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MODELING AND CONTROL OF A 4-WHEEL SKID-STEERING MOBILE ROBOT †
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A mathematical model of a 4-wheel skid-steering mobile robot is presented in a systematic way. The robot is considered as
a subsystem consisting of kinematic, dynamic and drive levels. Next, a designing process of a kinematic controller based
on the algorithm introduced by (Dixonet al., 2001) is shown. An extension of the kinematic control law at the dynamic and
motor levels using the Lyapunov analysis and the backstepping technique is developed. To validate the designed algorithm,
extensive simulation results for trajectory tracking and set-point cases are discussed. Some deliberations concerning the
tuning of the controller are presented, too.
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1. Introduction

In recent years there has been observed a growing inter-
est in the mobile robotics area. A lot of research concen-
trates on the description of kinematic models of mobile
robots and designing feedback control laws for nonholo-
nomic systems. Researchers typically consider wheeled
platforms with nonholonomic constraints white assuming
perfect rolling. An excellent overview concerning differ-
ent types of these robots can be found in (Campionet al.,
1996).

Although significant research has been focused to
path planning and motion control of nonholonomic vehi-
cles, see, e.g., (Dixonet al., 2001; 2003; Morin and Sam-
son, 2003), research that examines and accommodates it
for skid steering effects is sparse. Therefore, so far lit-
tle has been written about the control of vehicles where
a slippage phenomenon is necessary because of the drive
mechanism. Such wheeled robots called skid-steering mo-
bile robots (SSMRs) are considered as all-terrain vehicles
because of the robust nature of the mechanical structure.
They can work in hard environmental conditions and can
be used, e.g., to explore space.

The steering of an SSMR is achieved by differen-
tially driving wheel pairs on each side of the robot. Al-
though the steering scheme yields some mechanical bene-
fits, the control of an SSMR is a challenging task because
the wheels must skid laterally to follow a curved path. If
the projection of the instantaneous center of rotation (ICR)
of the vehicle along the longitudinal axis becomes large,
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the vehicle can lose motion stability as a result of skid-
ding. In contrast, this phenomenon is not important for
traditional vehicles if only the no-slip assumption is satis-
fied.

Because of lateral skidding, velocity constraints oc-
curring in SSMRs are quite different from the ones met
in other mobile platforms where wheels are not supposed
to skid. This implies that the control of this robot at the
kinematic level only is not sufficient and, in general, de-
mands the use of a properly designed control algorithm at
the dynamic level, too.

Recently, Caraccioloet al. (1999) considered the
motion stability problem of SSMRs and imposed an ar-
tificial operational constraint on the vehicle to limit the
projection of the ICR onto the longitudinal axis to be
confined to the wheelbase. They resolved the trajectory
tracking case using a dynamic linearization of the SSMR
model. However, due to the restriction imposed by the
condition considered in (Brockett, 1983), the regulation
problem was not solved. Robustness to unknown interac-
tion ground forces of the designed controller was proved
only for a straight line motion.

In this paper, the results obtained in (Caracciolo
et al., 1999) are extended to a new time differentiable and
time-varying control scheme based on Dixon’s kinematic
controller. It allows us to solve both trajectory tracking
and regulation problems and it is based on the strategy of
forcing some transformed states to track an exogenous ex-
ponentially decaying signal produced by a tunable oscil-
lator. This algorithm yields a global exponentially stable
result for the transformed states and a global uniformly
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ultimately bounded (GUUB) result for the actual position
and orientation tracking or regulation errors. It gives prac-
tical stabilization in the sense considered in (Morin and
Samson, 2003), and combines good performance and ro-
bustness to disturbances. An excellent survey concerning
various algorithms to control nonholonomic systems can
be found in (Morin and Samson, 2002).

Motivated by practical issues such as a desire to ac-
commodate for unknown ground interaction forces, a ro-
bust controller is developed that incorporates the uncertain
dynamic model of an SSMR. Additionally, the control law
which takes into account electrical properties of the drive
system is obtained. The result of stability is proved using
the Lyapunov technique. It is important to note that, in
contrast to the previous work done by (Caraccioloet al.,
1999; Kozłowski and Pazderski, 2003; Pazderskiet al.,
2004), the kinematic model of the SSMR is reformulated
to make it more practical for control purposes.

The paper is organized as follows: In Section 2 an
SSMR is decomposed into three subsystems which con-
sist of kinematic, dynamic and drive levels. Next, in a
systematic way, a model of the vehicle is presented. Sec-
tion 3 focuses on the development of the controller us-
ing the backstepping method. A detailed calculation con-
cerning the transformation of the SSMR kinematics into
a new space is presented, too. Next, the control scheme
on the dynamic level is obtained to ensure robustness to
the uncertainty of dynamical parameters. Further, electri-
cal properties of DC motors are included. Next, extensive
simulation results considering trajectory tracking and set-
point cases are given. Finally, some remarks concerning
the tuning of this controller are presented.

2. Model of an SSMR

In this section a mathematical description of an SSMR
moving on a planar surface is formulated. To facilitate the
analysis and subsequent control development, the vehicle
is divided into three parts including kinematics, dynam-
ics and drive subsystems. This approach is quite natural
for most mobile robots powered by electrical motors (see
Fig. 1). Additionally, it offers a possibility to develop a
controller based on the backstepping technique.

electrical
drive

subsystem

dynamic
subsystem

kinematic
subsystem

torque velocity position

mobile robot

electrical
input
(current or
voltage)

Fig. 1. Decomposition of an electrically driven mobile robot.

2.1. Kinematic Model

To consider the kinematic model of an SSMR, it is as-
sumed that the robot is placed on a plane surface with the
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Fig. 2. SSMR in the inertial frame.

inertial orthonormal basis(Xg, Yg, Zg), see Fig. 2. A lo-
cal coordinate frame denoted by(xl, yl, zl) is assigned to
the robot at its center of mass (COM). According to Fig. 2,
the coordinates of COM in the inertial frame can be writ-
ten asCOM = (X, Y, Z). Since in this paper the plane
motion is considered only, theZ-coordinate of COM is
constant (Z = const).

Suppose that the robot moves on a plane with
linear velocity expressed in the local frame asv =
[ vx vy 0 ]T and rotates with an angular velocity vec-

tor ω = [ 0 0 ω ]T . If q = [ X Y θ ]T is
the state vector describing generalized coordinates of the
robot (i.e., the COM position,X and Y , and the orienta-
tion θ of the local coordinate frame with respect to the
inertial frame), thenq̇ = [ Ẋ Ẏ θ̇ ]T denotes the
vector of generalized velocities. From Fig. 3 it can be
noted that the variableṡX and Ẏ are related to the coor-
dinates of the local velocity vector as follows (see Carac-

Fig. 3. Free body diagram.
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Fig. 4. Velocities of one wheel.

ciolo et al., 1999):[
Ẋ

Ẏ

]
=

[
cos θ − sin θ

sin θ cos θ

][
vx

vy

]
. (1)

Furthermore, because of the planar motion, one can write
θ̇ = ω.

It is obvious that Eqn. (1) does not impose any re-
strictions on the SSMR plane movement, since it describes
free-body kinematics only. Therefore it is necessary to an-
alyze the relationship between wheel velocities and local
velocities.

