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Abstract The purpose of this paper is to present the applications of di�erential

equations in Vanilla Options pricing. At the beginning we introduce main assump-

tions of the Black-Scholes Model with necessary comments, which as a norm can

not be easily found in literature. In section 2, we show what in common have the

di�usion equation and the fair price of European Option. Please note that these con-

siderations were originally presented as proof of Black-Scholes Formula. In sections 3

and 4 we explain why valuation of the American option can be coming down to Free

Boundary Problem. Note: It is very interesting that the same mathematical model is

well known as Stefan Problem describing temperature distribution in homogeneous

medium undergoing a phase change. At the end, we introduce a Finite Di�erence

Method which will be used to solve problem numerically. We will describe the main

features of the method showing potential threats, which could happen as a result of

using this method without a thorough understanding of its structure. At the end we

make a comparison with other, widely used methods.

This paper has as a goal to illustrate the potential importance of deterministic

approach in �nancial engineering.
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1. Introduction In �nancial models one of the basic assumptions about
investors is that they want to gain as much as it is possible but they have
aversion to take the risk. Each investing strategy can be considered as a
compromise between willing of pro�t and fear of losses - usually possible
pro�t increase with probability of loss. Option can be considered as some
kind of insurance - a more prudent speculator might want to reduce the
maximal loss by a quantity K > 0. He thus will buy an option which would
correspond to the strike price K. For him (option holder) it is the way to
protect himself against the risk, for option issuer it is possibility to pro�t by
selling this �nancial product. The fundamental question is what is the value of
this security? The answer has essential meaning in �nancial world and global
economy.
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The �rst record of an option contract can be found in [20]. According to the
story Greek philosopher Thales pro�ted by option-type agreement around the
6th century B.C. The problem of fair valuing this kind of �nancial instrument
was not formalized until 1900.

At this year L.Bachelier by his pioneering thesis [2] began the theory of
option pricing. In the same work he initiated the study of di�usion processes
�ve years before recognized as the groundbreaking works of A.Einstein[4],
M.Smoluchowski [14] and decades before famous works of K.Itô [7], P.Lévy
[8] and N.Wiener [18]. Bachelier as the �rst developed the theory of Brownian
motion and found practical application of this concept in �nancial engineer-
ing.

The culminating event in developing theory of option pricing was 1973
when Black, Scholes and Merton found consistent formulas for the fair prices
of European options[3],[9]. The discovery was of such great importance that
the autors were awarded the Nobel Prize in Economics in 1997. Very inter-
esting is fact that for short time to maturity formulas of Bachelier are very
close to results of Black, Merton and Scholes[13].

Until today, there is no knowledge of any analytical formula of American
option fair price, which could have any practical application. In order to
determine this value, as a rule it is given main importance to Monte Carlo
methods. Usually they are easier to implement, but require more time or are
related to higher numerical errors than deterministic methods.

2. Vanilla Options Option put/call is a contract, in which holder can
buy/sell some property for �xed price K (it is �xed in time t = 0). Other
characteristics of option is time to maturity T and value of underlying asset
at moment t which is denoted by St . Underlying asset can be action, stock
exchange indexes, foreign currency, futures contracts, obligations. The options
most frequently used are the European and American options (both called
�Vanilla options�). Payement pro�le for the European call option is equal
max (ST −K, 0), whereas for the European put equals max (K − ST , 0). The
European option can be realized only at time T . The American option, can
be realized in any time t between 0 and T , its pro�le for type call equals
max (St −K, 0), for put equals max(K −St, 0). It is necessary to understand
that at time of option valuation (we can assume that it is time t = 0) we
know the value of underlying assets only at time t = 0.

2.1. Assumptions of the Black-Scholes Model
To begin, we will recall assumptions of model to be considered [3]. They are
as follow:

1. Market liquidity.
By this assumption, we will consider the balance between supply and
demand - in other words, at the moment of decision of selling some good,
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there is a will to buy it; similarly, at the moment of buying some product
there is someone who wants to sell it. Of course, purchase and sell are
done at the price of equal value of considered goods (�market price�). In
actual practice, this assumption is unacceptable only in extreme cases
like possibility of bankruptcy (if a company goes bankrupt, each of the
investors will want to sell their stocks, but not many will willingly take
the risk to buy said stock, even at a lower price).

