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Identification of relaxation modulus of viscoelastic materials
from non-ideal ramp-test histories — problem and method
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Summary. The identification of the linear relaxation modulus
of viscoelastic materials on the basis of the stress data from
non-ideal ramp tests where a time-variable strain rate is followed
by a constant strain is considered. The loading phase strain is
described by the third order polynomial of time. The aim of the
paper is to develop a method to approximate identification of
relaxation modulus using such ramp strain histories. Middle
point rule and generalized Simpson rule are used to derive a new
method. The approximations of the relaxation modulus at suc-
cessive time instants are determined on the basis on the stress
measurements in at most three appropriately chosen sampling
points. The properties of the relaxation modulus model deter-
mined according to the proposed method are examined under
standard assumptions concerning the relaxation modulus of the
material and the experiment. The method developed is a basis
for synthesis of fast identification scheme.

Key words: relaxation test, finite ramp-time, relaxation modulus,
identification method.

INTRODUCTION

In current engineering practice it is common to deal
with either the uniaxial or shear time-dependent relaxa-
tion modulus of viscoelastic materials [1-5,7,9,11,12,15-
18,27]. For linear viscoelastic materials the relaxation
modulus is the stress, which is induced in the material
when the unit step strain is imposed. Unfortunately, that
deformation mode cannot be achieved experimentally
without invoking stress waves [13]. Thus, the relaxation
modulus is not directly accessible by means of straight-
forward measurement method. It is usually recovered
from the experimental data of the stress relaxation pro-
cess history. A common practice to identify the relaxa-
tion modulus is still to compute the modulus from the
ideal step-strain case rule. Unfortunately, according to
the ,ten-times-rule”, or equivalently, “factor-of-
10°rule”, this step-strain assumption is acceptable only

if the time is at least ten times larger than the initial
loading time, see Example given below. Thus, in prac-
tice quite often the first seconds of the relaxation data
are ignored to account for the finite loading time of
deformation [6].

To take into account the finite initial loading time in
the real non-ideal relaxation tests a few methods have
been proposed during the last several years [10,13,19-
21,24-26,28]. Zapas and Phillips [28] developed a gen-
eral method, which in the case of linear viscoelasticity
takes the form of very simple rule, where the ‘true’
relaxation time is delayed of half loading time. For the
case of constant loading rate a few methods for relaxa-
tion modulus identification has been proposed: the
backward recursive method developed by Lee and
Knauss [13], the differential rule proposed by Sorvari
and Malinen [19] and the latest method based on the
general trapezoidal rule presented in the papers [23, 24].

In practice, however, to inertia effects the assump-
tion that the ramp loading is approximated to be linear
may fail [6, 10, 26]. Following Flory and McKenna [6],
see also [21, 26], it is assumed in this paper that the
initial loading phase strain of the relaxation test is de-
scribed by the third order polynomial of the time. To
develop a fast method to approximate identification of
relaxation modulus on the basis of such non-ideal ramp
strain history data, in which the relaxation modulus at
arbitrary time instant is determined using only few
stress measurements, is the goal of the paper. Based on
the mathematical properties of the problem and using
two known numerical quadrature rules: midpoint rule
and generalized Simpson’s rule a new identification
method is proposed, in which the approximation of the
relaxation modulus at arbitrary time is determined on
the basis of the stress measurements in at most three
appropriately chosen sampling points. It is proved, un-
der mild assumptions concerning the relaxation modulus
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of the material and the experiment that the resulted
model is monotonically decreasing function with at
most one discontinuity point.

PROBLEM STATEMENT
1. MATERIAL

We consider a linear viscoelastic material subjected
to small deformations for which the uniaxial, nonaging
and izotropic stress-strain equation can be represented
by a Boltzmann superposition integral [11, 14]:

a(t) = [*_G(t — DéA)da, )
where: a(t) and e(t) denotes the stress and stain, respec-
tively, and G (t) is the time-dependent linear (Boltzmann)
relaxation modulus. By assumption, the exact mathemati-
cal description of the relaxation modulus G(t) is com-
pletely unknown, but the value of o(t) can be measured
with a certain accuracy for any given value of the time
teT,whereT =[0,T]and 0 < T < oo.

