MATHEMATICA APPLICANDA ©

Vol. 47(2) 2019, p. 151-164

doi: 10.14708/ma.v47i2.6487 ma ptm
2012

MAREK BODNAR “& * (Warsaw)

URszZULA FORYS & * (Warsaw)

Some remarks on modelling of drug resistance
for low grade gliomas

Abstract In this paper we present a version of a simple mathematical model of
acquiring drug resistance which was proposed in Bodnar and Fory$ (2017). We based
the original model on the idea coming from Pérez-Garcia et al. (2015). Now, we
include the explicit death term into the system and show that the dynamics of the
new version of the model is the same as the dynamics of the second model considered
by us and based on the idea of Ollier et al. (2017). We discuss the model dynamics
and its dependence on the model parameters on the example of gliomas.
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1. Introduction In this paper we focus on tumour treatment and the
so-called acquired chemotherapy resistance which is associated with longer
usage of the same drug and causes problems when we observe relapse of the
disease. Our main aim is to model the process of mutation from sensitive to
resistant subpopulation of tumour cells as well as the growth of tumour con-
sisting of both types of cells. In our previous work [2] we have compared two
simple models of drug resistance, one based on the ideas proposed by Ollier et
al. [7], and the other by Pérez-Garcia et al. [8]. Both models were proposed
to describe the dynamics of gliomas. However, they differ in the mechanism
of acquiring resistance. Moreover, in the first model there is an explicit death
term of cells, while such term is absent in the second model. In [2] we showed
that the dynamics of both models, in the case of constant continuous indefi-
nite chemotherapy, is very similar, that is all solutions tend to a steady state
in which the subpopulation of sensitive cells goes extinct. However, the lack of
an explicit death term in the model proposed by Pérez-Garcia et al. could be
considered as oversimplification and causes that the model has worst math-
ematical properties. Namely, there are infinitely many steady states and the
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asymptotic dynamics depends on the initial data. Therefore, we decided to
add this term and compare the dynamics of the model considered before and
the model with the additional death term.

We illustrate analytic results using parameters fitted to gliomas. Gliomas
are brain tumours originating from glial cell precursors, accounting for about
80% of all brain tumours. In general, for glioma patients, three types of ther-
apy are applied: resection, radiotherapy and chemotherapy. Clinicians have
lately focused on chemotherapy, for which phase II trials |6, 9] showed ef-
fectiveness against both previously irradiated and unirradiated tumours. Re-
sponse of glioma cells to chemotherapy is a topic of various studies, also from
mathematical point of view; cf. [3, 4, 5, 10].

In |2] we considered two mathematical models describing two different
mechanisms of acquiring drug resistance. The first model is based on the
ideas of Ollier et al. |7] exploiting the so-called log-kill mechanism. However,
Ollier et al. proposed their model to decide which type of resistance, pri-
mary or acquired, dominates in the case of temozolomide (TMZ) treatment
of gliomas, while we focused on acquired drug resistance (ADR) and this is
the reason that primary resistant cells were not included into our model. The
second model we studied was based on both the ideas presented by Ollier et
al. [7] and Pérez-Garcia et al. [3]. Moreover, we did not assume the specific
logistic type of the growth considered in [7] but included a general function
having logistic-type properties. It should be noted that this generalization
allows for the usage of the Gompertzian low of the tumour growth which is
probably more common for tumour models than the logistic growth (cf. [1]
for comparison of these models and the discussion on that topic).

In this paper we study the influence of the additional (i.e. explicit) death
term on the dynamics of the second model considered by us in |2]. We show
that this death term has regularizing properties, that is it causes that non-
trivial steady state is unique.

2. Mathematical model Proposing the model of ADR effect we follow
the ideas presented in |2]. We divide the population of tumour cells into three
subpopulations:

e proliferating cells that are sensitive to chemotherapy with a concentra-
tion P: R+ — R+,

e damaged cells with a concentration D: Ry — Ry ;
e cells having ADR with a concentration R: Ry — R;

where R, = [0, 4+00). Additionally, C: Ry — R, denotes a drug concentra-
tion.

In the original Ollier et al. and Pérez-Garcia et al. models the exact logistic
function with carrying capacity K common for the whole population V (t) =



M. Bodnar, U. Forys 153

P(t) + D(t) + R(t) is assumed as the underlying law of the growth. In the
models proposed by us the underlying law is more general, described by a
function f: Ry — R that could be either Gompertzian or of logistic type.

