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Analysis of delay di�erential equations modelling
tumor growth with angiogenesis

Abstract Angiogenesis is a crucial process for the survival of cancer cells. Due to

the rapid growth of the tumor, blood vessels delivering oxygen become insu�cient,

which leads to hypoxic regions inside the tumor and therefore death of the cells.

Cancer cells deal with this problem by stimulating the growth of new vessels, thus

providing the necessary amount of oxygen. The understanding of this process al-

lowed to develop antiangiogenic therapy, which attack tumor vasculature instead of

the cells themselves. It is believed that an e�ective treatment combines antiangio-

genic factors with radio- and chemotherapy. Our aim is to construct a mathematical

model describing this process, which would further allow to select an optimal dosage.

In this paper we propose a delay di�erential model of tumor growth and perform its

preliminary analysis. We then introduce a method, which enables further study of

this model. The results are illustrated by numerical simulations.
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1. Introduction. Angiogenesis is the process of growing new blood ves-
sels from pre-existing ones. Many proteins participate in this process, stimu-
lating or inhibiting the growth. One of the key regulators of angiogenesis is
the vascular endothelial growth factor (VEGF). As a result of its production,
the cells on the tip of the vessel migrate and the cells in the stalk proliferate,
causing the blood vessel to grow [4].

This process naturally occurs for example during healing wounds. How-
ever, it also becomes crucial in tumor growth. As the tumor volume increases
rapidly, cancer cells struggle with oxygen shortage. Hypoxia is however one of
the factors that causes angiogenesis. The proteins responsible for this process
are hypoxia induced factors (HIF) [7], consisting of subunits HIFα and HIFβ.
Their function is described in Fig. 1.

The understanding of this process is crucial to develop an e�ective antian-
giogenic treatment as a less invasive alternative to radio- and chemotherapy.
Instead of destroying cancer cells directly, one can destroy only the vascula-
ture of a tumor or just inhibit the vessel growth, and therefore prevent the
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Figure 1: Schematic illustration of angiogenesis. At the normal oxygen level,
HIFα gets hydroxylated by PHD proteins and then degraded. In case of the
oxygen shortage, HIFα binds with HIFβ and activates proangiogenic factors,
including VEGF. The latter causes the tip cells to migrate to hypoxic regions,
while stimulating proliferation of the stalk cells.

tumor from growing. One of the used medicines is bevacizumab, which is an
antibody to VEGF [8]. Other treatments include blocking angiogenic factors
or activation of inhibitors.

2. Model derivation. The idea is partially based on a model introduced
by Hahnfeldt et al. [3] using concepts proposed in [1, 2]. We assume that the
tumor growth rate depends on the e�ective vascular density, which re�ects
the availability of nutrients and oxygen. We limit our study to time when a
necrotic core is not formed, however some tumor cells have insu�cient oxygen
supply and become hypoxic. Thus, we divide tumor cells into two populations:
normal (we denote by P the size of this population) and hypoxic (the size
of this population is H). We omit the inhibiting factors and assume that the
change in the vasculature (denoted by Q) relies on the amount of hypoxic cells
with some delay. We also suppose that existing vasculature is large enough
to respond to angiogenic signals, and � in the absence of hypoxic cells � the
vasculature does not change. We propose the following tumor dynamics

Ṗ = ρP (E)P − f1(E)P + f2(E)H − sP (t)P,
Ḣ = ρH(E)H + f1(E)P − f2(E)H − sH(t)H,

Q̇ =
b

1 + u(t)
H(t− τ)− sQ(t)Q,

(1)
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where E = Q
P+H is understood as the e�ciency of vasculature. Functions

ρP and ρH are growth rates of hypoxic and normal cells, respectively. A
function u(t) models antiangiogenic treatment (decreasing the vasculature
growth rate) while functions sP , sH and sQ combine the in�uence of chemo-
and radiotherapy and natural death rates of cancer and blood cells. Functions
f1 and f2 describe the �ux between normal and hypoxic cells, depending
on the e�ciency. As the tumor vasculature may become disorganized and
ine�ective [5], we assume the existence of an optimal vasculature e�ciency
Eopt <∞. Thus we suppose f1 and f2 are continuous functions satisfying