2. EXPERIMENT

A classical manner of studying viscoelasticity for
such materials is by two-phase stress relaxation test,
where the strain increases during the loading time inter-
val [0, tg] until a predetermined strain €, is reached at
ramp-time tp, after which that strain &, is maintained
constant at that value [13]. In ideal ramp-test [13] the
strain increases along a constant strain rate path. How-
ever, the constant strain rate in the loading phase is
usually unrealizable due to experimental limitations [19,
26]. Following Flory and McKenna [6], see also [21;
Ramp III] and [26], we assume that the strain in non-
ideal ramp-test is described by the function:

0 for t<O0
3
t
e(t) = g(t—f) +bt+c for 0<t<tg, (2)
& fOT t=> tR
where: the non-ideal ramp-strain parameters are:
0,0012 -
o non-linear strain (2)
< 0,0006 - .
At - = constant strain rate
~§ — — = step-strain
&
w2
-0,5 1 2,5

Time 7 [s]

Fig. 1. Step-strain, ideal and non-ideal ramp strain; tz = 1 [s],
g = 0,001 [-]
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&(t) (2) is shown in Figure 1, where the ideal step-strain
£o(t) and the ideal ramp-test strain &;(t) corresponding
to linear loading phase strain, are also depicted.

1 .
and ¢ = — ;%o The strain

3. IDENTIFICATION

Suppose that the non-ideal ramp test (2) performed
on the real material resulted in a set of the stress meas-
urements. Identification consists in estimating of the
relaxation modulus of viscoelastic material described by
the equation (1) using the stress measurements. A com-
mon practice is to calculate the relaxation modulus by
the rule G(t) = a(t)/&y, which in view of (1) is valid
only for infinitely short initial loading time (for ideal
step-strain). According to the ,,ten-times-rule” that step-
strain assumption is acceptable only for ¢ = 10tg. Thus,
for the times lower than the ten loading time tg, the
classical rule G(t) = o(t)/e, may fail. To illustrate the
errors of such approach the following example is con-
sidered.

+ -
1,OE+06 \ non-linear strain (2)
AR — — constant strain rate
§ R 4N~ step strain
= 5,0E+05 - /2
T o=
]
8 /
n
0,0E+00 T T )
0 1 2 3
Time ¢ [s]

Fig. 2. Stress in ideal and non-ideal ramp-tests and in step-
strain relaxation test

Example. Let us consider viscoelastic material whose
relaxation modulus is described by the KWW model
(Kohlrausch, Williams and Watts) of the form [6, 19]:

G(t) = Gye~t/DF, 3)
where: following [6] G, = 10° [Pa], the dimensionless
parameter 8 = 0,5[—] and the relaxation time T =
3 [s]. The strain & = 0,001 [-] and the ramp-time
tg = 1 [s]. The stress o(t) resulting for KWW material
for non-ideal ramp test (2) is plotted in Figure 2, where
the related stress g, (t) for ideal step-strain relaxation
test and the material response o;(t) after the application
of a constant loading strain rate are also given. The
differences between the three signals o(t), o;(t) and
0, (t) are characterized by the relative absolute percent
errors summarized in Table 1 for some selected points
of time.