2. Possibility of short selling.
�Short selling� refers to the selling of assets which does not belong to us
- for example, a broker, on behalf of a client, borrows a considered asset
from another client and sells at the market price; after predetermined
time, we are obligated to return the borrowed goods and bear the costs.
In actuality, even if short selling is allowed, it is not for free (in the
Black-Scholes Model we usually assume that this opportunity is for
free).

3. Possibility of purchase/sell at each moment any (even irra-
tional) number of underlying assets, and free-risk assets.
Of course, in real life we can not buy/sell nor integer number of stock.
Without this assumption it is impossible to show the existence of only
�fair price�.

4. No transaction costs and taxes.
This assumption is unrealistic - in the �nancial world both of them are
present. If we will take these costs into account, the issue of valuation
would be much more di�cult (problem of optimal control). However
they can often be omitted, because in the case of �big� assets, investors
may have some discounts on the costs of the transaction (considered
costs are negligible as compared to �big� assets).

5. Absence of arbitrage (there is no possible gain without taking
the risk).
In the real world, there is the possibility of arbitrage - eg. having infor-
mation about any given company, which is not widely available. How-
ever, the arbitrage quickly disappears so assumption about its absence
is acceptable. Here it is hidden assumption that investors have the same
(total) access to the information.

6. The interest rate r is constant over the time; moreover, it is
the same for lending and capital investment.
Of course, usually the interest rate for deposits is di�erent than for
loans; however, this condition is a consequence of the lack of arbitrage,
market liquidity and the absence of transaction costs. As for the stability
in time, in the case of �short� time intervals (eg. 1 month) is acceptable,
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but if we want to deal with an option for a period longer than year we
should count the errors resulting from this assumption. The interest rate
r is not constant over time, usually we model r via stochastic di�erential
equations - eg. Vasicek Model, Model CIR, HJM Model.

7. The price of the underlying instrument is described by the
Geometric Brownian Motion (GBM):{

S (t) = S (0) exp (µt+ σBt) ,
S (0) = S0,

where:
S (t) - the price of the underlying instrument, µ - drift (constant), σ -
volatility (constant), Bt- Brownian motion.

Note: this assumption is not acceptable in the case of sudden jumps
in the stock market. Aggressive behavior of investors and stock mar-
ket crashes are not predictable in this model. The basic Black-Scholes
Model assumes that the stocks do not bring dividends, but there is a
simple generalization into the model covering this case. It is worth to
note that the Black-Scholes Model is a model based of continuity of trad-
ing in stock exchanges - including the time when the exchange is closed.

Although, strictly speaking, none of these assumptions is ful�lled 100%,
but the essence of the mathematical model is to take the situation we
want to model into a simpli�ed and idealized case. Due to its simplicity
and practicity, the Black-Scholes Model is one of the most widely used
in option pricing.

3. European option In the case of European option, starting from the
di�usion equation, we can analytically determine a fair price. Before we will
discover the Black-Scholes Formula we will present a theorem which is crucial
in our considerations.

Theorem 1 (the Feymann-Kac Formula)[15]
Let St follows {

dSt = µ (St) dt+ σ (St) dBt,
S0 = x.

Let us consider following partial di�erential equation (PDE): ∂u (x, t)

∂t
=

1

2
σ2 (x)

∂2u (x, t)

∂x2
+ µ (x)

∂u (x, t)

∂x
+ q (x)u (x, t) ,

u (x, 0) = f (x) ,
(1)
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where q : R −→ R is continuous and bounded and f : R −→ R is continuous
and f ∈ O (|x|) (when x −→ ∓∞).

Then function

u (x, t) ≡ Ex
(
f (St) exp

(∫ t

0
q (Su) du

))
is solution of (1) and this solution is unique in class of functions having at
most power-law growth.

