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Abstract In this work, we present the results of our study over the expected lifetime
of the patients diagnosed with relapsed squamous cell lung cancer (SCC) treated by
cis-platinum. We developed the mathematical model which consist of cells sensi-
tive and resistant to cis-platinum. The performed simulations suggest that the best
strategy to prolong the patient lifetime after diagnosis is to keep the sensitive cells
subpopulation at the constant level instead of killing all of them.
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1. Introduction Many mathematical models of cancer growth were pro-
posed in the past years and reviewed by Enderling and A.J. Chaplain(2014).
Most of them describe the early cancer development, from a single cell, and
only some describe relapsed and late-stage tumor growth [8, 10]. Also, most
of the models focus on describing the chemotherapeutic treatment, where the
goal is the to cure the patient.

In real cases, in the time of relapse, tumor consists of sensitive and resis-
tant cells, where the vast majority of the cells are sensitive [13]. Moreover,
both cancer cell types compete for oxygen and nutrients [3]. Because of that,
the less sensitive cells in the cancer cells population are, the more oxygen and
nutrients are available for the resistant subpopulation and vice versa.

Following work of [1], we investigate here the tumor progression in the
case of the resistant, late-stage tumor. We chose relapsed squamous cell lung
cancer (SCC), and modeled progression and chemotherapeutic treatment with
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cisplatin [15]. Here, we focus on modeling SCC patients treatment in the case
when cure is impossible, and the goal is to prolong the patient's survival.

2. Methods

Cisplatin resistant cells are growing slower than the cisplatin sensitive
ones [5]. To model the growth of cells as well as drug impact on the cancer
cells properly, we proposed the following mathematical model:

2.1. Model structure. We constructed the mathematical model under
the assumption that a lung cancer patient is diagnosed at an advanced stage
with a tumor which is already resistant to cisplatin chemotherapy.

The model is governed by the following assumptions:

• tumor is composed of cisplatin-sensitive and cisplatin-resistant cells,

• at the time of recurrence, tumor is composed of Mrelapse cells, where
σ · Mrelapse cells are cisplatin-resistant and (1 − σ)Mrelapse cells are
cisplatin-sensitive,

• both types of cells growth are according to continuous Gompertzian
growth dynamics with growth rates λs and λr, respectively,

• the amount of cisplatin-resistant cells is below the detection threshold
and thus σ = 0.01 for nominal parameter values,

• the resources and space are limited,

• a patient dies when tumor burden reaches Mdeath cells,

• cisplatin-sensitive and cisplatin-resistant cells compete with each other
for space and resources, and thus they are modeled accordingly with a
coe�cient of competition advantage, which equals a,

• cisplatin induces death of chemosensitive cells according to Norton-
Simon law which states that the rate of tumor regression during chemother-
apy is proportional to that of the unperturbed tumor growth [2],

• toxicity constraints are not included in the model.

The second assumption requires a further comment. There are two main
mechanisms of resistance to cisplatin in lung cancer: the primary and sec-
ondary one [7]. Here, we focus only on the primary drug resistance and thus
consider only those lung cancer patients who are cisplatin-resistant at the
onset of treatment. Indeed, it is believed that the primary drug resistance in
lung cancer is the dominant mechanism of cisplatin resistance in lung can-
cer [4, 12]. Thus, we modeled cisplatin resistance accordingly as follows. At
the diagnosis, there is a small fraction of cisplatin-resistant cells, which is
undetectable (<= 109 cells). It means that abundance of cisplatin-resistant
cells is below standard exome or genome sequencing techniques and is de-
tectable only through single-cell measurements such as ultra deep single-cell
sequencing [14].
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The above assumptions lead to the following system of ordinary di�eren-
tial equations:

d
dtxs = −λsxs ln

(
xs+axr

K

)
(1− C)

d
dtxr = −λrxr ln

(
xr+(1−a)xs

K

)
,

(1)

where xs and xr are the number of cisplatin-sensitive and cisplatin-resistant
cells.

Cisplatin concentration (C) is given in a.u. This form of cisplatin intro-
duction allows for proper simulation of the drug doses which are too small to
reduce the sensitive cells population growth (C < 1). Doses which are high
enough to stop the population growth completely (C = 1), and �nally high
enough to to reduce its population size (C > 1).

