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Abstract

Bayesian ne tw orks a re  directed acyclic graphs th a t represen t dependencies between 
variables in a  probabilistic  m odel. They are becom ing an increasingly im p o rtan t area Гог 
research and applications in the entire field o f Artificial Intelligence. T his paper explores the 
nature o f  im plications for Bayesian netw orks beginning with an  overview and com parison of 
inferential statistics and Bayes’ Theorem . I t  presents the possibilities o f  applications o f 
Bayesian netw orks in a  field o f econom ic problem s and also focuses on the problem  of 
learning.
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I. IN T R O D U C T IO N

Bayesian netw orks are becoming m ore and m ore popular in the field 
o f research and applications of artificial intelligence. They play a significant 
role in decision processes and knowledge representation in expert and decision 
support systems.

C onsidering expert system or decision support system with reference to 
their structure (Fig. 1) one can notice that the role o f concluding procedures 
and knowledge base, where Bayesian networks can be applied, is extremely 
im portant.

R eturning to  Bayesian m ethods particularly to Bayesian networks it is 
common knowledge that they are classified to  non-classical statistical methods, 
because the inference is based not only on a sample bu t also takes advantage 
o f inform ation outside the sample. The inform ation outside the sample is



called prior inform ation and presents the m ost controversial point in the 
Bayesian theory.

The basis o f the whole Bayesian statistics theory is conditional probability 
theorem  published by Thom as Bayes in the year 1763.

Figure 1. The m ain elements o f an expert system 
Source: M ulaw ka J.J. (1996), System y ekspertowe, W N T, W arszawa

T he m athem atical notation o f this theorem is the following (for discrete 
random  variable):

P W B ) = 1 M W _  (1) 

E  e iB .A jP t A j )
J= 1

where events A lt A 2, A N are independent events called hypotheses and 
P ^ i ) ,  Р(Л 2), ...,Р (Л л) are prior probabilities or subjective probabilities. The 
probability o f event A ; conditional on the occurrence o f event В (for 1) is 
know n as posterior probability.

It should be noticed that m ost of the probabilities in equation (1) are 
conditional probabilities. They express the trust for some proposals based 
on the assum ption that other proposals are true.



II. G EN ER A L N ETW O R K  ST R U C T U R E  AND IN FE R E N C E

The conception of Bayesian networks is directly connected with conditional 
probability theory. It is easy to notice that in the real world there are 
m any situations in which occurrence o f one event is strictly dependent on 
the occurrence o f another event.

Applying Bayesian networks allows m ore precise m odeling o f uncertain­
ty and to  predict the possibility of occurrence of some situations through 
using additional inform ation. Since the knowledge about considered prob­
lem has probabilistic character and the m ethods are based on probabilistic 
concepts it is used to call Bayesian networks as probab ility1 networks or 
belief networks.

Form ally one can say that Bayesian networks are graphical structures 
which represent dependencies between variables. They are directed acyclic 
graphs which encode the structure o f system, its uncertainty and com p­
rehension. This sort o f graphs are composed o f nodes and edges, where 
nodes correspond to  all random  variables.

Therefore, one can say about node corresponding to  random  variable 
X t for i =  1 ,2 ,... ,  n. The edge (path) directed from node X , to  node X j  
can be intuitively interpreted as representation o f direct dependence o f variable 
X j  from variable X t.

The occurrence of such edge is usually symbolically denoted by expression 
X t —* Xj.  F o r all nodes we can introduce afterm ath relation denoted as 
—* that node X j  is successor o f X t or node X, is predecessor o f node X j  
in Bayesian network, what can be described as if one o f the
following conditions comes true :

-  there is a directed path from node X t to  node Xj ,  th a t is X t —*■ X/,
-  there is a directed path from node X t to  some node X k and node 

X j  is successor of X k, that is X i —> X k and X k —* X j .
According to this definition node X j  is a successor o f X t, if there exists 
a path  m ade up o f directed edges from node X t to  node Xj .  If X t —*■ Xj,  
it m eans tha t X t is a direct predecessor (parent) o f node X j  or node X j  
is a direct successor (child) o f node X ľ

The in troduction o f afterm ath relation is im portant because it m akes 
possible to  define m ore precisely and formally the way o f semantics of 
Bayesian Netw ork, that is the interpretation o f all edges. T he network is 
interpreted as the assertion of conditional independence o f each node from 
all nodes which aren’t its successors and with given values of its predecessors. 
The m ain  idea of this approach is decom position o f the system to  simpler 
parts, showing its modularity (graph theory) and assuring cohesion (probability 
theory).