Let us return do the Black-Scholes Model; then, we will conduct a reason-
ing for the valuation for call options. For �put� this is completely analogous.

Corollary 1 A fair price of the call option u (x, t) is solution of:{
ut =

1

2
σ2x2uxx + rxux − ru,

u (x, 0) = f(x) = max (x−K, 0) ,
(2)

for x = S0 and t = T . 2

Proof Let Q-martingale measure, B̂t - Brownian motion with respect to
measure Q; St - stock price; then{

dSt = rStdt+ σStdB̂t,
S0 = x.

A fair price of the call option is

C0 = EQx [f (ST ) e−rT ] = e−rTEQx [max (ST −K, 0)] = u (x, T ) ,

where f is the function of payment - for call option f(x) = max (x−K, 0).
Using notations from the previous theorem we have:

q(x) = −r = const,

µ(x) = rx,

σ(x) = σx.

By the Feymann-Kac Formula the proof is completed. �
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Proposition 1 (the Black-Scholes Formula) The fair price of European call

option is equal

xΦ

 log x
K +

(
r + σ2

2

)
T

σ
√
T

−Ke−rTΦ

 log x
K +

(
r − σ2

2

)
T

σ
√
T

 ,

where r - interest rate, σ - volatility, T - time horizont, K - strike, x-value
of underlying instrument at time 0 (also noted as S0). 2

Proof Using 3 changing of variables we will conduct (2) into di�usion equa-
tion which solution is well known. Let us introduce functions g, y, h:

g (x, T ) = u (ex, T ) ,

y (x, T ) = erT g (x, T ) ,

h (x, T ) = y

(
x−

(
r − 1

2
σ2

)
T, T

)
.

Now (2) has a form of classical di�usion equation:{
hT =

1

2
σ2hxx,

h (x, 0) = max (ex −K, 0) .

The solution of (2) has a form

h (x, T ) =

∫
R

1√
2πσ2T

e
(y−x)2

2σ2T max (ey −K, 0) dy =

=
1√

2πσ2T

∫ ∞
logK

e−
(y−x)2

2σ2T eydy −K 1√
2πσ2T

∫ ∞
logK

e−
(y−x)2

2σ2T dy.

After change of variable y − x = z we get that:

h (x, T ) = ex+σ2T
2 Φ

(
x− logK + σ2T

σ
√
T

)
−KΦ

(
x− logK

σ
√
T

)
.

With the function h we return to the function u using inverse transfor-
mations of previously applied changing of variables.

y (x, T ) = h

(
x+

(
r − 1

2
σ2

)
T, T

)
,

g (x, T ) = e−rT y (x, T ) ,
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u (x, T ) = g (log x, T ) .

By this way we discovered the Black-Scholes Formula for European call
option, analogically as it was done �rst time [10]:

u (x, T ) = xΦ

 log x
K +

(
r + σ2

2

)
T

σ
√
T

−Ke−rTΦ

 log x
K +

(
r − σ2

2

)
T

σ
√
T

 .

It is worth nothing that this is the exact price in term of the considered
model. Here it is not taken into account the pro�t for the issuer of option.

Digression 1 Obviously to determine the fair price of European put option
we can use exactly the same way as before. But having the fair price of
European call, we can get the fair price for put at once. The relationship
between European call and put is de�ned by the following theorem:

Theorem 2 The put-call parity
In the Black-Scholes Model for fair price of European call and put options (at
any time t between 0 and T ) true is following formula [11]:

Ct − Pt = St −Ke−r(T−t).

Above we assumed, that present value of zero-coupon bond that matures to
1 unit of money at time T is equal e−r(T−t). If we assume other value of a
bond, noted as B(t, T ), then the put-call parity has a form:

Ct − Pt = St −KB (t, T ) .

It is worth observing that the zero-coupon bond that matures to 1 unit of
money at time T , is the present value for K.