Suppose that thei-th wheel rotates with an angular
velocity ωi (t), wherei = 1, 2, . . . , 4, which can be seen
as a control input. For simplicity, the thickness of the
wheel is neglected and is assumed to be in contact with
the plane at pointPi as illustrated in Fig. 4. In con-
trast to most wheeled vehicles, the lateral velocity of the
SMRR, viy, is generally nonzero. This property comes
from the mechanical structure of the SSMR that makes
lateral skidding necessary if the vehicle changes its orien-
tation. Therefore the wheels are tangent to the path only
if ω = 0, i.e., when the robot moves along a straight line.

In this description we consider only a simplified case
of the SSMR movement for which the longitudinal slip
between the wheels and the surface can be neglected. Ac-
cording to this assumption based on work done by (Pacej-
ka, 2002), the following relation can be developed:

vix = riωi, (2)

where vix is the longitudinal component of the total ve-
locity vector vi of the i-th wheel expressed in the local
frame andri denotes the so-called effective rolling radius
of that wheel.

To develop a kinematic model, it is necessary to take
into consideration all wheels together. In Fig. 5, the radius
vectorsdi = [ dix diy ]T and dC = [ dCx dCy ]T
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Fig. 5. Wheel velocities.

are defined with respect to the local frame from the instan-
taneous center of rotation (ICR). Consequently, based on
the geometry of Fig. 5, the following expression can be
deduced:

‖vi‖
‖di‖

=
‖v‖
‖dC‖

= |ω| (3)

or, in a more detailed form,

vix

−diy
=

vx

−dCy
=

viy

dix
=

vy

dCx
= ω, (4)

where the symbol‖·‖ denotes the Euclidean norm.

Defining the coordinates of the ICR in the local frame
as

ICR = (xICR, yICR) = (−dxC ,−dyC) (5)

allows us to rewrite (4) as follows:

vx

yICR
= − vy

xICR
= ω. (6)

From Fig. 5 it is clear that the coordinates of vectorsdi

satisfy the following relationships:

d1y = d2y = dCy + c,

d3y = d4y = dCy − c,

d1x = d4x = dCx − a,

d2x = d3x = dCx + b,

(7)

where a, b and c are positive kinematic parameters of
the robot depicted in Fig. 3. After combining Eqns. (4)
and (7), the following relationships between wheel veloc-
ities can be obtained:

vL = v1x = v2x,

vR = v3x = v4x,

vF = v2y = v3y,

vB = v1y = v4y,

(8)
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where vL and vR denote the longitudinal coordinates of
the left and right wheel velocities,vF and vB are the
lateral coordinates of the velocities of the front and rear
wheels, respectively.

Using (4)–(8) it is possible to obtain the follow-
ing transformation describing the relationship between the
wheel velocities and the velocity of the robot:

vL

vR

vF

vB

 =


1 −c

1 c

0 −xICR + b

0 −xICR − a


[

vx

ω

]
. (9)

In accordance with (2) and (8), assuming that the effective
radius isri = r for each wheel, we can write

ωw =

[
ωL

ωR

]
=

1
r

[
vL

vR

]
, (10)

where ωL are ωR are the angular velocities of the left
and right wheels, respectively.

Combining (9) and (10), the following approximated
relations between the angular wheel velocities and the ve-
locities of the robot can be developed:

η =

[
vx

ω

]
= r


ωL + ωR

2
−ωL + ωR

2c

 , (11)

where η is a new control input introduced at the kine-
matic level.

From the last equation it is clear that, theoretically,
the pair of velocitiesωL and ωR can be treated as a con-
trol kinematic input signal as well as velocitiesvx and ω.
However, the accuracy of the relation (11) mostly depends
on the longitudinal slip and can be valid only if this phe-
nomenon is not dominant. In addition, the parametersr
and c may be identified experimentally to ensure a high
validity of the determination of the angular robot velocity
with respect to the angular velocities of the wheels.

To complete the kinematic model of the SSMR, the
following velocity constraint introduced in (Caracciolo
et al., 1999) from (6) can be considered:

vy + xICRθ̇ = 0. (12)

The last equation is not integrable. In consequence, it de-
scribes a nonholonomic constraint which can be rewritten
in the Pfaffian form:[

− sin θ cos θ xICR

] [
Ẋ Ẏ θ̇

]T
=A (q) q̇ = 0,

(13)

where Eqn. (1) has been used. Since the generalized ve-
locity q̇ is always in the null space ofA, we can write

q̇ = S (q) η, (14)

where
ST (q) AT (q) = 0 (15)

and

S (q) =

 cos θ xICR sin θ

sin θ −xICR cos θ

0 1

 . (16)

It should be noted that sincedim (η) = 2 < dim (q) = 3,
Eqn. (14) describes the kinematics of the robot, which is
underactuated. Additionally, this is a nonholonomic sys-
tem because of the constraint described by (12). It is in-
teresting to see that the analysed kinematic model of the
SSMR is quite similar to the kinematics of the two-wheel
mobile robot presented by (Kozłowski and Majchrzak,
2002).

From (6) and (9) it can be seen that control of thevy

and vyi velocity coordinates is not possible without the
knowledge of thexl-axis projection of the ICR. There-
fore, considering the linear velocityvx and the angular
velocity ω as control signals seems to have an advantage
over the previous propositions presented by (Kozłowski
and Pazderski, 2003; Caraccioloet al., 1999), where in-
stead ofω, the velocityvy is used.

2.2. Dynamic Model

In this section the dynamic properties of the SSMR are de-
scribed, since the dynamic effects play an important role
for such vehicles (see Caraccioloet al., 1999). It is caused
by unknown lateral skidding ground interaction forces.
First, the wheel forces depicted in Fig. 6 are examined.

Fig. 6. Forces acting on one wheel.

The active forceFi and reactive forceNi are related
to the wheel torque and gravity, respectively. It is clear
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Fig. 7. Active and resistive forces of the vehicle.

that Fi is linearly dependent on the wheel control input
τi, namely,

Fi =
τi

r
. (17)

According to (Pacejka, 2002) we assume that the vertical
force Ni acts from the surface to the wheel. Considering
the four wheels of the vehicle (Fig. 7) and neglecting addi-
tional dynamic properties, we obtain the following equa-
tions of equilibrium:

N1a = N2b,

N4a = N3b, (18)
4∑

i=1

Ni = mg,

where m denotes the vehicle mass andg is the gravity
acceleration. Since there is symmetry along the longitudi-
nal midline, we obtain

N1 = N4 =
b

2 (a + b)
mg,

(19)
N2 = N3 =

a

2 (a + b)
mg.