The errors are big at short time, and decrease with
the time t > tg. The differences for the two signals o (t)
and g, (t) at the time point t; exceed 20% of the ideal
relaxation test stress o,(t), compare Figure 2, at the
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Table 1. Stress differences between the ideal and non-ideal ramp-test and step strain relaxation test
Time t tr/6 | tr/4 | tr/3 | tg/2 |2tg/3|3tg/4 0,95tz | tg 3ty S5tp | 10tz | 100t,
Errors Ramp time tz = 1 [s]
m("f)’(t)'[%] 91,738 (82,162 (69,844 (40,191 (9,831 (3,165 {20,566 (20,502 (9,296 (6,939 (4,767 (1,458
oot
“’(t)‘—(";(t)'[%] 54,25 |35,355|19,313 13,901 |14,851|15,602 4,251 (1,543 |0,118 |0,056 |0,023 |1,64E-3
ot
Ramp time tp = 2 [s]
Mg’;’(t)'[%] 91,349 (81,133 67,844 (35,428 1,871 (12,511 (31,121 (30,575 (13,45 (9,983 6,822 (2,07
oot
M(”)I(t)'[%] 53,704 |34,449 |18,085 |5,518 |16,361 (16,813 (3,937 (2,442 |0,199 |0,098 |0,041 |3,13E-3
ot
Ramp time tz = 5 [s]
M(‘")’(t)'[%] 90,508 (78,871 (63,377 (24,519 [16,69 (34,432 (55,845 (53,957 (22,271 |16,335 |11,043 |2,07
oot
M;’;(t)'[%] 52,604 132,66 (15,667 (8,705 19,263 (19,063 {2,965 [4,654 (0,417 |0,211 {0,091 |3,13E-3
oyt

time t = 10t the differences are of 5% degree and they
are lesser than 1,5% only at t > 100t;. However, as the
two curves approach each other at sufficiently long
times greater than 100ty, the difference is not negligi-
ble as t < 100tg. Thus, the ,.ten-times-rule”, according
to which the relaxation modulus is calculated as
G(t) =o(t)/ey for t = 10tg, may fail. The errors for
the signal o;(t) are not as big as for g, (t), but the accu-
racy in o(t) approximation is also insufficient, especial-
ly in short time region t < t.

Thus, both using the ramp-test data as ideal step-
strain data and calculating the relaxation modulus using
the formula G(t) = a(t)/&,, as well as even applying
the known rules derived for ideal ramp test of &;/tg
loading rate, leads to unacceptable errors. What is espe-
cially important, these errors are unacceptably big in the
time intervals of the greatest dynamics of the stress
relaxation process. The presented results convincingly
prove, that using the ramp test data o(t) as an ideal
step-strain data o,(t) and even as the ideal ramp test
data o,(t), in many cases fails to give satisfactory ap-
proximation of the relaxation modulus of the material.

NEW METHOD

In this paper the following assumption will be taken.
Assumption. The relaxation modulus G(t) is double
differentiable function such that:

dG(t) >0 d2G(t) -

G(t)=0,- o o 2

0 for t>0. “)
The above assumption seems to be quite natural. In
particular, it takes account of the course of the experi-
mentally recorded relaxation modulus. This assumption,
taken for example in [8, 20, 22], is satisfied by commonly
used rheological models, such that Maxwell, Zener,
KWW and Peleg models. Note also that from (4) it fol-
lows immediately that G(t) strictly monotonically non-
increasing (decreasing) continuous convex function.

On the basis of (1) and (2), taking into account that
(1) =0 forany A < 0, the stress during the initial load-
ing phase of the stress relaxation test in the interval of time
0 < t < tg is described by the following equation:

_rt tr 2
o(6) = [{ G(t - 2) [a( —7) + b] da,
which, taking into account the definitions of the pa-
rameters a and b, can be rewritten as:

a(t) = [, ®(At, tp)dA, (5)
where the integrand:
P4, ¢, tg) = aG(t — DAA — tg), (6)

is introduced for brevity. We approximate the integral
(6) by respective quadrature. Unfortunately, no general
methods can be recommended for numerical integration.
The choice of the suitable method must be done on a
case-by case basis, depending on the integrand function
properties. Let us notice, that @(0, t,tz) = 0, and since
a <0, then for an arbitrary 0 < A<tz we have
®(A,t,tg) > 0; here tg >0, 0 <t < tg. The partial
derivative is given by the expression:

PO = —aG(t — DAA — tg) + aG(t — D)(2A — tg).
Thus, in view of the Assumption, it is clear that if
A<tgr/2, then DA, t, tg)/01 >0 and
dD(A,t,tg)/0A = 0 at 1 = tz/2 for any time variable
0 <t < tg. Hence, if t < tg/2, that is 1 < tz/2, then
the integrand @(A,t,tgz) is monotonically increasing
function of 1. The course of an exemplary integrand
®(A, t, tg) as a function of the variable 0 < A <t for
KWW material (3), ramp-time tgz = 1[s] and time
instant t = 2t is show in Figure 3(a). Thus the simplest
method of numerical integration, the midpoint rule, is
appropriate for numerical approximation of the integral
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(5) for t < tg/2. Moreover, it is known that for Volter-
ra’s equation of the first kind (1), the midpoint rule is
numerically stable. By applying the middle-point rule to
integral of the right-hand side of (5) we obtain:

o0~ a6 ()10

whence, for 0 <t <tz/2, the following expression
follows immediately:

oMy (£ =t
G(NM (2) g a(t).

It is easy to verify that the above implies for 0 < t < tg/4
the rule:

M) (p) = — R
G (t) 12g9(tp—t)t2

o(2t). (7

1,5E+06

. cesenes(a)

o — —(
1,0E+06 o ®)

R N
s/ \
e \
0,0E+00 . A
1

5,0E+05

Function @[Pa=s!]

Material A
te=1 [s] Variable A4 [s]

Fig. 3. The function ®(4,t,tz) defined by equation (6) for
material (3), tg = 1[s]: (@) t = 2tg, (b) t = 2t5, 0 <A<t

We now wish to find the formula for relaxation
modulus identification for the time interval t > tg/4.
To do this, note that on the basis of equations (1) and
(2) in the second constant strain phase of the relaxation
test, i.e. for t > t the stress is given by the expression:

o(t) = a [;RG(t — DAL — tp)dA, ®)
or in equivalent form:
a(t) = [[F o, t,t)dA, ©9)

where the integrand @ (A, t, tg) is given by (6). Now, for
an arbitrary t > tp also for the upper limit of integration
in (9) we have @ (tg, t, tg) = 0. The function ® (A, t, tg)
is continuous and non-negative definite for any 4 < t,
and, as it may be easily verified on the basis of the sta-
tionary  point  condition  G(t — )AL —tg) =
G(t —A)(2A1 — tg) achieves the maximum for A4,
such that tp/2 < Aper < tg. An example of the inte-
grand function @(A,t,tz) for material (3), the time
instant t = 2tz as a function of variable 0 < A <t is
illustrated in Figure 3(b). The paraboidal nature of this
function makes reasonable the choice of Simpson’s rule
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to evaluate the integral (8). We use both the simple
three-point and the generalized five-point rule. Apply-
ing simple Simpson’s rule we obtain the formula:

o(6) = taG (¢ - 2) = (2 _ g, )

2/ 2\2 2’

and whence:

o(t) ~ £,G (t —f—R), (10)

2
which is the classical Zapas-Phillips formula. By divid-
ing the finite time interval [0, tg] into four equal subin-
tervals and applying the generalized Simpson’s rule,
after simple algebraic manipulations we have:

~_9%43 _tr _ 3t
o(t) ~ — <ty [3G(t 4) +36 (t : ) +
tr
+26 (t - 2)].
whence, in view of the definition of the parameter a, we
finally obtain:

o() ~ 3o [36 (= %) +36 (e~ 38) +

+2G (t—%‘)] (11)
Similar to (11), we have:
o(t+%E) ~26[36(6) +36 (¢t —E) +
+26 (¢~ 7). (12)

Combining the expressions (10), (11) and (12) treated as
the equalities and applying the next equations, which
follows from (10):

a(t + %R) = g,G(t),

o(e+2) = wo(e-1),

after simple algebraic manipulations we obtain:

3t 8 7 t
G (t ——R) =—a(t) —Ta(t +—R) +

which is the desired result. Thus we have achieved the
formula for relaxation modulus approximate identifica-
tion for t > tg/4.

