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Abstract

Bayesian networks are directed acyclic graphs that represent dependencies between
variables in a probabilistic model. They are becoming an increasingly important area [or
research and applications in the entire field of Artificial Intelligence. This paper explores the
nature of implications for Bayesian networks beginning with an overview and comparison of
inferential statistics and Bayes’ Theorem. It presents the possibilities of applications of
Bayesian networks in a field of economic problems and also focuses on the problem of
learning.
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I. INTRODUCTION

Bayesian networks are becoming more and more popular in the field
of research and applications of artificial intelligence. They play a significant
role in decision processes and knowledge representation in expert and decision
support systems.

Considering expert system or decision support system with reference to
their structure (Fig. 1) one can notice that the role of concluding procedures
and knowledge base, where Bayesian networks can be applied, is extremely
important.

Returning to Bayesian methods particularly to Bayesian networks it is
common knowledge that they are classified to non-classical statistical methods,
because the inference is based not only on a sample but also takes advantage
of information outside the sample. The information outside the sample is



called prior information and presents the most controversial point in the
Bayesian theory.

The basis of the whole Bayesian statistics theory is conditional probability
theorem published by Thomas Bayes in the year 1763.

Figure 1. The main elements of an expert system
Source: Mulawka J.J. (1996), Systemy ekspertowe, WNT, Warszawa

The mathematical notation of this theorem is the following (for discrete
random variable):
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where events AItA2, A N are independent events called hypotheses and
P~i), P(J12), ...,P(N1n) are prior probabilities or subjective probabilities. The
probability of event A; conditional on the occurrence of event B (for 1) is
known as posterior probability.

It should be noticed that most of the probabilities in equation (1) are
conditional probabilities. They express the trust for some proposals based
on the assumption that other proposals are true.



Il. GENERAL NETWORK STRUCTURE AND INFERENCE

The conception of Bayesian networks is directly connected with conditional
probability theory. It is easy to notice that in the real world there are
many situations in which occurrence of one event is strictly dependent on
the occurrence of another event.

Applying Bayesian networks allows more precise modeling of uncertain-
ty and to predict the possibility of occurrence of some situations through
using additional information. Since the knowledge about considered prob-
lem has probabilistic character and the methods are based on probabilistic
concepts it is used to call Bayesian networks as probabilitylnetworks or
belief networks.

Formally one can say that Bayesian networks are graphical structures
which represent dependencies between variables. They are directed acyclic
graphs which encode the structure of system, its uncertainty and comp-
rehension. This sort of graphs are composed of nodes and edges, where
nodes correspond to all random variables.

Therefore, one can say about node corresponding to random variable
Xt for i=1,2,...,n. The edge (path) directed from node X, to node Xj
can be intuitively interpreted as representation of direct dependence of variable
Xj from variable Xt

The occurrence of such edge is usually symbolically denoted by expression
Xt—* Xj. For all nodes we can introduce aftermath relation denoted as
—* that node Xj is successor of Xt or node X, is predecessor of node Xj
in Bayesian network, what can be described as if one of the
following conditions comes true

- there is a directed path from node Xt to node Xj, that is Xt—mX/,

- there is a directed path from node Xt to some node Xk and node

Xj is successor of Xk, that is Xi—>Xk and Xk —X]j.
According to this definition node Xj is a successor of Xt, if there exists
a path made up of directed edges from node Xt to node Xj. If Xt—mXj,
it means that Xt is a direct predecessor (parent) of node Xj or node Xj
is a direct successor (child) of node XT

The introduction of aftermath relation is important because it makes
possible to define more precisely and formally the way of semantics of
Bayesian Network, that is the interpretation of all edges. The network is
interpreted as the assertion of conditional independence of each node from
all nodes which aren’t its successors and with given values of its predecessors.
The main idea of this approach is decomposition of the system to simpler
parts, showing its modularity (graph theory) and assuring cohesion (probability
theory).



The usefulness of Bayesian networks with correct structure consists in
the ability to represent in an efficient way the joint probability distribution
for all random variables of the model.

If wc denote by symbol Ux the set (domain) of nodes which are parents
of node X then the effective rule to compute the joint probability distribution
requires defining conditional probability distribution P (X,|I/X) for each node
Xt, that means the probability of variable Xt for the sake of possible
outcomes of its parents. Obviously, for a node which does not have parents
the conditional distribution is equal to marginal distribution P(X(). The
basic assumption in graph-based models is the assumption that joint
probability distribution P(X) is equal to the product of marginal and
conditional distributions for all random variables. Therefore such a distribution
can be denoted in the following way (chain rule):

@

It should be easy to notice that knowledge of the joint probability makes
possible the inference about values of any chosen variables when values of
other variables are known. If thus it is possible to represent the joint
probability distribution of variables using Bayesian networks, it is also
theoretically possible to use it for probabilistic inference to get the answer
for any question of interest assuming that the structure (topology) is correct.