Assume that the vectorFsi results from the rolling
resistant momentτri and the vectorFli denotes the lat-
eral reactive force. Based on (Caraccioloet al., 1999)
these reactive forces can be regarded as friction ones.
However, it is important to note that friction modeling is
quite complicated since it is highly nonlinear and depends
on many variables. Therefore, in most cases only a simpli-
fied approximation describing the frictionFf as a super-
position of Coulumb and viscous friction is considered. It
can be written as

Ff (σ) = µcN sgn (σ) + µvσ, (20)

where σ denotes the linear velocity,N is the force per-
pendicular to the surface, whileµc and µv denote the
coefficients of Coulumb and viscous friction, respectively.
Since for the SSMR the velocityσ is relatively low, espe-
cially during lateral slippage, the relationµcN � |µvσ|
is valid, which allows us to neglect the termµvσ to sim-
plify the model. It is very important to note that the func-
tion (20) is not smooth when the velocityσ equals zero,
because of the sign functionsgn (σ). It is obvious that
this function is not differentiable atσ = 0. Since a con-
tinuous and time differentiable model of the SSMR should
be obtained, the following approximation of this function
is proposed:

ŝgn (σ) =
2
π

arctan (ksσ) , (21)

whereks � 1 is a constant which determines the approx-
imation accuracy according to the relation

lim
ks→∞

2
π

arctan (ksσ) = sgn (x) . (22)

Based on the previous deliberations, the friction
forces for one wheel can be written as

Fli = µlcimg ŝgn (vyi) , (23)

Fsi = µscimg ŝgn (vxi) , (24)

whereµlci and µsci denote the coefficients of the lateral
and longitudinal forces, respectively.

Using the Lagrange-Euler formula with Lagrange
multipliers to include the nonholonomic constraint (12),
the dynamic equation of the robot can be obtained. Next,
it is assumed that the potential energy of the robot
PE (q) = 0 because of the planar motion. Therefore the
LagrangianL of the system equals the kinetic energy:

L (q, q̇) = T (q, q̇) . (25)

Considering the kinetic energy of the vehicle and neglect-
ing the energy of rotating wheels, the following equation
can be developed:

T =
1
2
mvT v +

1
2
Iω2, (26)

wherem denotes the mass of the robot andI is the mo-
ment of inertia of the robot about the COM. For simplicity,
it is assumed that the mass distribution is homogeneous.
Since vT v = v2

x + v2
y = Ẋ2 + Ẏ 2, Eqn. (26) can be

rewritten in the following form:

T =
1
2
m
(
Ẋ2 + Ẏ 2

)
+

1
2
Iθ̇2. (27)
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After calculating the partial derivative of kinetic energy
and its time-derivative, the inertial forces can be obtained
as

d
dt

(
∂Ek

∂q̇

)
=

 mẌ

mŸ

Iθ̈

 = Mq̈, (28)

where

M =

 m 0 0
0 m 0
0 0 I

 . (29)

Consequently, the forces which cause the dissipation
of energy are considered. According to Fig. 7, the follow-
ing resultant forces expressed in the inertial frame can be
calculated:

Frx (q̇) = cos θ
4∑

i=1

Fsi (vxi)−sin θ
4∑

i=1

Fli (vyi) , (30)

Fry (q̇) = sin θ

4∑
i=1

Fsi (vxi)+cos θ

4∑
i=1

Fli (vyi) . (31)

The resistant moment around the center of massMr can
be obtained as

Mr (q̇) = −a
∑

i=1,4

Fli (vyi) + b
∑

i=2,3

Fli (vyi)

+ c

−∑
i=1,2

Fsi (vxi)+
∑

i=3,4

Fsi (vxi)

 . (32)

To define generalized resistive forces, the vector

R (q̇) =
[

Frx (q̇) Fry (q̇) Mr (q̇)
]T

(33)

is introduced. The active forces generated by the actua-
tors which make the robot move can be expressed in the
inertial frame as follows:

Fx = cos θ
4∑

i=1

Fi, (34)

Fy = sin θ
4∑

i=1

Fi. (35)

The active torque around the COM is calculated as

M = c (−F1 − F2 + F3 + F4) . (36)

In consequence, the vectorF of active forces has the fol-
lowing form:

F =
[

Fx Fy M
]T

. (37)

Using (17), (34)–(36) and assuming that the radius of
each wheel is the same, we get

F =
1
r


cos θ

4∑
i=1

τi

sin θ
4∑

i=1

τi

c (−τ1 − τ2 + τ3 + τ4)


. (38)

To simplify the notation, a new torque control inputτ is
defined as

τ =

[
τL

τR

]
=

[
τ1 + τ2

τ3 + τ4

]
, (39)

where τL and τR denote the torques produced by the
wheels on the left and right sides of the vehicle, respec-
tively. Combining (38) and (39), we get

F = B (q) τ , (40)

whereB is the input transformation matrix defined as

B (q) =
1
r

 cos θ cos θ

sin θ sin θ

−c c

 . (41)

Next, using (28), (33) and (40), the following dynamic
model is obtained:

M (q) q̈ + R (q̇) = B (q) τ . (42)

It should be noted that (42) describes the dynamics of
a free body only and does not include the nonholonomic
constraint (13). Therefore a constraint has to be imposed
on (42). To this end, a vector of Lagrange multipliers,
λ, is introduced as follows (see Caraccioloet al., 1999;
Gutowski, 1971):

M (q) q̈ + R (q̇) = B (q) τ + AT (q)λ. (43)

For control purposes it would be more suitable to
express (43) in terms of the internal velocity vectorη.
Therefore, (43) is multiplied from the left byST (q),
which results in

ST (q) M (q) q̈ + ST (q)R (q̇)

= S (q)T
B (q) τ + ST (q) AT (q)λ. (44)

After taking the time derivative of (14), we obtain

q̈ = Ṡ (q)η + S (q) η̇. (45)

Next, using (45) and (14) in (43), the dynamic equations
become

M̄η̇ + C̄η + R̄ = B̄τ , (46)
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where

C̄ = ST MṠ = mxICR

[
0 θ̇

−θ̇ ẋICR

]
(47)

M̄ = ST MS =

[
m 0
0 mx2

ICR + I

]
, (48)

R̄ = ST R =

[
Frx (q̇)

xICRFry (q̇) + Mr

]
, (49)

B̄ = ST B =
1
r

[
1 1
−c c

]
. (50)

2.3. Drive Model of the SSMR

In this section a model of the SSMR drive is developed. It
is assumed that the robot is driven by four DC brushed
motors with mechanical gears. In Fig. 8 a simplified
scheme of the drive on the right side of the robot is de-
picted. Considering only one drive and assuming for sim-

Fig. 8. Drive system on the right side of the vehicle.

plicity that the torqueτmi produced by thei-th motor is
linearly dependent on the rotor currentiai, we can write

τmi = kiiai, (51)

where ki denotes a motor torque constant. The voltage
equation of the armature can be approximated by the fol-
lowing linear relationship:

uiva = La
d
dt

iai + Raiai + keωmi, (52)

whereLa and Ra denote the series inductance and resis-
tance of the rotors, respectively,ke is the electromotive
force coefficient, whileωmi denotes the angular velocity

of the rotor. Since thei-th actuator is equipped with gears
characterized by a ration > 1, we get

τi = nkiiai, (53)

ωmi = nωi, (54)

where some additional dynamic effects concerning inertia
and backlash of gears have been neglected. According to
Fig. 8, a new input control signaluva on the voltage level
is defined as

uva =
[

uvaL uvaR

]T
, (55)

where uvaL and uvaR denote the motor voltage signals
on the left and right sides of the vehicle, respectively.
Since each pair of motors is electrically and mechanically
coupled, we have[

uvaL

uvaR

]
=

[
uva1 + uva2

uva3 + uva4

]
(56)

and [
ωL

ωR

]
=

1
n

[
ωm1

ωm3

]
=

1
n

[
ωm2

ωm4

]
. (57)

Assuming that all motors and gears have the same param-
eters and using (51)–(57), the following voltage-current
equations are developed:

τ = 2kinia, (58)

uva = 2La
d
dt

ia + 2Raia + 2kenωw. (59)

3. Control Law

In this section an algorithm which solves the regulation
and trajectory tracking problem is considered. First, ac-
cording to (Caraccioloet al., 1999), an operational non-
holonomic constraint (see Gutowski, 1971) is introduced
to limit the magnitude of lateral slippage in open loop con-
trol. Second, the idea of a kinematic oscillator proposed
by (Dixonet al., 2001) is used. Finally, the proposed con-
trol scheme consists of kinematic, dynamic and motor lev-
els, which ensures a better performance of the overall al-
gorithm.