2.2. Model parametrization All model parameters are presented in
Table 1. Most of the parameters are taken from previous studies, and the
rest are assumed based on the current biological knowledge. Importantly, the
growth rates of cisplatin-sensitive and cisplatin-resistant cells are �tted to
volumetric data presented in [9], where the doubling time of SCC cells is
estimated.

Table 1: Values of parameters of the model described with Eq. (1)
Symbol Description Value Reference

λs growth rate of sensitive cells 0.023[1/day] taken from [9]
λr growth rate of resistant cells 0.0116[1/day] assumed
K carrying capacity 1012 taken from [16]
a coe�cient of competition ad-

vantage
0-1 varied

Mrelapse tumor burden at diagnosis 1011 taken from [9]
Mdeath lethal tumor burden 0.5 · 1012 taken from [10]
σ fraction of resistant cells at

diagnosis
0.01 assumed

C cisplatin concentra-
tion [A.U.]

1 estimated

3. Results. In the case of no drug application (C = 0), the system is in
the steady state when derivatives from Eq. (1) are equal 0. It is true when xs
and xr are equal to 0 which gives the trivial solution:

xr0 = 0

xs0 = 0.
(2)
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or

ln

(
xs + a · xr

K

)
= 0

ln

(
xr + (1− a) · xs

K

)
= 0,

(3)

which means that

xs + a · xr
K

= 1

xr + (1− a) · xs
K

= 1.

(4)

Calculating xs from the �rst line equation and putting it to the second one
we may receive formulas for both xs0 and xr0 in the steady state as follows:

xr0 = K · a
a2−a+1

xs0 = K · 1−a
a2−a+1

,
(5)

since a ∈< 0, 1 >, xr0 ≥ 0, and xs0 ≥ 0. One can notice that when a = 0,
xr0 = 0 and xs0 = K and with a = 1, xs0 = 0 and xr0 = K, thus coe�cient
a may be considered as the percentage of the resistant cells advantage over
the sensitive cells in the access to resources and space [14]. One may notice
that with a = 0.5 the steady state for both xs0 and xr0 is equal 2

3 ·K, thus
xs0 + xr0 may theoretically be above K but one has to remember that when
the total population of cancer cells xs +xr = 0.5 ·1012 i.e. 1

2 ·K a patient dies
and simulation stops. So xs+xr is always below K. In the case of the therapy,
we have another solution in which (C = 0). In this state, the sensitive cells
population is kept at the constant level but as long as it is far from K and a
is high enough the resistant cells population grows to the level given by Eq.
5.

From the model structure, one may conclude that the therapy results will
depend not only on the drug dose but also on the competition advantage of
the resistant cells over the sensitive ones [11]. To illustrate this we simulated
our model with various values of C and a and performed heatmap presented
in Fig. 1.

For the small doses of C (C < 1) with the growing dosage of cisplatin, the
expected time of survival also grows, while the impact of a value is negligible.
For such low doses, the cisplatin only slows down the growth rate of the sensi-
tive cells (see Fig. 2 top-right panel), but as a whole cancer population grows
rather fast no matter which subpopulation has the competition advantage,
thus the short lifetime of the patients (t < 300 days).

Surprisingly, for the C > 1 and a ∈ (0, 1) one can notice that the higher
dose of the drug, the shorter lifetime of the patients. The e�ect is more visible
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Figure 1: Heat-map of the patient life time after the diagnosis as a function
of drug dose C and competition coe�cient between the resistant and sensi-
tive cell a (left). The local sensitivity analysis for nominal parameters values
(Table 2.2) and two values of the competition (right).

for the lower a, i.e., when sensitive cells have higher competition advantage
over the resistant ones (Fig. 3). The higher advantage of one subpopulation,
fewer resources and space are available for the second one and thus slower the
growth or even shortage of the second subpopulation may be observed. For
the C > 1 derivative of xs from Eq. 1 has a negative sign; thus, the sensitive
subpopulation shrinks. The shrinking is faster for higher C, which means that
more resources and space is available for the growth of resistant cells, and as
can be noticed in Eq. 1 the xr grows faster (Fig. 3 down-right). As a result,
the total cancer cells population will reach the death threshold faster, and
by that patient's lifetime is shorter with the higher drug doses. One can also
notice that with �xed drug dose, for the smaller a, the lifetime is longer (Fig.
2). It is because when sensitive cells have an advantage over the resistant
ones, even the small fraction of sensitive cells uses so many resources that the
resistant subpopulation grows slower. This e�ect may also be noticed in the
second column of Fig. 2, where simulation stops when the total number of
cancer cells reach the given threshold of 0.5 · 1012 cells, which is the indicator
of the patient's death.