4. American option Because the American option can be realized at
each moment before T (with T ), it is clear that fair price (it means price
which does not give opportunity of arbitrage) can not be lower than fair
price of its European analogue. Indirectly we can say that the American
option gives more opportunities to pro�t. The question is how to valuate
this kind of options, and if exists any formula analogous to the Black-Scholes
Formula. Pricing of the American option is much more complicated than in
the European case because for each moment that we have to �nd value of
option, and for each value St we have to decide if it is worth it to realize such
option (we recall that value of St is not given). This kind of problem is known
as free boundary problem.
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Digression 2 Very interesting is the fact that if dividend rate d = 0, then
the value of American call option is equal to its European analogue. To show
this identity, it is enough to argue that it is not worth to realize the Ameri-
can option before T (then it is optimal to realize option only at T ; for what
authorizes the European option as well).

Let us assume that the American call option holder has intention to real-
ize it at time t < T . He will do that only if it would be pro�table, it means if
St > K (price for buying underlying asset is higher than price for which one
underlying asset can be bought by holding option). Then, he gains St −K.
Option holder can also proceed following strategy: at time t short sell an un-
derlying asset for St, next buy underlying asset for min (ST ,K) at time T .
Then his pro�t is St −min (ST ,K) and of course is higher than St −K. So
never is worth realize the American call before time T .

Remark 1 We assumed that dividend rate d = 0; only under this condition
the conclusion above is true. In all this paper we assume that d = 0. By
analogical way we can show that if r = 0, then it is not worth to realize the
American put before T , so in this case the value of American put is equal to
its European equivalent.

5. Valuation of the American option using PDE

5.1. Valuation of the American option as Free Boundary Prob-
lem

Similarly as in the case of European option we want to �nd a fair price
using the Black-Scholes Equation. As we mentioned before, we do not know
the analitical solution; but using numerical methods we can �nd aproximate
solution.
We consider the Black-Scholes Equation (with boundary condition determin-
ing put option): ∂u (S, t)

∂t
+

1

2
σ2S2∂

2u (S, t)

∂S2
+ rS

∂u (S, t)

∂S
− ru (S, t) = 0,

u (S, T ) = f (S, T ) .

Where f (S, t) = max (K − S, 0). By this notation we recall that the payo�
function is dependent on time (note that in this chapter S = St; t ∈ [0, T ]).

At each moment it is necessary to make the decision if it is worth to use
option, or keep it on. Mathematically we can describe it as:

u (S, t) = f (S, t) ,
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if we realize option or

∂u

∂t
+

1

2
σ2S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru = 0,

if we keep it on. This can be written in the following manner:

(u (S, t)− f (S, t)) ·
(
∂u

∂t
+

1

2
σ2S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru

)
= 0.

Notice that at each moment t we can gain at least max(K − S, 0) (and
maybe even more). It follows us to inequality:

u (S, t) ≥ f (S, t) .

Because after optimal exercise moment u (S, t) can not describe value of un-
derlying instrument, true is following inequality:

∂u

∂t
+

1

2
σ2S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru ≤ 0.

Remark 2 Assumption of lack of arbitrage says that expected pro�t of op-
tion (calculated at time 0) is equal to value which we have to pay for option.
It is worth to recall this observation in the case of American option, because
here the situation is more complicated than in the European case.

The �rst boundary condition is as follows: for price of underlying instru-
ment su�ciently high (in general form - converging to in�nity) we will not
use the option. So:

lim
S→∞

u (S, t) = 0.

By analogical way if price of underlying instrument will be �very small� (more
general - converging to 0) we will use option selling underlying instrument for
K:

lim
S→0

u (S, t) = K.

Now, a problem of American (put) option valuation is transformed into Free
Boundary Problem:

∂u

∂t
+

1

2
σ2S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru ≤ 0,

u (S, t) ≥ f (S, t) ,

(u (S, t)− f (S, t)) ·
(
∂u

∂t
+

1

2
σ2S2 ∂

2u

∂S2
+ rS

∂u

∂S
− ru

)
= 0,

lim
S→∞

u (S, t) = 0,

lim
S→0

u (S, t) = K,

u (S, T ) = f (S, T ) .