3.1. Operational Constraint

It is easy to observe that the ICR position influences the
motion of the SSMR. In contrast to most mobile robots
where the wheels are not supposed to skid, the ICR of the
SSMR is not fixed. Therefore, theoretically, it can move
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during the robot motion. However, it can be seen from
Fig. 5 and Eqn. (9) that if thexICR coordinate goes out,
of the robot wheelbase, then the robot skids into a lateral
direction and loses its stability.

To solve this problem, Caraccioloet al. (1999) pro-
posed to include an operational nonholonomic constraint
(mathematical constraint) which is based on (12). This
constraint can be written as

vy + x0θ̇ = 0, (60)

where x0 denotes a fixed coordinate of the ICR which
should be selected as

x0 ∈ (−a, b) . (61)

It can be interpreted as a programmable limitation of the
SSMR lateral skidding that is done by imposing the con-
straint on the kinematic and dynamic model of the vehi-
cle. To this end,xICR in (16), (47)–(50) is replaced by
x0 and it is assumed thaṫxICR = 0. In consequence, the
matrix S (q) becomes

S (q) =

 cos θ x0 sin θ

sin θ −x0 cos θ

0 1

 . (62)

The value ofx0 is arbitrarily chosen and belongs to the
set defined by (61). It is not related to any structural prop-
erties of the SSMR. It is just a coefficient which allows
us to approximate the relation between the angular and
linear lateral velocities of the robot. It is interesting to see
that selectingx0 = 0 makes the SSMR kinematics model
similar to the kinematics of a typical two-wheel robot.

3.2. Control Objective

The vector of the position and orientation errorq̃ is de-
fined as follows:

q̃ = q − qr =
[

X̃ Ỹ θ̃
]T

, (63)

whereqr = [ Xr Yr θr ]T denotes the desired posi-
tion, Xr and Yr, of the COM and the desired orientation
θr. It should be noted that in the case of the regulation
problem we haveqr = const. However, for the trajec-
tory tracking problem,qr (t) is a vector function which
depends explicitly on time. In the second case,qr (t)
denotes a reference trajectory, generated by a reference
kinematic model with an operational constraint (60) as
follows:

q̇r (t) = S
[
qr (t)

]
ηr (t) , (64)

where S (·) is defined by (16), and ηr (t) =
[ vrx (t) ωr (t) ]T denotes the reference velocity vec-
tor. All reference signals and their derivatives are assumed

to be bounded for all times:

ηr (t) , η̇r (t) , qr (t) , q̇r (t) ∈ L∞. (65)

The control objective is formulated as a practical stabiliza-
tion of the position and the orientation of the robot consid-
ered in (Morin and Samson, 2003) in the sense that

lim
t→∞

‖q̃ (t)‖ ≤ ε, (66)

where ε denotes an arbitrary small positive constant.

3.3. Kinematic Transformation

In this section we introduce a kinematic transformation
which will be used later on in designing a control law.
Calculating a time derivative of (63), we obtain the fol-
lowing kinematic error equation:

˙̃q = q̇ − q̇r. (67)

Using (14) and (64), we get

˙̃q = S (q) η − S (qr)ηr. (68)

Taking into account (62), we reformulate (68) as follows:

˙̃q = g0 + g1 (q) vx + g2 (q)ω, (69)

where vx and ω are control inputs,g0 is a drift of the
system,g1 (q) and g2 (q) are vector field generators:

g0 (qr) = −S (qr) ηr, (70)

g1 (q) =

 cos θ

sin θ

0

 , (71)

g2 (q) =

 x0 sin θ

−x0 cos θ

1

 . (72)

From (70) it is clear that the drift is caused by the refer-
ence kinematics signals and forηr = 0 (i.e., when the
regulation problem is considered) the system has no drift.
Furthermore, the system expressed by (69) is underactu-
ated sincedim (η) = 2 < dim (q̃) = 3.

In order to build a kinematic controller based on
(Dixon et al., 2001), (68) is transformed into a form which
is similar to the nonholonomic integrator considered in
(Brockett, 1983):

ẇ = uT JT z + f, (73)

ż = u, (74)
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where w and z = [ z1 z2 ]T denote auxiliary vari-
ables,u is an input signal andf denotes the drift, while
J is the following skew-symmetric matrix:

J =

[
0 −1
1 0

]
. (75)

It should be noted that the systems described by (68),
(73) and (74) are first-order systems (see Murray and Sas-
try, 1993). It is possible to find the following global dif-
feomorfism that preserves the origin:

Z =
[

w z1 z2

]T
= P

(
θ, θ̃
)

q̃. (76)

The variablesw and z can be interpreted as a new aux-
iliary state vector of the system (68) described in a three-
dimensional space.

To develop the transformation matrixP (θ, θ̃), the
regulation problem is considered first, i.e.,qr (t) =
const. Then (73) can be rewritten as

ẇ = z2u1 − z1u2. (77)

Based on (De Luca and Oriolo, 1995), the following
change of coordinates is proposed:

z1 = θ̃, (78)

z2 = X̃ cos θ + Ỹ sin θ. (79)

Observe that both of the new variables have a nice geo-
metric interpretation:z1 is the orientation error and|z2|
denotes the length of projection of the vector[ X̃ Ỹ ]T

onto the direction determined by the actual orientationθ
(see Fig. 9).

R

q
r

q

~
X

~
Y

q
~
Xcos

z2

R'

controlled robot

reference robot

q
~
Ysin

Fig. 9. Geometrical interpretation of thez2 variable.