MONOTONICITY OF THE MODEL

It is assumed here that relaxation modulus is mono-
tonically decreasing function. The monotonicity of the
relaxation modulus model obtained by the proposed
method is resolved by the two consecutive properties.
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Property 1. If the Assumption is satisfied, the stress
measurements are noise-free and for any 0 < t < tz/2
the following inequality holds:

26(t) + Gt <0, (14)
then the relaxation modulus model G ™™ (t) is mono-
tonically decreasing function in the time interval
0<t<itp.

Proof. On the basis of (7) we have:

. _tr® 20(2t)(tgp—t)t—o(2t)(2tgr—3t)
G(NM)(t) = o T '

(15)

In order to examine the monotonicity of the model
GM(t) (7) it is enough to check the sign of the nu-
merator of right-hand side of (15), i.e. of the expression:

Y(t) =202t)(tg — )t — a(2t)(2tg — 3t). (16)

Taking into account (5) and (6), after suitable change of
variables, we obtain:

ot)=a fot GW)(t—w)t—w—tg)dw. (17)
Whence, on the basis of known Leibnitz theorem con-

cerning the differentiation of the integral with the limits
depending on the variable we have:

6() = af, GW)(2t — 2w — tx)dw.  (18)

Using (17) and (18) we can rewrite the function ¥(t)
(16) as follows:

Y(t) = a(4t3 + 2tt3 — 42t (1) + a(7ttg —
=8t — 2t3),(t) + a(3t — 2tg) 5 (0), (19)

where: 1, (t) = fOZtG(W)dW, P, (t) = fOZtG(W)de
and Y3(t) = fOZtG(W)WZdW.

By convexity of the function G(t) we have for an arbi-
trary t and w:

Gw) = G(t) +G(t)(w —t).
Hence, the next inequality follows:
Pi() 2 2t6 () + G(X) [, (W — )dw = 2tG(t). (20)
In order to estimate the integral i, (t) it is enough to
note that under the Assumption the function G(W)w is
concave. Thus, for an arbitrary ¢ and w such that
w < 2t < tg/2 the following inequality holds:

GWw < GOt + [G(E) + GOEt](w—1), (21)

on the basis of which, we obtain the upper bound:
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P, (1) < 262G(t) + [G (1) + G(Dt] fﬂ(w —t)dw =
= 2t%G(t) ’

and therefore, taking into account the inequality (20),
we have:
P, (t) < th(8). (22)
In a similar fashion, using once more the inequality
(21), it may be proved that the next inequality holds:
4
P3(0) < St%Py (D). (23)
Since the polynomial (7ttg — 8t — 2t3) of variable t
is negative definite for any 0 < t < tz/4 and the ex-
pression 4t3 + 2tt2 — 4t%ty = 2t[t? + (t — tg)?] is
positive definite for any t > 0, taking into account that
the parameter a < 0, by combining (19), (22) and (23)
we obtain for an arbitrary 0 < t < tz/4 the following
estimation:

() < %atztRl,bl(t) <0.

Which finally concludes the proof.

Remark 1. It is easy to check that for KWW model (3)
the condition (14) takes the form (t/7)f —1<1/p,
therefore is satisfied for every 0 < t < tz/2, whenever
(tr/27)# <1/B + 1. In particular, if f =0,5 (see
Example), then the condition (14) means that t; < 187,
and is not difficult to satisfy.

Remark 2. For Maxwell model G(t) = Gyoe /™ we
have f = 1. Thus, the condition (14) is satisfied, when-
ever tp < 4r1.