T he usefulness o f Bayesian networks with correct structure consists in 
the ability to represent in an efficient way the jo in t probability distribution 
for all random  variables o f the model.

I f  wc denote by symbol Ux the set (dom ain) o f nodes which are parents 
of node X  then the effective rule to  compute the joint probability distribution 
requires defining conditional probability distribution P (X ,|I /X|) for each node 
X t, that m eans the probability o f variable X t for the sake of possible 
outcom es o f its parents. Obviously, for a node which does not have parents 
the conditional distribution is equal to m arginal distribution P (X (). The 
basic assum ption in graph-based m odels is the assum ption th a t jo in t 
probability distribution P(X) is equal to the product o f marginal and 
conditional distributions for all random variables. Therefore such a distribution 
can be denoted in the following way (chain rule):

It should be easy to  notice tha t knowledge of the jo in t probability makes 
possible the inference about values o f any chosen variables when values of 
o ther variables are known. If thus it is possible to represent the joint 
probability distribution o f variables using Bayesian networks, it is also 
theoretically possible to use it for probabilistic inference to  get the answer 
for any question of interest assuming that the structure (topology) is correct.

F or this reason one can distinguish two types o f  inference (M urphy,
2001), N iederm aycr (1998)). The first one going through from effect to 
cause and called bottom  up inference and the second one from cause to 
effect, that is top  down inference. In some cases wc use approxim ated 
inference (Settimi, Smith, G argoum , 1999).

III. T H E  T Y PE S O F  BAYESIAN N E TW O R K S AND LEA RN IN G  PR O C E D U R E S

Generally Bayesian networks can be divided into two groups i.e. dynamic 
Bayesian networks or static Bayesian networks. Dynamic Bayesian networks 
are used in time series modeling, for example in signal recognition processes. 
In this ease series and network are usually represented by first-order M arkov 
process (G habram ani, 1997).

If Y l t YT are random  variables representing time series o f first-order 
M arkov process then the jo in t probability distribution will be equal to:

N

(2)

P ( Y lt Y 2, ..., Уг ) =  P( Y J  • P( Y2| Y J  •... • Р(У Т| У г - 0 (3)



Figure 2. A Bayesian N etw ork representing a  first-order M arkov  process

These models do not directly represent dependencies between observations 
over m ore than  one time step, therefore it is com m on to allow higher order 
interactions between variables i.e. r ‘*-order M arkov models.

A nother way to  extend M arkov models is to  posit tha t the observations 
are dependent on hidden variables which wc can call the states and that 
the sequence o f states is a M arkov process. A classical m odel of this kind 
is the K alm an filter.

Figure 3. A Bayesian netw ork specifying conditional independence relations 
for a K alm an filter model

Using the short notation the jo in t probability distribution for this case 
for sequence from  £ =  1 to £ =  T  is:

Р (* „  У() =  Р (Х 1)-Р (У 1|Х 1) П Р ( Х (|Х ,_ 1)-Р (У 1|Х [) (4)
( =  2

The state transition probability P i-Y J-Y j-i) can be decomposed into deter­
m inistic and stochastic com ponent

X t = f , ( X t- i ) + ot (5)

where / ,  is the deterministic transition function, and o, is zero-m ean random  
noise vector.



Similarly, the observation probability P(Y(|X t), can be decomposed:

Yt = g,(X') + { t (6)

There are o ther ways o f representation commonly used in dynam ic Baye­
sian netw orks i.e. H idden M arkov M odels, Factorial M arkov M odels and 
Sw itching S ta te  M odels (Bilmes (2000),G habram ani (1997), M urphy 
(2002)).