Following the ideas presented in [8] and then in [2] we have assumed that
the drug triggers a DNA damage and during the division a cell either enters
an apoptotic pathway or makes an attempt to repair the damage and tries to
divide. Moreover, the damage cannot be repaired and the cell eventually dies.
This is modelled by a logistic type term with a minus sign in the equation
for damaged cells. In this paper, we introduce an additional term expressing
explicit death of damaged cells. Adding this term we assume that damaged
cells dies not only when trying to divide but they may also undergo apoptosis.
Hence, the model we consider here reads

P = ppPf <P+§+R> —apC(t)P, (1a)
D= (1-2)apCH)P - L2Df <P+§+R> — upD, (1b)
R = prRf <W> + eapC(t)P, (1c)

where:
e pp is a proliferation rate of proliferating tumour cells;

e f: Ry — R is Lipschitz continuous in (0, +o0) and strictly decreasing,
f(1) = 0 and either f(0) =1 or lim f(z) = +o0, while z — zf(x) is
z—0

Lipchitz continuous in the right neighbourhood of 0 and lim+ xf(x) =
z—0
0;

e ap is a rate at which the drug destroys tumour cells, however a small
part of such cells mutate and acquire drug resistance with probability
&

e k is a mean number of division attempts before the cell death, and due
to the assumption, the death rate of damaged cells is the same as the
proliferation rate of undamaged cells divided by k;

e pr is a proliferation rate of resistant cells.

Notice that f(x) = 1 — z reflects the logistic growth, while f(z) = —Ilnx
reflects the Gompertzian one.

For simplification, in the analysis presented below we assume continuous
indefinite drug dosage, that is C(t) = const = C. Let us now make the
following change of variables

r=P/K, y=D/K, z=R/K, t=ppt, 2)
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and denote

a=apC/pp, p=up/pp, p=pr/ep, ~r=1/k, (3)

obtaining the dimensionless system

i=af(r+y+z)—anz, (4a)
g=1-e)axr—ryf(z+y+z) - py, (4b)
t=pzf(z+y+2)+ean, (4c)

where all parameters are positive and z(0) = xg > 0, y(0) = yg > 0, 2(0) =
zg > 0. Note that in this system the parameter « reflects the influence of
treatment. In the following Section we analyze System (4) and compare its
dynamics with the dynamics for u = 0 described in |2].

3. Analysis of the model Basic properties of System (4) are similar
to those presented in [2] for p = 0. Namely, unique solutions exist for all
nonnegative initial data, are nonnegative, and the set x+y+2 < 1 is invariant.

LEMMA 3.1 If 0 < 29 + yo + 20 < 1, then solutions of System (4) satisfy
0 < a(t) +y(t) + z(t) <1 for t > 0. Moreover, if xg + yo + 20 < 1, then
x(t) +y(t) + 2(t) < 1.

PrRoOOF Equation (4a) implies that if 29 = 0, then x(t) = 0 for every ¢. Hence,
x(t) > 0 for g > 0. Moreover, if we assume that there exists ¢ > 0 such that
y(t) = 0, then y(t) = (1 — e)ax(t) > 0 for z(¢t) > 0. This means that y(t)
is nonnegative for any nonnegative initial data. The same argument implies
nonnegativity of z.

Let us denote w(t) = x(t) + y(t) + 2(¢). From System (4) we obtain the
following equation for w:

W = (v — ky + pz) f(w) — py.

Properties of f imply f(1) = 0. Hence, if there exists ¢t > 0 such that w(t) = 1,
then w = —py < 0. Uniqueness of solutions of System (4) yield w(t) < 1.
Moreover, as y is positive for any positive x, we can change this inequality to
be strict. On the other hand, if z = 0, then we have the system of equations

y=—ryf(y+2z) —py, )

Z=pzf (y + z),
for which we also obtain positivity of y for positive yg and the same argument
yields the desired inequality. n

Lemma 3.1 above allows to consider System (4) in the invariant subspace
of the positive octant

P={(z,y,2) R} : z+y+2z<1}.
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Note that in P solutions of System (4) exist for all ¢ > 0. This property
is obvious for the logistic type of f. On the other hand, if f(z) — +oo as
x — 07, then we define the right-hand side of Eq. (4a) for z = 0 to be equal
to 0 in a continuous manner. Moreover, in P we have f(w) > 0, which will
be important in the model analysis.