Next, we performed a sensitivity analysis to investigate which parameters
in�uence the patient's survival (time interval from relapse to death) by using
the following formula to calculate the sensitivity coe�cient:

Sj ≈=
∂Y (pj + ∆pj , t)− Y (pj , t)

∆pj
, (6)
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Figure 2: The time life (left column) and cancer subpopulation sizes (right
column) of the patients treated with cis-platinum dose of C = 1a.u. for various
values of competition coe�cient a. First row, a = 0, second row a = 0.5, third
row a = 1.

where Y is patient's survival and pj is j parameter. Interestingly, when a is
small, we can observe that by increasingMrelapse, we can increase the patient's
survival. That is, by delaying the chemotherapy, we can improve the patient's
survival. However, for high values of a, we observe the intuitive result that the
higher the tumor burden at relapse is, the smaller is the chance of patient's
survival.

The longest lifetime may be observed for the C = 1 and small a (Figs
2 and 3 left column). In fact, when we start with the xs and xr such as
xs+xr < 0.5 ·1012, i.e., cancer size is below the death threshold, and sensitive
cells use most of the oxygen and nutrients, the best strategy to prolong the
patients life is to keep the sensitive cells subpopulation at the constant level. It
assures that the resistant subpopulation will keep in check sensitive one, and
by that whole cancer will grow as slow as possible. To better understand the
results, one should keep in mind that because of the form of Eq. 1 and death
threshold which is set at the level of 1

2 · K, it is not possible to completely
stop or reverse the resistant subpopulation growth, which is consistent with
the medical knowledge.

We can observe the interesting solution for the special cases when a = 0
and a = 1. For a = 0 in the case without the drug and death-related constraint
xr0 = 0 and xs0 = K, because sensitive subpopulation takes all the resources.
In the case with the drug, for C high enough to cause sensitive subpopulation
to shrink the xs goes to 0 and the restrictions over the xr growth do not hold;
thus xr proliferates rapidly (Fig. 2). The higher cisplatin dose, the faster
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Figure 3: The time life (left column) and cancer subpopulation sizes (right
column) of the patients treated with cis-platinum dose of 0.8 a.u. (�rst row)
and 1.2 a.u. (second row) for competition coe�cient a = 0.2.

shrinking of the xs and by that the faster growth of xr thus, we may observe
a dramatic shortage of the patient's life. For a = 1 all the resources are used
by the resistant cells subpopulation so, as long as sensitive cells population
do not grow (C ≥ 1) the patient's lifetime does not depend on the drug dose
and is restricted only by the rate of the resistant subpopulation growth.

4. Conclusion. In the presented paper, we showed how the patients
lifetime, after the diagnosis of relapsed squamous cell lung cancer, treated with
cisplatin, depends on the drug dose. We considered the cancer composition of
sensitive and resistant cells, and the competition advantage of resistant cells
over sensitive was a key parameter of our model. Our results suggest that the
best strategy during the treatment is not to kill all of the sensitive cells but
rather keep them at a constant level. It is especially visible in the cases when
the sensitive cells have an advantage over the resistant ones in accessing the
resources and space. It may be interesting to study how the observed e�ect
depends on the therapy scheduling and cancer composition at the detection
time. It will be the subject of further research.
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Streszczenie W niniejszej pracy przedstawiamy wyniki naszych bada« nad prze-
widywanym czasem »ycia pacjentów ze zdiagnozowanym nawrotowym rakiem pªa-
skonabªonkowym pªuc, który jest podtypem niedrobnokomórkowego raka pªuc, le-
czonych cis-platyn¡. Opracowali±my model matematyczny skªadaj¡cy si¦ z komó-
rek wra»liwych i odpornych na cis-platyn¦. Przeprowadzone symulacje sugeruj¡, »e
najlepsz¡ strategi¡ przedªu»enia czasu »ycia pacjentów jest utrzymanie subpopula-
cji komórek wra»liwych na staªym poziomie zamiast doprowadzania do ±mierci ich
wszystkich.

2010 Klasy�kacja tematyczna AMS (2010): 92B05.

Sªowa kluczowe: optymalizacja terapii, cis-platyna, wzrost nowotworów, odporno±¢
na lek.
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