Taking the time derivative of (78) and (79), we can
write

ż1 = ˙̃
θ, (80)

ż2 =
d
dt

(
X̃ cos θ + Ỹ sin θ

)
. (81)

Next, using (74), (80) and (81) in (77), it follows that

ẇ = ˙̃
θ
(
X̃ cos θ + Ỹ sin θ

)
− θ̃

d
dt

(
X̃ cos θ + Ỹ sin θ

)
(82)

or

ẇ =
d
dt

[
−θ̃
(
X̃ cos θ + Ỹ sin θ

)]
+ 2 ˙̃

θ
(
X̃ cos θ + Ỹ sin θ

)
. (83)

Therefore the variablew can be expressed as

w = −θ̃
(
X̃ cos θ + Ỹ sin θ

)
+ 2
∫

˙̃
θ (t)

[
X̃ (t) cos θ (t)+Ỹ (t) sin θ (t)

]
dt. (84)

To calculate the integral in (84), it is convenient to con-
sider the expression

d
dt

(
X̃ sin θ − Ỹ cos θ

)
= θ̇

(
X̃ cos θ + Ỹ sin θ

)
+ ˙̃X sin θ − ˙̃Y cos θ. (85)

Using the error kinematics given by (68) and assuming
that vrx = 0 and ωr = 0, we see (note that it is just
Eqn. (13) in the case of regulation) that

˙̃X sin θ − ˙̃Y cos θ = x0
˙̃
θ. (86)

Then (85) can be rewritten as

d
dt

(
X̃ sin θ − Ỹ cos θ − x0θ̃

)
= θ̇

(
X̃ cos θ + Ỹ sin θ

)
= ˙̃

θ
(
X̃ cos θ + Ỹ sin θ

)
.

(87)

Finally, according to (84), the variablew has the fol-
lowing form:

w = −θ̃
(
X̃ cos θ + Ỹ sin θ

)
+ 2

(
X̃ sin θ − Ỹ cos θ − x0θ̃

)
. (88)
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Next, we calculate the termf which appears in (73). To
this end, the trajectory tracking case is considered. Taking
again the time derivative of (88), we conclude that

ẇ = − ˙̃
θ
(
X̃ cos θ + Ỹ sin θ

)
+ θ̃

[
θ̇
(
X̃ sin θ − Ỹ cos θ

)
− ˙̃X cos θ − ˙̃Y sin θ

]
+ 2θ̇

(
X̃ cos θ + Ỹ sin θ

)
+ 2

(
˙̃X sin θ − ˙̃Y cos θ

)
− 2x0

˙̃
θ. (89)

Using (68), (78) and (79) in (89), we have

ẇ = − ˙̃
θz2 − z1ż2 + 2θ̇z2

+ 2
(
x0θ̇ − vrx sin z1 − x0ωr cos z1

)
− 2x0θ̇ + 2x0ωr

= θ̇z2 + θ̇rz2 − 2θ̇rz2 + 2θ̇rz2 − z1ż2

+ 2 (x0ωr − vrx sin z1 − x0ωr cos z1)

= ˙̃
θz2 − z1ż2 + 2θ̇rz2

+ 2 (x0ωr − vrx sin z1 − x0ωr cos z1)

= ż1z2 − z1ż2 + 2z2ωr

+ 2 (x0ωr − vrx sin z1 − x0ωr cos z1) . (90)

Next, substituting (74) into Eqn. (90) results in

ẇ = u1z2 − z1u2

+ 2 (z2ωr + x0ωr − vrx sin z1 − x0ωr cos z1)

= u1z2 − z1u2

+ 2 [−vrx sin z1 + ωr (x0+z2−x0 cos z1)], (91)

and therefore

f = 2
[
− vrx sin z1 + ωr (x0 + z2 − x0 cos z1)

]
. (92)

Summarizing, the matrix P in (76), which
transforms (68) into (73)–(74), can be written as

P
(
θ, θ̃
)

=

−θ̃ cos θ+2 sin θ −θ̃ sin θ−2 cos θ −2x0

0 0 1
cos θ sin θ 0

 .

(93)
One can easily check that this matrix is nonsingular.

The velocity transformation can be obtained
from (74) and (80)–(81) as follows:

u = T−1η −

[
ωr

vrx cos z1 − x0ωr sin z1

]
, (94)

where

T−1 =

[
0 1
1 −l

]
or T =

[
l 1
1 0

]
(95)

and l = X̃ sin θ − Ỹ cos θ is an auxiliary variable that
has the meaning of a distance. Based on (94), the velocity
vector η can be expressed as

η = Tu + Π, (96)

where

Π =

[
vrx cos z1 + ωr (−x0 sin z1 + l)

ωr

]
(97)

is an auxiliary velocity vector which is nonzero only for
the trajectory tracking problem when the reference veloc-
ity vector ηr 6= 0.

3.4. Kinematic Control Law

In this section a kinematic control structure based on
(Dixon et al., 2001) which solves a unified tracking and
regulation problem is proposed.

The control law has the following form:

u = ua − k2z, (98)

where ua, which introduces a time-varying feedback to
overcome Brockett’s obstruction (see Brockett, 1983), is
defined as

ua =
k1w + f

δ2
d

Jzd + Ω1zd. (99)

From (99) it is clear that the signalua is modulated by an
auxiliary signalzd generated by the tunable oscillator de-
scribed by the following linear non-stationary differential
equation:

żd =
δ̇d

δd
zd +

(
k1w + f

δ2
d

+ wΩ1

)
Jzd, (100)

where zd = [ zd1 zd2 ]T , Ω1 and δd are auxiliary
terms defined as

Ω1 = k2 +
δ̇d

δd
+ w

k1w + f

δ2
d

, (101)

δd = α0 exp (−α1t) + ε1, (102)

while k1, k2, α0, α1 and ε1 are positive constant design
parameters.

It is easy to show that the envelope of‖zd (t)‖ is
determined by the scalar functionδd. In order to prove it,
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we calculate the time derivative of the quadratic norm of
the vectorzd (t) and next use (100) to obtain

d
dt

(
zT

d zd

)
= 2

δ̇d

δd
zT

d zd. (103)

The solution of (103) can be written as

zd (t)T
zd (t) = zd (0)T

zd (0) = δ2
d (t) . (104)

Assuming thatzd (0)T
zd (0) = δ2

d (0), the envelope of
‖zd (t)‖ is described by

∀t ≥ 0 ‖zd (t)‖ = δd (t) . (105)

Theorem 1. Provided that the reference trajectory is se-
lected to be bounded for all timest > 0 (see (65)) and
assuming that the kinematic model satisfies the constraint
given by (60), the kinematic control law given by (98)–
(102) ensures that the position and orientation errors de-
fined by (63) are globally uniformly ultimately bounded as
follows:

‖q̃‖ ≤ κ0 exp (−κ1t) + κ2ε1, (106)

where ε1 can be made arbitrarily small, andκ0, κ1 and
κ2 are some positive constants.

A detailed proof of exponential stability to a small
neighborhood of the equilibrium point is given by (Dixon
et al., 2001) and is based on the Lyapunov stability the-
ory. The proposed Lyapunov function candidate has the
following form:

V1 (w, z̃) =
1
2
w2 +

1
2
z̃T z̃, (107)

where z̃ = zd − z is an auxiliary error signal.

The derivation of differential equation errors govern-
ing w and z̃ for the closed-loop kinematic controller can
be found in (Dixonet al., 2001). Using it, we get

V̇1 (w, z̃) = −k1w
2 − k2z̃

T z̃. (108)

Since all signals of the controlled system are bounded
(Dixon et al., 2001), it can be proved that the errorsw
and z̃ are exponentially driven to zero. This means that
the signalz tends to an oscillator signalzd whose norm
approaches the constantε1 (c.f. (102)).