3.1. Steady states Looking for steady states we easily see that from
Eq. (4c) there must be x = 0 and zf(w) = 0. Hence, at the steady state
either z = 2z =0 or z = 0 and w = 1. In both cases from the second equation
we get y(kf(w) + p) = 0, and therefore y = 0. Hence, we have exactly two
steady states of System (4):

1. Trivial steady state T' = (0,0,0);
2. Semitrivial steady state S = (0,0,1).

Calculating Jacobian matrix we obtain

J(l’, Y, Z) =
fw) +zf'(w) -« z f'(w) zf'(w)
(1 -¢g)a—ryf'(w) —rf(w)—ryf(w)—p —kyf'(w)
ea+ pzf'(w) pzf'(w) pf(w) + pzf'(w)

For the logistic type of f we can use this matrix to check local stability of both
steady states. On the other hand, for the Gompertzian type of this function
the derivative f'(0) could not be defined.

LeMMA 3.2 The trivial steady state 7' is unstable, while the semitrival state
S is a stable node, independently of the type of f.

PROOF First notice that the last variable z is strictly increasing inside P.
Hence, the state T repels solutions at least in z-direction, and therefore it is
unstable.

Let d = —f/(1) > 0. Then,

-« 0 0
J0,0,)=1(1-¢)aa —p 0
ea—pd —pd —pd

It is easy to see that all eigenvalues are real negative, so S is an unstable
node. n

Note that Lemma 3.2 yields that the death term —puy in the second equation
Eq. (4b) acts as a regularization of System (4). Clearly, from [2| we know that
for System (4) with p = 0 all points of the form (0,7,1 — 7), g € [0,1] are
steady states. Hence, in that case steady states are not isolated and standard
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tools do not work. If ;1 > 0, then the semitrivial steady state S is isolated
and attracts all solutions in P.

3.2. Global dynamics

THEOREM 3.3 In the invariant set P all solutions of System (4) converges to
(0,0,1).

PROOF Recall that in P there is f(w) > 0, and w € [0, 1], obviously. Let us
define

L(z,y,2) = Az +y+B(l—x—y—2), where A=1-¢/2, B=1-¢/4.

We show that L is a Lyapunov function. It is obvious that L(z,y,z) > 0 in
P and L(z,y,2z) =0iff z =0, y = 0 and w = 1. Calculating the derivative of
L along trajectories of System (4) we obtain

L(z,y,2) = A(xf(w) — ax) + (1 —e)ax — kyf(w) — py
— B(zf(w) — kyf(w) — py + pzf(w))
=(A-B)zf(w)+ ((1—¢)— A)az+ (B —1)(kf(w)y + pny)
— Bpz f(w)
€

= — Zaf(w) = Saw = Z(xf(w)y + ) — (1 - 5) p2f(w).
We see that L(z,y,2) < 0 and L(z,y,2) =0iff 2 =0, y = 0 and z = 0 or
w = 1. Moreover, L is of class C!, so from the Lyapunov-LaSalle Invariance
Principle we obtain that all solutions are attracted by the invariant subset
{r=0Ay=0A (2=0V w=1)} C P. However, the coordinate z is
increasing and the state (0,0, 0) is repelling, so the solution must be attracted
by the semitrivial state S. =

Note that the same function L could be also used to check global dynamics
of System (4) for p = 0. Clearly, again from the Lyapunov-LaSalle Invariance
Principle we obtain that all solutions are attracted by the invariant subset

{r =0, flw)=1} CP.

4. Numerical simulations In this section we present results of numer-
ical simulations. Taking parameters as estimated in [7] and [8], after rescal-
ing (2) we get the following nominal values

a=0414, p=12, p=>5.688, Kk=0.714, =0.1, (6)

where the value of € was taken arbitrarily. In the simulations presented below
values of the parameters are fixed at nominal levels, except for the parameter
which is examined.

In our simulations we focus on two issues:
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Figure 1: Phase portraits for System (5) with g = 0 (left top graph), x nominal
(right top graph), u = 0.1 (left bottom graph) and p = 1 (right bottom graph).

