bul-

letin of the Section of Logic, Vol. 8, No. 4 (1979), pp. 170–176.
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