For this reason one can distinguish two types of inference (Murphy,
2001), Niedermaycr (1998)). The first one going through from effect to
cause and called bottom up inference and the second one from cause to
effect, that is top down inference. In some cases wc use approximated
inference (Settimi, Smith, Gargoum, 1999).

I1l. THE TYPES OF BAYESIAN NETWORKS AND LEARNING PROCEDURES

Generally Bayesian networks can be divided into two groups i.e. dynamic
Bayesian networks or static Bayesian networks. Dynamic Bayesian networks
are used in time series modeling, for example in signal recognition processes.
In this ease series and network are usually represented by first-order Markov
process (Ghabramani, 1997).

If YI t YT are random variables representing time series of first-order
Markov process then the joint probability distribution will be equal to:

P(YIt Y2, ..., ¥r) = P(YJ «P(Y2|YJ e... P(¥YT|Yr-0 3)



Figure 2. A Bayesian Network representing a first-order Markov process

These models do not directly represent dependencies between observations
over more than one time step, therefore it is common to allow higher order
interactions between variables i.e. r*-order Markov models.

Another way to extend Markov models is to posit that the observations
are dependent on hidden variables which wc can call the states and that
the sequence of states is a Markov process. A classical model of this kind
is the Kalman filter.

Figure 3. A Bayesian network specifying conditional independence relations
for a Kalman filter model

Using the short notation the joint probability distribution for this case
for sequence from £= 11to £= T is:

P(*, Y0 = P(XD-P(Y1IXDNP (X (X,_1)-P(YUX]D 4)

(=2

The state transition probability Pi-YJ-Yj-i) can be decomposed into deter-
ministic and stochastic component

Xt=f,(Xt-1) + ot (5)

where /, is the deterministic transition function, and o, is zero-mean random
noise vector.



Similarly, the observation probability P(Y(|X1), can be decomposed:
Yt=g,(X") + {t (6)

There are other ways of representation commonly used in dynamic Baye-
sian networks i.e. Hidden Markov Models, Factorial Markov Models and
Switching State Models (Bilmes (2000),Ghabramani (1997), Murphy
(2002)).

Static Bayesian networks are usually used in medical diagnoses or can
be applied as decision support tools in classification problems (for example
in communication insurances). The structure of static network does not
differ from general scheme (acyclic graph) apart from lack of dynamic
variables.

If the network had for example four random variables X, Y, Z and
W (Fig. 4) the joint probability distribution would be as follows:

P(W, X, Y, Z) = P(W) +P(X) ®P(Y| W) Bm\Z\X, Y) @

Certainly, regardless of the structure, the network can be subject to
learning process. Such a process can concern both parameters of the
network or the structure, and can be associated with variable selection and
edge specification. There are adequate algorithms for parameter learning
which allow to obtain the best estimations (for example gradient methods
or methods based on maximum likelihood function). Generally parameter
learning is simply updating of conditional probability tables for each node
of the network. However, more complicated problem is learning the correct
structure. The structure learning procedures are based on searching between
all possible and acceptable networks of interest to find one or several
optimal networks.



In such cases the solution is based on complicated mathematical al-
gorithms based on special metrics e.g. K2 metric and in some cases (for
example when some variables are hidden) the proper solution hasn’t been
found so far.

The searching of all possible networks can be limited by taking into
consideration the prior knowledge about the problem of interest (expert
knowledge) or by imposing additional conditions limiting the structure of
Bayesian network. Usually the limitation is connected with interactions order,
that is it concerns the maximum number of edges which can be directed
to one node.

IV. THE POSSIBILITIES OF APPLICATION. CHANCES AND PROBLEMS

As it was noticed the Bayesian network encodes in a compressed way
the joint probability distribution of random variables and this kind of
distribution is sufficient for the inference. The answer to any question can
be obtained by computing the joint probability distribution on the basis
of the network and using it for appropriate calculations.

Unfortunately, such an approach means resignation from one of the
best advantages which can be obtained by graphical representation of the
joint probability distribution, lying in its efficiency. Of course, Bayesian
networks give other advantages, particularly legible and intuitively comp-
rehensible graphical knowledge representation about direct causalities, but
effectiveness reasons make it impossible to use this distribution in practice,
exception for cases with few number of variables.

Thus, there is a need for other inference algorithms in Bayesian networks.
Unfortunately, in general case such a problem is NP-hard. This problem
is becoming easier for a special type of networks called single-connection
networks. In such networks ant two nodes can be linked only with one
path (maximum) composed of freely directed edges. There are known effective
algorithms of approximate inference for this kind of networks based on
Monte-Carlo methods e.g. logical or weighted sampling. Therefore, there
are some practical limitations of use caused by relatively hard obtaining
of efficiency.