Remark 1. The parametersα0, α1 and ε1 play a
very important role in the controller tuning process.
Since (105) is satisfied andlimt→∞ z (t) = zd (t), the
scalar functionδd (t) allows us to influence all transient
states. In this way,δd (t) can be seen as a function used
for motion planning. It is essential if the initial error is
quite high and the vehicle has velocity limitations. A sim-
ilar meaning is attributed to the relation between the os-
cillator signalszd1 and zd2, which determine the phase

condition. According to (105), it is convenient to intro-
duce the following parametrization:

zd (0) = δd (0)

[
cos ϕ

sinϕ

]
, (109)

whereϕ ∈ (−π, π].

3.5. Dynamic Control Law

In this section an extension of the presented kinematic
control law is developed by considering a dynamic model
of the SSMR. It is motivated by the desire to improve
the robustness of the control design. In this case, using
a method which relies on linearizing the dynamic equa-
tions is not possible because of unknown lateral skidding
forces. Instead, a controller which is robust to the dynamic
unmodelled disturbances is designed. Since all kinematic
signals are time differentiable, it is possible to incorporate
dynamical properties using a Lyapunov analysis and the
backstepping technique.

First, to facilitate the subsequent development and
analysis, the dynamic equation (46) is transformed by sub-
stituting every occurrence ofη, η̇ by u, u̇, respectively.
Next, multiplying (46) from the right byT T , we get

¯̄Mu̇ + ¯̄Cu + ¯̄R = ¯̄Bτ , (110)

where

¯̄M =T T M̄T , ¯̄C =T T
(
C̄T +M̄Ṫ

)
,

¯̄R=T T
(
C̄Π+M̄Π̇+R̄

)
, ¯̄B=T T B̄.

(111)

Remark 2. Based on the Rayleigh-Ritz theorem (Dixon
et al., 2003) and using the fact that̄̄M is a symmetric
and positive definite matrix, the following inequality can
be written:

1
m1 (w,z)

ξT ξ ≤ ξT ¯̄M−1ξ ≤ 1
m2 (w,z)

ξT ξ, (112)

where ξ ∈ R2, m1 (w,z) and m2 (w,z) are positive
scalar functions dependent on the actual tracking errors
which denote the actual minimum and maximum eigen-
values of ¯̄M .

Since the transformed velocity signalu (t) is no
longer a control input, a desired velocity signal, denoted
by ud (t), is designed based on (98) as follows:

ud = ua − k2z. (113)
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Because the dynamic model (110) can be expressed
in terms ofud (t) and then linearly parametrized, we see
that

¯̄Mu̇d + ¯̄Cud + ¯̄R = Yd (ud, u̇d, q̃, θ,ηr) ϑ, (114)

where

ϑ =
[

m I µsm µlm
]T

(115)

is a vector of dynamical parameters and

Yd (ud, u̇d, q̃, θ,ηr) =

[
yd11 yd21 yd31 yd41

yd12 yd22 yd32 yd42

]
(116)

denotes a known regression matrix which is a function of
the desired transformed velocity and acceleration. To sim-
plify the control law, it is assumed that the friction coef-
ficients are the same for each wheel, i.e.,µli = µl and
µsi = µs.

It is clear that since the dynamical parameters of the
SSMR are not precisely determined, the actual vectorϑ is
uncertain. Defining the difference between this parameter
vector and the parameter vectorϑ0 that denotes the best-
guess estimate for the unknown parameters in (115), we
deduce that

ϑ̃ = ϑ0 − ϑ, (117)

where

ϑ0 =
[

m0 I0 µs0m0 µt0m0

]T
. (118)

Assuming thatϑ̃ is bounded it is possible to find a coef-
ficient ρ which fulfils the following inequality:∥∥ϑ̃∥∥ ≤ ρ. (119)

To develop a control law on the dynamic level, a new ve-
locity signal error is defined (Dixonet al., 2001; Mazur,
2001; Kozłowski and Majchrzak, 2002; Kozłowski and
Pazderski, 2003):

ũ = ud − u. (120)

The differential equations governing the transformed
errors w and z̃ for the closed-loop system have the fol-
lowing form:

ẇ = −k1w + uT
a Jz̃ + ũT Jz, (121)

˙̃z = −k2z̃ + wJua + ũ. (122)

A detailed derivation of the closed-loop error system can
be found in (Dixonet al., 2001).

For stability analysis, the following Lyapunov func-
tion candidate is proposed:

V2 (w, z̃, ũ) =
1
2
w2 +

1
2
z̃T z̃ +

1
2
ũT ¯̄Mũ. (123)

Taking the time derivative ofV2 yields

V̇2 (w, z̃, ũ) = wẇ+ z̃T ˙̃z+ũT ¯̄M ˙̃u+
1
2
ũT ˙̄̄

Mũ. (124)

Calculating the term ¯̄M ˙̃u from (110) and using (121),
(122) and then (108) in (124), we conclude that

V̇2 (w, z̃, ũ)

= V̇1 (w, z̃) + ũT
(
wJz + z̃ + ¯̄Mu̇d

+ ¯̄Cu + ¯̄R− ¯̄Bτ +
1
2

˙̄̄
Mũ

)
. (125)

It is easy to prove that ˙̄̄
M = ¯̄C + ¯̄CT . Using this re-

lationship and adding and subtracting the term12 ũT ¯̄Cũ
to the right-hand side of (125), the following equation is
obtained:

V̇2 (w, z̃, ũ)

= − k1w
2 − k2z̃

T z̃

+ ũT
(
wJz+z̃+ ¯̄Mu̇d+ ¯̄Cud+ ¯̄R− ¯̄Bτ

)
+

1
2
ũT
(

¯̄CT − ¯̄C
)

ũ. (126)

Since ¯̄CT − ¯̄C is a skew-symmetric matrix, we see that

ũT
(

¯̄CT − ¯̄C
)

ũ = 0. (127)

Using (127), the time derivative of the Lyapunov function
can be rewritten as

V̇2 (w, z̃, ũ)

= − k1w
2 − k2z̃

T z̃

+ ũT
(
wJz+z̃+ ¯̄Mu̇d+ ¯̄Cud+ ¯̄R− ¯̄Bτ

)
. (128)

Now, making use of (114) in (128) results in

V̇2 (w, z̃, ũ) = −k1w
2 − k2z̃

T z̃

+ ũT
(
wJz + z̃ + Ydϑ− ¯̄Bτ

)
. (129)

To achieve robustness to the parametric uncertainty
ϑ̃, an additional control inputτa is introduced. Based
on (128), the following control law is proposed:

τ = ¯̄B−1 (wJz + z̃ + Ydϑ0 + τa + k3ũ) . (130)

According to (Spong, 1992; Dixonet al., 2001), the term
τa is defined as

τa = Yd
ρ2Y T

d ũ∥∥Y T
d ũ
∥∥ ρ + ε2

, (131)

where ε2 is a positive constant scalar which can be set up
as arbitrarily small.
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Remark 3. It is clear that the functionτa in (131) is
always time differentiable if so is‖Y T

d ũ‖. This property
is different from the typical robust control term used in
(Spong, 1992) and allows us to limit the chattering of the
control signal. It is an important property because it offers
a possibility to use a classical backstepping approach.