1. comparison between the dynamics of System (4) with 4 = 0 and the
nominal p = 5.688;

2. comparison of the dynamics of System (4) for changing values of the
parameters p, a and e.

To compare the dynamics of System (4) for p = 0 and p nominal, we
first look at the phase portrait of reduced asymptotic System (5). Figure 1
shows that the dynamics of System (5) for nominal p is very different when
compared to p = 0. Although in both cases the coordinate y is decreasing,
but for = 0 it decreases not so much, keeping values not less than yg — 0.2,
where yg > 0 is the initial value for this variable, while for nominal p this
coordinate decreases to O fast. For better illustration of the dependence of
asymptotic dynamics on pu, in Fig. 1 we present also the phase portraits for
@ = 0.1 and p = 1. Although for positive p all solutions converge to (0,1) in
the phase space, with smaller u the phase portrait is more similar to those
for p = 0. Figure 2 shows the comparison between the dynamics of the full
System (4) with nominal parameters (6) and p = 0.

The next three figures illustrate the dynamics of System (4) with chang-
ing p, a and e, while other parameters are fixed at nominal values. We see
that, independently of the magnitude of the parameters, solutions are quickly
attracted by the steady state S. The only difference is visible for small «;
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Figure 2: Comparison of solutions of System (4) with g = 5.688 and p = 0 for
various initial portions of normal cells.
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cf. Fig. 4. Figure 3 illustrates the dynamics of System (4) with changing p.
Figures 4 and 5 show similar dynamics with changing « and ¢, respectively.
However, we see that the parameter o influences the model dynamics more
than the others — recall that « reflects the influence of treatment. The smaller
the value of « is, the larger maximal level of the normal cells is achieved and
the longer time of convergence to the steady state is observed.

Although all solutions converge to the steady state S = (0,0, 1), as stated
in Theorem 3.3, it is interesting to compare the model dynamics and, in par-
ticular, the rate of the convergence for various values of the model parameters.
By the rate of convergence we mean the time at which the level of resistant
cells reaches 0.8, that is the total level of both proliferating and dead cells
does not exceed 0.2.

020 |
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§0.15
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g
£0.10
Q
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Q
©0.05 |

: : : 0

5 0 15 20

p

Figure 6: The dependence of time at which the level of resistant cells reaches 0.8
on the growth parameter p (left graph) for various values of p. In the right graph
we indicate the level of proliferating cells (solid lines, ), and damaged cells (dashed
lines, y) at the time when the resistant cells reach the level 0.8.

First, we investigate the influence of the growth ratio of resistant cells p
on the convergence rate. In order to do that we numerically find the solution
of System (4) with initial values (0.3,0,0) and calculate the time at which
the resistant cells attain the level 0.8. The results are presented in the left
graph of Fig. 6. It turns out that an increase in proliferation rate of resistant
cells increases the ratio of the convergence of solutions to the steady state.
On the other hand, the increase of the damaged cells parameter increases the
rate of the convergence as well. For small x4 (smaller than 1) this convergence
ratio changes rapidly, while for p > 1 the change is much slower. For values
greater than 5 the change in the convergence ratio is almost not noticeable,
so we do include in the picture only the case for y = 5.688, which is the value
used in [1].

On the right-hand side of Fig. 6 we illustrated the value of x (solid lines)
and y (dashed lines) at time when the resistant cells reach the level 0.8. Note
that this dependence does not need to be monotonic in p.

The dependence of the convergence rate on the drug efficiency parameter
« is very similar when compared to the left-hand side graph of Fig. 7. On the
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Figure 7: The dependence of time at which the level of resistant cells reaches 0.8
on the growth parameter o (left graph) for various values of u. In the right graph
we indicate the level of proliferating cells (solid lines, =), and damaged cells (dashed
lines, y) at the time when the resistant cells reach the level 0.8.
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Figure 8: The dependence of time at which the level of resistant cells reaches 0.8
on the probability of acquiring of drug resistance ¢ (left graph) for various values of
. In the right graph we indicate the level of proliferating cells (solid lines, x), and
damaged cells (dashed lines, y) at the time when the resistant cells reach the level
0.8.

other hand, the level of proliferating cells decreases while the level of damaged
cells increases with the increase of a.