Static Bayesian networks are usually used in m edical diagnoses or can 
be applied as decision support tools in classification problem s (for example 
in com m unication insurances). The structure o f static netw ork does not 
differ from general scheme (acyclic graph) apart from lack o f dynamic 
variables.

If  the network had for example four random  variables X ,  Y, Z  and 
W  (Fig. 4) the jo in t probability distribution would be as follows:

P (W, X ,  Y, Z )  =  P(W) • P(X)  ■ Р(У| W) ■ \ \ Z \ X ,  Y) (7)

Certainly, regardless of the structure, the netw ork can be subject to 
learning process. Such a process can concern both param eters of the 
netw ork or the structure, and can be associated with variable selection and 
edge specification. There are adequate algorithm s for param eter learning 
which allow to obtain the best estim ations (for example gradient m ethods 
or m ethods based on maximum likelihood function). Generally param eter 
learning is simply updating o f conditional probability tables for each node 
o f the network. However, m ore complicated problem is learning the correct 
structure. The structure learning procedures are based on searching between 
all possible and acceptable networks of interest to find one or several 
optim al networks.



In such cases the solution is based on com plicated m athem atical al­
gorithm s based on special metrics e.g. K2 m etric and in some cases (for 
example when some variables are hidden) the proper solution hasn’t been 
found so far.

T he searching o f all possible networks can be limited by taking into 
consideration the prior knowledge about the problem  o f interest (expert 
knowledge) or by imposing additional conditions limiting the structure of 
Bayesian network. Usually the limitation is connected with interactions order, 
that is it concerns the m aximum num ber of edges which can be directed 
to one node.

IV. T H E  P O S S IB IL IT IE S  O F A P PL IC A T IO N . C H A N C ES AN D  PR O B LE M S

As it was noticed the Bayesian network encodes in a compressed way 
the jo in t probability distribution of random  variables and this kind of 
d istribution is sufficient for the inference. The answer to  any question can 
be obtained by com puting the jo in t probability distribution on the basis 
of the network and using it for appropriate calculations.

U nfortunately, such an approach m eans resignation from one o f the 
best advantages which can be obtained by graphical representation o f the 
jo in t probability distribution, lying in its efficiency. O f course, Bayesian 
networks give o ther advantages, particularly legible and intuitively com p­
rehensible graphical knowledge representation about direct causalities, but 
effectiveness reasons m ake it impossible to  use this distribution in practice, 
exception for cases with few num ber of variables.

Thus, there is a need for other inference algorithms in Bayesian networks. 
U nfortunately, in general case such a problem is N P-hard. This problem 
is becoming easier for a special type o f networks called single-connection 
networks. In such networks an t two nodes can be linked only with one 
path (maximum) composed of freely directed edges. There are known effective 
algorithm s o f approxim ate inference for this kind o f networks based on 
M onte-C arlo m ethods e.g. logical or weighted sampling. Therefore, there 
are some practical lim itations o f use caused by relatively hard  obtaining 
o f efficiency.

T he field in which Bayesian networks are dynam ically developed is 
medicine. The task o f the network in such cases is usually to  find the most 
probable cause of ailm ent o f a patient. Therefore networks have to answer 
the question: what does the patient suffer from if some sym ptoms occur 
(which cannot be classified clearly-out). Hence we often direct to Bayesian 
networks in classification problems.



Although there is a big interest in Bayesian networks in medicine, their 
use in social and economical field is not so popular. The actual problem 
isn’t only the m entioned problem o f efficiency but also the problem  of 
structure and learning, particularly when the economical variables have 
dynam ic character.

Let us consider hypothetical network with binary nodes, represented in 
F igure 5. The aim is to estim ate the probability o f share (K G H M ) price 
fall in future tim e period.
It is a problem  o f classification, if the share should be classified to a falling 
group (or neutrally) or to  an increasing group. T he netw ork was m ade 
with use o f Gene Software developed by Decision Systems Laboratory  in 
P ittsburgh University.

Let X u Y s respectively represent nodes o f the net. T he m eaning and 
possible states o f nodes is presented in Table 1.