Using (130) and (117) in (129), we have

V̇2 (w, z̃, ũ)

= − k1w
2 − k2z̃

T z̃ − ũT k3ũ

+
(
Y T

d ũ
)T (

ϑ̃− ρ2Y T
d ũ∥∥Y T

d ũ
∥∥ ρ + ε2

)
. (132)

After some simple calculations, we can prove the follow-
ing inequality:

V̇2 (w, z̃, ũ) ≤ −k1w
2 − k2z̃

T z̃ − k3ũ
T ũ

+

∥∥Y T
d ũ
∥∥ ρε2∥∥Y T

d ũ
∥∥ ρ + ε2

. (133)

Since the last term in (133) is bounded,

0 ≤
∥∥Y T

d ũ
∥∥ ρε2∥∥Y T

d ũ
∥∥ ρ + ε2

≤ ε2, (134)

we finally get

V̇2 (w, z̃, ũ) ≤ −k1w
2 − k2z̃

T z̃ − ũT k3ũ + ε2. (135)

3.6. Control Law on the Motor Level

In this section the control law considering the drive model
which was presented in Section 2.3 is developed.

Calculating ia from (58) and then taking its time
derivative, we get

d
dt

ia = (2kin)−1
τ̇ . (136)

Next, using (136) in (59), we obtain

uva = La (kin)−1
τ̇ + 2Raia + 2kenωw. (137)

Rearranging the terms in (137), we have

τ̇ = L−1
a kin (uva − 2Raia − 2kenωw) . (138)

Here it is assumed that the voltage is the control signal of
the drive system. Therefore, based on (130), the following
desired torque signalτd is designed:

τd = ¯̄B−1 (wJz + z̃ + Ydϑ0 + τa + k3ũ) , (139)

whereτa is defined by (131).

The next step of the backstepping procedure consists
in defining an error torque signal (see Kozłowski and Maj-
chrzak, 2002; Kozłowski and Pazderski, 2003) as follows:

τ̃ = τd − τ , (140)

where τ denotes the actual torque signal. To determine
the voltage control law on the motor level, the following
Lyapunov function candidate is proposed:

V3 (w, z̃, ũ, τ̃ ) =
1
2
w2 +

1
2
z̃T z̃ +

1
2
ũT ¯̄Mũ +

1
2
τ̃T τ̃

= V2 +
1
2
τ̃T τ̃ . (141)

Calculating its time derivative and using (125), (140)
and (141), we get

V̇3 (w, z̃, ũ)

= V̇1 (w, z̃)

+ ũT
(
wJz + z̃ + ¯M̄ u̇d + ¯̄Cud + ¯̄R− ¯̄Bτd

)
+ ũT ¯̄Bτ̃ + τ̃T ˙̃τ . (142)

In order to design the control voltageuva, it is imposed
that the following inequality is satisfied:

ũT ¯̄Bτ̃ + τ̃T ˙̃τ ≤ 0. (143)

Next, using (138) in (143), we get

ũT ¯̄Bτ̃

+ τ̃T
[
τ̇d−L−1

a kin (uva−2Raia−2kenωw)
]
≤ 0.

(144)

Based on (144), the following control law on the volt-
age level is proposed:

uva = La (kin)−1
(
τ̇d + k4τ̃ + ¯̄BT ũ

)
+Raia+kenωw,

(145)
wherek4 is an adjustable positive coefficient.

Using (145) in (141), we obtain

V̇3 (w, z̃, ũ, τ̃ ) = V̇2 (w, z̃, ũ)− k4τ̃
T τ̃ . (146)

After the substitution of (135) in (146), the following in-
equality can be obtained:

V̇3 (w, z̃, ũ) ≤ −k1w
2−k2z̃

T z̃−k3ũ
T ũ−k4τ̃

T τ̃ + ε2.
(147)
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Now choose the parameterk3 high enough such that

∀t > 0 k3 ≥ max {k1, k2, k4}
1

m2
, (148)

where m2 is an upper bound of the functionm2 (w,z)
which appears in (112). We have

kmin

(
k1

kmin
w2+

k2

kmin
z̃T z̃+

k3

kmin
ũT ũ+

k4

kmin
τ̃T τ̃

)
≥ kmin

(
w2+z̃T z̃+ũT ¯̄Mũ+τ̃T τ̃

)
, (149)

where kmin = min {k1, k2, k4}. Next, combining (141)
and (147) gives

V̇3 (w, z̃, ũ, τ̃ ) ≤ −γV3 (w, z̃, ũ, τ̃ ) + ε2, (150)

where γ = 2min {k1, k2, k4}. Since all signals in the
controller and the vehicle model are bounded (it is proved
by Dixon et al., 2001; Kozłowski and Majchrzak, 2002),
we haveV̇3 ∈ L∞. Consequently,

V3 (w, z̃, ũ, τ̃ )

≤ V3 (0,0,0,0) exp(−γt) +
ε2
γ

[
1− exp (−γt)

]
.

(151)

Using the fact that the transformation matrixP is always
invertible, the following result was proved:

Theorem 2. Assuming that the desired trajectory is se-
lected to be bounded (cf. (65)) for all timest ≥ 0 and
the conditions (60), (119) are fulfilled, the proposed con-
trol law given by (98)–(102), (139) and (145) ensures the
position and orientation tracking error to be globally uni-
formly ultimately bounded as follows:

‖q̃‖ ≤
√

β1 exp (−γ1t) + ε2β2 + β3 exp (−γ2t) + β4ε1,
(152)

whereγ1, γ2, β1, β2, β3 and β4 are positive constants.

4. Simulation Results

To validate the performance of the developed control law,
simulation results using theMatlab/Simulinkenvironment
are presented. The model of the SSMR is based on a real
construction of a small experimental mobile robot consist-
ing of two MiniTracker-3 robots designed by Jedwabnyet
al. (2004). The friction surface is characterized by the
functions µs (X, Y ) and µt (X, Y ) describing the fric-
tion coefficients. The values of the friction coefficients
are related to the actual position of the COM of the robot
(see Fig. 10). All parameters of the model and the default
parameters of the controller are collected in Table 1.
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Fig. 10. Friction coefficients: (a)µl (X, Y ), (b) µs (X, Y ).

Table 1. Model and controller parameters.

Kinematic a = b = 39 [mm], c = 34 [mm], r = 26.5 [mm]

Dynamic m = 1 [kg], I = 0.0036 [kg · m2]

Motors La = 0.22 [mH], Ra = 3.9 [Ω], ke = 8.52
[

mV·s
rad

]
,

ki = 8.55
[

mN·m
A

]
, n = 12, |ia max| = 1.2 [A],

|uva max| = 12 [V]

Surface µl ∈ 〈0.2, 0.8〉 , µs ∈ 〈0.02, 0.18〉

Default k1 = 1, k2 = 1, k3 = 5, k4 = 2, α1 = 0.5,

controller ε1 = 0.01, ε2 = 0.02, x0 = −15 [mm], ρ = 2,

parametersµl0 = 0.5, µs0 = 0.1, m0 = 1.2 [kg],

I0 = 0.0054 [kg · m2]

First, the regulation problem is examined for a kine-
matic and a dynamic controller (without a motor model).
The torque signal is limited and cannot achieve a value
greater than0.25 [Nm]. The worst case is assumed when
the robot should reach the postureqr = [ 0 0 0 ]T

parallel to its initial positionq (0) = [ 0 1 0 ]T , i.e.,
z1 = 0, z2 = 0 and w 6= 0.