The dependence on the probability of acquiring of drug resistance ¢ is not
surprising. The time of acquiring drug resistance by 80% of cells decreases
when the mutation parameter increases. The number of proliferating cells
increases while the number of damaged cells decreases with an increase of the
mutation parameter ¢; cf. Fig. 8.

5. Conclusions In this paper we studied a mathematical model of ac-
quiring drug resistance by low grade glioma cells. We combined the ideas
presented in |7] and [3]. We complemented the model with a term reflecting
additional death of damaged cells and studied the influence of it on the model
dynamics. It turned out that in the considered case densities of normal (drug
sensitive) and damaged cells converge to 0, while the density of drug resistant
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cells converges to the carrying capacity. We proved that fact by constructing
an appropriate Lyapunov functional. Numerical simulations revealed that the
rate of the convergence to the steady state depends in a monotonic way on
the growth rate of resistant cells, the death rate of damaged cells and on the
drug efficiency.
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O modelowaniu lekoopornosci dla glejakéw niskiego stopnia
Marek Bodnar, Urszula Fory$

Streszczenie W artykule analizujemy nowa wersje modelu opisujacego efekt nabytej
lekoopornosci, ktory zaproponowaliémy w pracy Bodnar & Forys (2017). Oryginalny
model powstal w oparciu o idee przedstawione w artykule Pérez-Garcia 7 in. (2015).
W biezacej pracy wlaczamy do modelu dodatkowy skladnik opisujacy bezpogred-
nia $miertelno$¢ komorek uszkodzonych. Okazuje sie, ze dynamika tak zmienionego
modelu jest analogiczna, jak w przypadku drugiego modelu rozwazanego przez nas,
ktory z kolei powstal w oparciu o idee Olliera ¢ in. (2017). Dynamika modelu zo-
stala przeanalizowana dla parametréw odzwierciedlajacych wzrost glejaka niskiego
stopnia, przy czym analizowaliSmy wplyw zmian poszczegblnych parametréw na te
dynamike.

Klasyfikacja tematyczna AMS (2010): Primary: 34C60 ; Secondary: 92B99.

Stowa kluczowe: lekoodpornosé, modelowanie matematyczne, globalna stabilnosé.


http://dx.doi.org/10.1093/imammb/dqu009
http://wydawnictwa.ptm.org.pl/index.php/matematyka-stosowana/article/viewArticle/6487

164

Some remarks on modelling of drug resistance for LGGs

Marek Bodnar® pracuje na Wydziale Matematyki, Informatyki
i Mechaniki Uniwersytetu Warszawskiego w Zakladzie Bioma-
tematyki i Teorii Gier. Od ponad 15 lat zajmuje sie modelowa-
niem matematycznym proceséw biologicznych i medycznych ze
szczegblnym uwzglednieniem proceséw nowtworowych. Badane
modele sa przewaznie ukladami nieliniowych réwnan réznicz-
kowych z op6éznieniem.

“References to his research papers are listed in zbMath under ai:Bodnar.Marek, in
MathSciNet under ID:663971.

T

MAREK BoDNAR

UNIVERSITY OF WARSAW

INSTITUTE OF APPLIED MATHEMATICS AND MECHANICS
BanacHA 2, 02-097 WaARsaw

E-mail: mbodnar@mimuw.edu.pl

UrszuLa Fory$

Urszula Forys is a professor of mathematics at the University of
Warsaw. She is an expert in mathematical modelling of biome-
dical phenomena, mainly related to tumour growth and treat-
ment, and eco-epidemiological modelling. However, she is also
interested in other applications, like modelling dyadic interac-
tions, and lastly — neuroscience. She wrote a text-book “Ma-
tematyka w biologii” which is now one of the most important
basis for courses of biomathematics in Polish universities.

UNIVERSITY OF WARSAW

INSTITUTE OF APPLIED MATHEMATICS AND MECHANICS
BanacHA 2, 02-097 WARSAW

E-mail: urszula@mimuw. edu.pl

Communicated by: Mirostaw Lachowicz

(Received: 4th of June 2019; revised: 8th of August 2019)


https://zbmath.org/authors/?q=ai:bodnar.marek
http://www.ams.org/mathscinet/search/author.html?mrauthid=663971
https://orcid.org/0000-0001-5571-2476
https://orcid.org/0000-0002-6198-3667