Tabic 1. List o f variables, symbols and categories

Variable Symbol Categories

Exchange ra te increase, fall
Volum e of trade X 2 increase, fall
S tock Exchange index X , increase, fall
Positions in futures X * increase, fall
Share price * 5 increase, fall

I f  we denote category fall by 0 and category increase by 1 then adequate 
m arginal and conditional distributions will be following (for learning sample 
o f 47 elements -  weekly data  from 10.09.2001 to 09.09.2002):



Tabic 2. M arginal probability  d istribution  P (X , =  Y) 
o f variable X t

II о Y  = 1

0.5116 0.4884

T abic 3. C onditional probability  d istribution  P (X 2 =  Y \ X  t — Z)  
o f variable X 2

II О Y  =  1

Z  = 0 0.7619 0.2381
Z  =  1 0.7273 0.2727

Tabic 4. C onditional probability  d istribution  P(X

/-Ч
O

)II*NII*>■.IIrt

of variable X 3

ОII Y  -  1

N II о Ю II о 0.3750 0.6250
Z = 0  Q =  1 0.4375 0.5625
Z = 1  Q = 0 0.4000 0.6000
Z  =  1 Q = 1 0.5000 0.5000

Tabic 5. C onditional p robability  d istribution  P(X 4 =  У |Х 3 =  Z) 
o f variable X A

ОII Y  =  1

Z =  0 0.5417 0.4583
Z =  1 0.5263 0.4737

Tabic 6. C onditional probability  distribution  Р(.У5 =  Y \ X A =  Z , X 3 =  Q, X 2 =  R)
o f variable X s

II О У =  1

Z =  0 Q =  0 R = 0 0.5556 0.4444
Z =  1 e  =  o я  =  0 0.5000 0.5000
Z =  0 e  =  i R =  0 0.2000 0.8000
Z =  0 e  =  o Я =  1 0.7500 0.2500
Z =  1 e = i Я =  0 0.5000 0.5000
Z = 0 Q =  1 Л =  1 0.6000 0.4000
Z  =  I Q =  o Я =  1 0.0001 0.9999
Z  =  1 Q = 1 Л =  1 0.0001 0.9999



T he rightness o f decision m aking was verified in time period of 23 
weeks. It turned out that in 48% o f cases the net were classified correctly 
(in 26% of cases it could not m ake a decision and in 26% it m ade a wrong 
one). Obviously, it cannot be perceived as a good result. The reason for 
this result could be connected with the structure (topology) o f the network 
which could be im proper, and with a selection o f variables.

V. SU M M A RY  AND C O N C L U SIO N S

Bayesian netw orks can be an effective tool for statistical inference in 
com putational expert systems. However, there are some barriers connected 
with the structure o f a network, variables dynam ization and learning or 
update processes. These problem s are m athem atically complicated and this 
can explain the reason why the neural networks arc still m ore popular than 
probabilistic networks. Especially the problem o f learning o f the structure 
is the m atter of research. Besides, the software concerning the neural networks 
is m ore accesible.

It should be noticed that graphical knowlegdc representation has a great 
advantage over rule-based knowlegde used in expert and decision support 
systems. Each rule in rule-based systems are treated independently among 
others and th a t’s why it m ay be inconsistent and redundant. In  graph-based 
expert systems these problem s do not exist.
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Tomasz Kozdraj

UW AGI O SIE C IA C H  BAYKSOW SKICH I IC H  Z A ST O SO W A N IA C H

Streszczenie

Sieci Bayesa są strukturam i graficznymi będącymi skierowanym i grafam i acyklicznymi 
prezentującymi zależności pomiędzy zmiennymi losowymi. Znajdują one zastosowanie w dziedzinie 
tzw. oprogram ow ania inteligentnego, a  zwłaszcza w systemach ekspertowych. A rtykuł ten porusza 
problem y sam ych sieci bayesowskich, uczenia oraz ich zastosow ania. Podjęto też próbę ich 
aplikacji n a  polu zagadnień ekonomicznych związanych z rynkiem  kapitałow ym .
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