• f1(0) = a1 > 0, f1(Eopt) = 0, limE→∞ f1(E) ≤ a1, f1 is decreasing on
(0, Eopt) and increasing on (Eopt,+∞),

• f2(0) = 0, f2(Eopt) = a2, limE→∞, f2(E) ≤ a2 > 0, f2 is increasing on
(0, Eopt) and decreasing on (Eopt,+∞).

The examples of such functions are illustrated in Fig. 2.

E
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E∗

a1

0 E

f2
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Figure 2: Examples of functions f1 i f2

In this paper we consider two simpli�cations of a general model (1). First,
we analyse the model without treatment, we assume constant growth rates of
P and H and zero death rates. Therefore, we study the following system of
equations

Ṗ = ρPP − f1(E)P + f2(E)H,

Ḣ = ρHH + f1(E)P − f2(E)H,

Q̇ = bH(t− τ).
(2)

We show that the dynamics of model (2) is quite complex and can substan-
tially di�er from the model in which the di�erence between hypoxic and non-
hypoxic cells is not taken into account. We illustrate this considering another
simpli�cation of model (1) in which we do not distinguish between normal
and hypoxic cells. We assume that the tumor growth rate is a continuous
increasing function f such that f(0) = 0. Moreover, in this model we also
include explicitly death of tumour cells and degradation of vessels with rates
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a and µ, respectively. Then, we get the following system of equations

Ṗ = f(E)P − aP,
Q̇ = bP (t− τ)− µQ.

(3)

3. Properties of solutions. First of all we prove that unique solutions
to (2) exist and are non-negative for the non-negative initial function.

Theorem 3.1 If f1, f2 ∈ C1, then for any initial function from C([−τ, 0],R3
+)

there exists a unique non-negative solution to (2) de�ned for all t ≥ 0.

Proof The right-hand side of (2) is of C1 class, thus unique solutions exist
locally. On the other hand, the right-hand side of (2) is non-negative on the
boundary of R3

+ and thus solutions are non-negative (see [6, Th. 3.4]). The
global existence is easily proved by the step method. In fact, if the solution
to system (2) is de�ned for t ∈ [0, nτ ], then the function Q can be expressed
as an integral of the known function H (we need value of H on the interval
[(n− 1)τ, nτ ]) and it is bounded. Thus, the �rst two equations of system (2)
can be treated as a system of non-autonomous ODEs. Because of assumptions
on functions f1 and f2, the right hand side of this system is globally Lipschitz
and thus its solutions are also well de�ned on the whole interval [nτ, (n+1)τ ].
Thus, mathematical induction yields that we can extend the solutions for each
[nτ, (n+ 1)τ ], for n ∈ N. �

An analogous argument allows us to state

Theorem 3.2 If f ∈ C1, then for any initial function from C([−τ, 0],R2
+)

there exists a unique non-negative solution to (3) de�ned for all t ≥ 0.

3.1. The analysis of a simpli�ed model. First, we analyze system (3).

Proposition 3.3 If sup
E≥0

f(E) < a, then all solutions to system (3) with

non-negative initial data converge to (0, 0).

Proof The inequality sup
E≥0

f(E) < a implies that Ṗ < −δP for some δ > 0.