In Fig. 11(a) the obtained paths are illustrated with
respect to the initial value of the oscillator signalzd. It
shows that the phase shift betweenzd1 and zd2 plays
a very important role and influences the transient stages.
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Fig. 11. Examination of the controller with respect tozd (0): (a) Performed path with respect toϕ, (b) Performed path
with respect toδd (0), (c) Torque signal forδd (0) = 2.5, and (d) Torque signal forδd (0) = 1.

Therefore, the initial valuezd (0) can be tuned to obtain
the best regulation performance from an energetic point
of view, which results in the minimization of the number
of changes in the direction movement. From Fig. 11(b)
it can be seen that the initial value ofδd (0) should not
be too low, since it demands high values of control sig-
nals (cf. (98)–(100)). The limitation of the control signal
results in signal chattering with a high frequency and, as
a consequence, the regulation goal may not be reached
(for example, see the path forδd (0) = 1 presented in
Fig. 11(b) and the torque signal forδd (0) = 1 and
δd (0) = 2.5 in Figs. 11(c) and 11(d)). It is not sensi-
ble to force the controller to reduce the regulation error
too fast by assuming a high value ofα1.

Second, a full dynamic model with motors is exam-
ined. The following parameters of the controller have
been changed with respect to the default settings:k1 =
0.5, α1 = 0.3, δd (0) = 2, ϕ = −7π/12. In Fig. 12(a)

the path and a series of postures of the robot at every 1 [s]
of the simulation process are presented. From Fig. 12(b)
it can be seen that the initial regulation error is highly re-
duced. The steady-state position and orientation errors are
bounded as follows:

for t > 25 [s] :
∣∣X̃∣∣ < 1 [mm],

∣∣Ỹ ∣∣ < 0.5 [mm]

and
∣∣θ̃∣∣ < 0.01 [rad].

In Fig. 12(c) a comparison of signalszd (0) and
z (0) is presented in the three dimensional space. It can
be observed thatz (t) approaches the trajectory gener-
ated by the oscillator, i.e.,zd (t) indirectly determines the
actual position and the orientation error. The voltage con-
trol signal for simulation is illustrated in Fig. 12(d): small
chattering appears only during the initial stage of simula-
tion when an auxiliary error̃z (t) is relatively high (see
Fig. 12(c)).
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Fig. 12. Regulation case for̃q(0) =
[

0 1 0
]T

: (a) Performed path, (b) Regulation errors,
(c) Auxiliary error and oscillator signal, and (d) Voltage signal.

The results of the next simulation are obtained for
qr = [ 0 0 0 ]T , q (0) = [ 0 1 −π ]T , k1 = 1,
α1 = 0.5, δd (0) = 3.2, ϕ = π. In Figs. 13(a)–(d),
the path, regulation errors, auxiliary signals and voltage
signals are shown. The regulation errors are bounded as
follows:

for t > 25 [s] :
∣∣X̃∣∣ < 10 [mm],

∣∣Ỹ ∣∣ < 1 [mm]

and
∣∣θ̃∣∣ < 0.05 [rad].

It is easy to observe that if̃z (0) is relatively small, this
controller allows us to obtain good transient states and to
rapidly limit motion changes. Therefore, choosingzd (0)
should be considered for a practical implementation of the
control law.

Next, numerical simulations concern the trajectory
tracking problem. For the results presented in Figs. 14(a)–

(e) the following parameters were assumed:k1 = 2,
α1 = 0.3, δd (0) = 1.7, ϕ = π/12. The reference trajec-
tory is as follows:

Xr (t) =
(

1
1 + 0.2t

cos 0.2t− 1
)

[m],

Yr (t) =
1

1 + 0.2t
sin 0.2t [m],

while θr (t) is calculated by the reference model (64).
The steady-state tracking errors are bounded as follows:

for t > 30 [s] :
∣∣X̃∣∣ < 5 [mm],

∣∣Ỹ ∣∣ < 4 [mm]

and
∣∣θ̃∣∣ < 0.04 [rad].

In Fig. 14(e) the friction coefficients are illustrated, but
according to Figs. 14(b) and 14(c) it is clear that the error
and velocity signals are almost invariant to disturbances.
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Fig. 13. Regulation case for̃q(0) =
[

0 1 −π
]T

: (a) Performed path, (b) Regulation errors,
(c) Auxiliary error and oscillator signal, and (d) Voltage signal.

In the next simulation experiment for the trajectory
tracking problem the following reference trajectory was
assumed:

Xr (t) = [(1 + 0.2 sin 0.9t) cos 0.15t− 1] [m], (153)

Yr (t) = (1 + 0.2 sin 0.9t) sin 0.15t [m]. (154)

The parameters of the controller different from their de-
fault values arek3 = 10, k4 = 10, α1 = 0.3, δd (0) = 1.5,
ϕ = −2π/3. In this simulation experiment the following
steady-state errors are recorded (cf. Fig. 15(b)):

for t > 20 [s] :
∣∣X̃∣∣ < 12 [mm],

∣∣Ỹ ∣∣ < 11 [mm]
and

∣∣θ̃∣∣ < 0.02 [rad].

It can be seen that the tracking errors are higher compared
with previous simulations, since the dynamic properties

concerning the inertia of the vehicle play an important
role. In this case friction coefficients change in a sig-
nificant range, too. Therefore it is necessary to increase
the coefficientk3 to improve the performance of the con-
troller. It is interesting to see that although a trajectory
tracking error exists, the reference and actual paths are
almost the same (cf. Fig. 15(e)) in the final stage of simu-
lation. The controlled robot is delayed with respect to the
reference vehicle.

5. Conclusion

In this paper a new algorithm considering the kinematic,
dynamic and drive model of a 4WD skid-steering mobile
robot has been presented. To solve the kinematic prob-
lem we used the idea of a kinematic oscillator that gives
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Fig. 14. Trajectory tracking case for̃q(0) =
[

0.5 0.5 −π/2
]T

: (a) Performed path, (b) Tracking errors,
(c) Linear and angular velocities, (d) Voltage signal, and (e) Friction coefficients.
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Fig. 15. Trajectory tracking casẽq(0) =
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: (a) Performed path, (b) Tracking errors,
(c) Linear and angular velocities, (d) Voltage signal, and (e) Friction coefficients.
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a possibility to obtain practical stabilization in trajectory
tracking and regulation problems. It was proved that the
overall controller stabilizes the system asymptotically to
certain bounds of the position and orientation tracking er-
rors. The obtained convergence is exponential. In contrast
to the previous work done by Caraccioloet al. (1999), the
presented approach is characterized by better robustness
to dynamic parameters uncertainty. Theoretical delibera-
tions are illustrated by discussion how to tune the param-
eters of the controller.

Future work is devoted to the extension of this ap-
proach to other classes of nonholonomic systems which
have the size of the state vector greater than three (e.g., a
typical car drive kinematic model).
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