Having known even rough estimation of the relaxa-
tion time of the material we can choose without difficul-
ties the ramp-time ty so as to satisfy the condition (14).
Property 2. If the Assumption is satisfied and the stress
measurements are noise-free, then the relaxation modu-
lus model GN™)(t) is monotonically decreasing func-
tion in the time interval tp <t < T — 3tp.

Proof. Let us first examine the stress derivative ¢(t) for
t > tp. On differentiating formula (8) we arrive at the
following expression:

6(t) = a [;RG(t — DA — tg)dA

and then, on differentiating equation (8) with respect to
t twice, we obtain:

§(®) = a [;RG(t — VAR — tg)dA.

Since the parameter a < 0 and the ramp-time t > 0, in
view of the Assumption, the above implies the follow-
ing inequalities: ¢(t) < 0 and &(t) > 0. Thus, for any
t > tg the stress derivative 6(t) is negative definite
monotonically increasing function. Since on the basis of

(13):
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G (e —28) = L) - Lo (£ +2) +
4 3¢&p 3&p 4

+=6(t+2),
3¢&p 2

the above implies:

G M) (t—?) <id(t+%‘)

3&p

—Zo(t+%)+
3go 4

+id(t+t—R) <0,
3¢, 2

and completes the proof.

FINAL REMARKS

. Based on the mathematical properties of the considered
problem of the relaxation modulus determination using
the stress measurements from non-ideal ramp test, new
method for approximate identification of relaxation mod-
ulus is derived for the case when the time-variable strain
in the loading phase of the relaxation test is described
by the time polynomial of the third order.

. Itis proved, under quite typical assumptions concerning
both the viscoelastic material and the experiment, that
for noise-free stress measurements determined model
of the relaxation modulus is monotonically decreasing
time-function with at most one discontinuity point.

. For discrete-time experiment the proposed method can
be used to develop a new fast identification scheme, in
which the approximations of the relaxation modulus in
successive time instants are computed using at most
three measurements of the stress in appropriately chosen
sampling points. Numerical studies of the algorithm, in
particular the model error analysis for ideal and noise
corrupted stress measurements, is the subject of the
forthcoming paper [25].
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IDENTYFIKACJA MODULU RELAKSACII
MATERIALOW LEPKOSPREZYSTYCH
NA PODSTAWIE RZECZYWISTEGO TESTU
RELAKSACIJI NAPREZEN O NIELINIOWYM
ODKSZTALCENIU WSTEPNYM.
PROBLEM I METODA

Streszczenie. W pracy rozwaza sie problem wyznaczania modu-
tu relaksacji materialéw liniowo lepkospre¢zystych na podstawie
pomiaréw naprezenia zgromadzonych w rzeczywistym tescie
relaksacji naprezen o nieliniowym odksztatcaniu probki w fazie
wstepnej testu opisanym wielomianem czasu trzeciego stopnia.
Celem pracy jest opracowanie metody przyblizonej identyfi-
kacji modutu relaksacji na podstawie danych z takiego testu.
Bazujac na regule punktu $srodkowego oraz uogolnionej formule
Simpsona opracowano metodg identyfikacji, w ktorej przybli-
zenie modutu relaksacji w dowolnej chwili czasu wyznaczane
jest na podstawie pomiaréw naprezenia w co najwyzej trzech
wybranych punktach jego probkowania. Zbadano, przy bardzo
ogo6lnych zatozeniach dotyczacych modutu relaksacji badanego
materiatu oraz eksperymentu, wtasnosci wyznaczonego modelu.
Opracowana metoda jest punktem wyjscia dla syntezy szybkie-
go algorytmu identyfikacji modutu relaksacji podczas trwania
eksperymentu.

Stowa kluczowe: test relaksacji naprezen, skonczony czas od-
ksztatcania, modut relaksacji, algorytm identyfikacji.