Thus, P (t) < P (0)e−δt → 0 as t → +∞. We can choose δ 6= µ. Then, for
t > τ for the second equation of (3) we get

Q(t) = Q(0)e−µt + be−µt
∫ t

0
eµsP (s− τ)ds

= Q(0)e−µt + be−µt
∫ τ

0
eµsP (s− τ)ds+ be−µt

∫ t

τ
eµsP (s− τ)ds

< Q(0)e−µt + beµ(τ−t)
∫ 0

−τ
eµyP (y)dy +

bP (0)

µ− δ

(
eδ(τ−t) − eµ(τ−t)

)
,

therefore Q(t)→ 0 as t→ +∞. �
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Thus, we assume further that sup f(E) > a. Besides from a non-generic
situation where f( bµ) = a, system (3) does not have positive steady states.
However, if we write an equation for E, then we may solve the �rst equation
of (3) obtaining P as a function of E and then consider only the equation for
E. It turns out, that this equation has a steady state E∗, and if E is equal to
its value, then the cells grow exponentially with a rate f(E∗)−a. Calculating
the derivative of E, we get

Ė = b
P (t− τ)
P (t)

− (α+ f(E))E, (4)

where α = µ− a. Integrating the �rst equation of (3), we have

P (t) = P (0) exp

(∫ t

0

(
f(E(s))− a

)
ds

)
.

Introducing it into (4) we get

Ė = b exp

(
−
∫ t

t−τ

(
f(E(s))− a

)
ds

)
−
(
α+ f(E)

)
E. (5)

This equation is valid for t ≥ τ , as the function P|[τ,0) is unknown.

Proposition 3.4 Equation (5) has exactly one positive steady state E∗,
which satis�es

be−(f(E∗)−a)τ = (α+ f(E∗))E∗ (6)

Proof It follows immediately from the form of equation (5) that if E∗ is
a steady state of (5) then it solves equation (6). It remains to prove that
equation (6) has exactly one positive solution.

The left-hand side of (6) is a positive decreasing function of E∗. On the
other hand, the right-hand side is increasing, it is equal to 0 for E∗ = 0 and
tends to +∞ as E∗ → +∞. Therefore, there exists exactly one E∗ satisfying
(6). �

Now we prove that the unique steady state of (5) is locally asymptotically
stable.

Theorem 3.5 If f ∈ C1, the steady state E∗ of (5) is locally asymptotically
stable for all τ ≥ 0.

Proof For τ = 0, equation (5) takes the form

Ė = b− (α+ f(E))E. (7)

Because α + f(E∗) > 0 and f is increasing, the right-hand of (7) is positive
for E < E∗ and it is negative for E > E∗. Thus, the steady state is stable.
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For τ > 0 we linearise (5) around the steady state E∗. Substituting Ẽ =
E−E∗, then expanding the right-hand side of (5) into a Taylor series around
E∗, and omitting higher order terms we get

˙̃E = be−(f(E∗)−a)τ

(
1− f ′(E∗)

∫ t

t−τ
Ẽds

)
− (α+ f(E∗))E∗ − (α+ f ′(E∗))Ẽ.

Using (6), we can write the equation for ˙̃E as

˙̃E = −a0

∫ t

t−τ
Ẽds− a1Ẽ,

where a1 = α+ f(E∗)+ f
′(E∗)E∗ and a0 = f ′(E∗)(α+ f(E∗))E∗. By putting

Ẽ(t) = Ẽ(0)eλt, we get the characteristic function

W (λ) = λ+ a1 +
a0

λ
(1− e−λτ ).

We show that the stability change is not possible. If the steady state is un-
stable for some τ > 0, then there would exist ω > 0 such that λ = iω would
be a zero of the characteristic function W .

For ω > 0, the equation W (iω) = 0 is equivalent to

−ω2 + ia1ω + a0 = a0e
−iωτ .

By taking modulus of both sides and dividing by ω2, we get

ω2 = 2a0 − a2
1 = −f ′(E∗)2E2

∗ − (α+ f(E∗))
2 < 0.