The field in which Bayesian networks are dynamically developed is
medicine. The task of the network in such cases is usually to find the most
probable cause of ailment of a patient. Therefore networks have to answer
the question: what does the patient suffer from if some symptoms occur
(which cannot be classified clearly-out). Hence we often direct to Bayesian
networks in classification problems.



Although there is a big interest in Bayesian networks in medicine, their
use in social and economical field is not so popular. The actual problem
isn’t only the mentioned problem of efficiency but also the problem of
structure and learning, particularly when the economical variables have
dynamic character.

Let us consider hypothetical network with binary nodes, represented in

Figure 5. The aim is to estimate the probability of share (KGHM) price
fall in future time period.
It is a problem of classification, if the share should be classified to a falling
group (or neutrally) or to an increasing group. The network was made
with use of Gene Software developed by Decision Systems Laboratory in
Pittsburgh University.

Let X u Ys respectively represent nodes of the net. The meaning and
possible states of nodes is presented in Table 1.

Tabic 1. List of variables, symbols and categories

Variable Symbol Categories
Exchange rate increase, fall
Volume of trade X 2 increase, fall
Stock Exchange index X, increase, fall
Positions in futures X * increase, fall
Share price *5 increase, fall

If we denote category fall by 0 and category increase by 1 then adequate
marginal and conditional distributions will be following (for learning sample
of 47 elements - weekly data from 10.09.2001 to 09.09.2002):



Tabic 2. Marginal probability distribution P(X, = Y)
of variable Xt

0.5116 0.4884

Tabic 3. Conditional probability distribution P(X2= Y\Xt —2)
of variable X 2

=o Y =
Z =0 0.7619 0.2381
Z =1 0.7273 0.2727

h-/

Tabic 4. Conditional probability distribution P(Xq= % * =2 ~ o
of variable X 3

=0 Y-l
zZ=o o=o 0.3750 0.6250
z=0 Q=1 0.4375 0.5625
z=1 Q=0 0.4000 0.6000
zZ=1 Q=1 0.5000 0.5000

Tabic 5. Conditional probability distribution P(X4 = Y |X3= Z)
of variable XA

=0 Y=1
Z=0 0.5417 0.4583
Z=1 0.5263 0.4737

Tabic 6. Conditional probability distribution P(.¥5= Y\XA= Z,X3=Q, X2=R)
of variable Xs

=o y=1
Z=0 Q=0 R=0 0.5556 0.4444
Z=1 e =0 = 0 0.5000 0.5000
Z=0 eg=j R=0 0.2000 0.8000
Z=0 e=0 dA=1 0.7500 0.2500
Z=1 eg=j A=0 0.5000 0.5000
Z=0 Q= 1 n=1 0.6000 0.4000
Z=1 Q=0 A=1 0.0001 0.9999
Z=1 Q: 1 n=1 0.0001 0.9999



The rightness of decision making was verified in time period of 23
weeks. It turned out that in 48% of cases the net were classified correctly
(in 26% of cases it could not make a decision and in 26% it made a wrong
one). Obviously, it cannot be perceived as a good result. The reason for
this result could be connected with the structure (topology) of the network
which could be improper, and with a selection of variables.

V. SUMMARY AND CONCLUSIONS

Bayesian networks can be an effective tool for statistical inference in
computational expert systems. However, there are some barriers connected
with the structure of a network, variables dynamization and learning or
update processes. These problems are mathematically complicated and this
can explain the reason why the neural networks arc still more popular than
probabilistic networks. Especially the problem of learning of the structure
is the matter of research. Besides, the software concerning the neural networks
is more accesible.

It should be noticed that graphical knowlegdc representation has a great
advantage over rule-based knowlegde used in expert and decision support
systems. Each rule in rule-based systems are treated independently among
others and that’s why it may be inconsistent and redundant. In graph-based
expert systems these problems do not exist.
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UWAGI O SIECIACH BAYKSOWSKICH | ICH ZASTOSOWANIACH

Streszczenie

Sieci Bayesa sg strukturami graficznymi bedacymi skierowanymi grafami acyklicznymi
prezentujagcymi zaleznosci pomiedzy zmiennymi losowymi. Znajdujg one zastosowanie w dziedzinie
tzw. oprogramowania inteligentnego, a zw#aszcza w systemach ekspertowych. Artykut ten porusza
problemy samych sieci bayesowskich, uczenia oraz ich zastosowania. Podjeto tez probe ich
aplikacji na polu zagadnieA ekonomicznych zwigzanych z rynkiem kapitalowym.
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