Hence, there is no solution for ω, therefore critical τ does not exist and a
unique steady state is stable for all τ ≥ 0. �

3.2. Asymptotic dynamics of system (2). System (2) has only one
non-negative steady state (0, 0, 0). This trivial steady state is unstable. In-
deed, as d

dt(P +H) = ρPP + ρHH, the sum of P +H is a strictly increasing
function unless both variables are zero. Moreover, Q is also strictly increas-
ing unless H(t − τ) = 0. Thus, we proceed here as in the case of system (3)
to eliminate variable P . First, we change variables taking E = Q

P+H and

r = H
P+H . We have

ṙ =
ḢP − ṖH
(P +H)2

=

(
r

1−rρH + f1(E)− r
1−rf2(E)

)
P 2 −

(
ρP − f1(E) + r

1−rf2(E)
)
P r

1−rP

P 2

(1−r)2

= r(1− r)(ρH − ρP ) + ((1− r)2 + r(1− r))f1(E)− (r(1− r) + r2)f2(E).
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and

Ė =
Q̇(P +H)− (Ṗ + Ḣ)Q

(P +H)2

=
b r(t−τ)

1−r(t−τ)P (t− τ)
P (t)

1−r(t)

−

(
ρP + r

1−rρH

)
P

P
1−r

E

Finally, we get

Ṗ = G(r, E)P,

ṙ = (1− r)f1(E)− rf2(E)− ρ∆r(1− r),

Ė = b
r(t− τ)(1− r(t))

1− r(t− τ)
P (t− τ)
P (t)

− (ρP − ρ∆r)E,

(8)

where G(r, E) = ρP − f1(E) + f2(E) r
1−r , ρ∆ = ρP − ρH > 0. By integrating

the equation for P , we get

P (t) = P (0) exp

(
−
∫ t

0
G(r(s), E(s))ds

)
,

and introducing it into the last equation of system (8) we get for t ≥ τ

ṙ = (1− r)f1(E)− rf2(E)− ρ∆r(1− r),

Ė = b
r(t− τ)(1− r(t))

1− r(t− τ)
exp

(
−
∫ t

t−τ
G(r, E)ds

)
− (ρP − ρ∆r)E.

(9)

3.2.1. Existence of steady states. If (r∗, E∗) is a steady state of system
(9), then it satis�es

f1(E∗)(1− r∗)− ρ∆r∗(1− r∗)− f2(E∗)r∗ = 0, (10)

and

E∗ =
br∗e

−(ρP−ρ∆r∗)τ

ρP − ρ∆r∗
. (11)

We can determine the existence of steady states under some constraints on
f1 and f2.

Theorem 3.6 If f1(E) + f2(E) = 1 for all E ≥ 0, then there exists a steady
state of system (9). Moreover, if b

ρH
exp(−ρHτ) ≤ Eopt, the steady state

(r∗, E∗) is unique.

Proof If f1(E) + f2(E) = 1, then (10) is equivalent to

f2

(
E∗
)
− (1− r∗)(1− ρ∆r∗) = 0. (12)
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Let E∗ be a function of r∗, de�ned by (11). It is obvious that this function is
continuous. For r∗ = 0 the left-hand side of (12) is negative. Indeed, we have

f2

(
E∗(0)

)
− (1− r∗)(1− ρ∆r∗) = f2(0)− 1 = −1.

On the other hand, E∗(1) > 0, thus for r∗ = 1 we get

f2

(
E∗(1)

)
− (1− r∗)(1− ρ∆r∗) = f2

(
E∗(1)

)
> 0.

Hence, there exists at least one solution to (12) and thus at least one positive
steady state of (9).

Note that for G∗ = G(r∗, E∗),

d

dr∗
E∗ = b

e−G∗τ (1 + ρ∆τr∗)G∗ + ρ∆r∗e
−G∗τ

G2
∗

> 0,

therefore E∗ is an increasing function of r∗. If E∗(1) =
be−ρHτ

ρH
< Eopt, then

f2(E∗) is increasing for 0 < r∗ < 1. In this case f2(E∗) crosses (1 − r∗)(1 −
ρ∆r∗) at exactly one point, which gives a unique steady state of (9). �

4. Numerical simulations and conclusions. We study the qualita-
tive di�erences of solutions to system (9) and equation (5) comparing the
dynamics of vasculature e�ciency E. In the simulations we choose the value
of the parameter b as in Hahnfeldt et al.(1999). The solution to (5) is oscil-

Figure 3: Simulations of (5) and (9) for a = µ = 0.5, b = 5.85, τ = 10 and
ρP = 1, ρ∆ = 0.3. In this case both solutions for E tend to their stationary
states.

lating around the steady state E∗ with amplitude converging to 0, compare
left-hand side panel of Fig. 3. On the other hand, the dynamics of (9) is richer
and the behaviour of solutions depends strongly on the model's parameters.
The solution to (9) may oscillate around the steady state with damping am-
plitude and converges eventually to the steady state (compare the right-hand
side panel of Fig. 3). However, for other sets of parameters solutions might
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Figure 4: For ρP = 0.5 and ρ∆ = 0.25 we have two locally stable steady states
for τ = 0 and one unstable state for τ = 15.

exhibit non-vanishing and irregular oscillations, compare the right-hand side
panel of Fig. 4.

The dynamics of the system (9) changes signi�cantly with increasing τ .
Theorem 3.6 implies that if the system has multiple steady states for τ = 0,
they stick together into a unique steady state for su�ciently large τ . Fig. 4
and 5 illustrate di�erent behaviours of solutions to system (9). In Fig. 4 we
can see a situation, where there are two locally stable steady states for τ = 0
and one unstable state for large τ . In Fig. 5 w can compare the phase portrait
for τ = 0 with the solutions for nonzero delay.

Figure 5: Di�erences in the dynamics of (9) with τ = 0 and τ = 1.

In this paper we studied models of tumor growth that was constructed
on the basis of ideas proposed by Hahnfeldt et al.(1999). We compared the
dynamics of the model in which we distinguished hypoxic cells with a sim-
pli�ed model in which we did not consider two tumor cell populations. It
turns out that solutions to the simpli�ed model converge to a unique steady
state, while the other model exhibits much richer dynamics. There may exist
multiple steady states, their existence and stability depend also on the delay
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parameter. The division rates of the cell population play a signi�cant role for
the model dynamics. Further analysis of the model will enable us to partially
determine the conditions for stability of the steady states of system (9).
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Analiza ukªadu równa« ró»niczkowych z opó¹nieniem

modeluj¡cego nowotwór z uwzgl¦dnieniem procesu angiogenezy

Maja Szlenk, Marek Bodnar

Streszczenie Angiogeneza jest procesem szczególnie istotnym w przypadku komó-

rek nowotworowych. Na skutek gwaªtownego wzrostu obj¦to±ci guza, naczynia krwio-

no±ne zaopatruj¡ce nowotwór staj¡ si¦ niewystarczaj¡ce. Powoduje to tworzenie si¦

niedotlenionych obszarów wewn¡trz guza, a w konsekwencji obumarcie komórek.

Komórki rakowe przeciwdziaªaj¡ temu problemowi, stymuluj¡c rozrost nowych na-

czy« krwiono±nych i zapewniaj¡c tym samym dopªyw tlenu. Poznanie tego procesu

pozwoliªo na opracowanie terapii antyangiogenicznej, atakuj¡cej naczynia zaopatru-

j¡ce nowotwór zamiast samych komórek. W tym artykule proponujemy model ró»-

niczkowy z opó¹nieniem opisuj¡cy wzrost guza, uwzgl¦dniaj¡cy proces angiogenezy.

Przeprowadzamy jego wst¦pn¡ analiz¦ oraz formuªujemy kilka wniosków dot. stabil-

no±ci rozwi¡za«. Numerycznie symulacje ilustruj¡ uzyskane wyniki.

Klasy�kacja tematyczna AMS (2010): 34D20; 92C99.

Sªowa kluczowe: angiogeneza, VEGF, komórki rakowe, leczenie antyangiogeniczne,

równania ró»niczkowe z opó¹nieniem, analiza stabilno±ci.
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