An equivalent way to introduce the formulation of American option pricing
can be found, for example in [19].
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6. Finite di�erence method in the aspect of American put option
valuation

Let us introduce an uniform grid of the [0, T ] interval:

0 = t0 < t1 < t2 < . . . < tj < . . . < tn = T,

where
tj+1 − tj = ∆t,

for each j = 0, . . . , n− 1.
By analogical way we introduce a grid of the [0, Smax] interval:

0 = S0 < S1 < S2 < . . . < Si < . . . < Sm = Smax,

where Smax is some upper bound for St, t ∈ [0, T ] and

Si+1 − Si = ∆S,

for each i = 0, . . . ,m− 1.
Let us introduce following notation

uji = u(Si, tj).

In the Black-Scholes Equation we replace derivatives by their approximations:

uji − u
j−1
i

∆t
+

1

2
σ2S2

i

uji+1 − 2uji + uji−1

(∆S)2 + rSi
uji+1 − u

j
i−1

2∆S
− ruji = 0.

Then we transform this expression into:

uji − u
j−1
i + ai

(
uji+1 − 2uji + uji−1

)
+ bi

(
uji+1 − u

j
i−1

)
−∆truji = 0,

where

ai =
∆tσ2S2

i

2 (∆S)2 ,

bi =
∆trSi
2∆S

.

Let us note
di = ai − bi,

mi = (−2ai − r∆t) ,

ei = ai + bi.
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Now the system of equations can be written as follows:

uji − u
j−1
i + diu

j
i−1 +miu

j
i + eiu

j
i+1 = 0,

for i = 1, . . . , N − 1.

In matrix form:

uj1:N−1 − u
j−1
1:N−1 + Puj0:N = 0, (3)

where

P =


d1 m1 e1 0 . . . 0
0 d2 m2 e2 0 . . .
...

...
...

...
...

. . .
0 . . . dN−2 mN−2 eN−2 0
0 . . . 0 dN−1 mN−1 eN−1

 .

The �rst and last column correspond to boundary conditions. Now we
will divide matrix P (which is represented by set Ω∪∂Ω of nodes of time and
space) into interior Ω and border ∂Ω:

PujΩ∪∂Ω = AujΩ +Buj∂Ω,

where
ujΩ∪∂Ω = uji ,

for i = 0, 1, . . . , N .

ujΩ = uji ,

for i = 1, . . . , N − 1.

uj∂Ω = uji ,

for i = 0, N .

Equation (3) we can write as:

ujΩ − u
j−1
Ω +AujΩ +Buj∂Ω = 0. (4)

u0
Ω we �nd from:

uj−1
Ω = (I +A)ujΩ +Buj∂Ω.

Notice that (4) corresponds to an explicit scheme, but

ujΩ − u
j−1
Ω +Auj−1

Ω +Buj−1
∂Ω = 0 (5)
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corresponds to implicit scheme. Taking linear combination of (4) and (5) we
get the mixed scheme:

θ
(
ujΩ − u

j−1
Ω +Auj−1

Ω +Buj−1
∂Ω

)
+ (1− θ)

(
ujΩ − u

j
Ω +AujΩ +Buj∂Ω

)
= 0.

Substituting Am = I − θA and Ap = I + (1− θ)A we get:

Amu
j−1
Ω = Apu

j
Ω + θBuj−1

∂Ω + (1− θ)Buj∂Ω, (6)

for θ ∈ [0, 1].
In order to �nd value u0

Ω we have to solve (6) for j = M,M − 1, . . . , 1
Finally, we are ready to write the algorithm of American (put) option valua-
tion (see Appendix).

The most important example of mixed scheme is the Crank-Nicolson
Scheme. The following theorem explains why in our problem this exceptional
case is so important:

Theorem 3 For the considered problem, the Crank-Nicolson Scheme is un-
conditionally stable and its convergence in respect to ∆S and ∆t has 2nd
order. [12] [17]

Remark 3 In the case of mixed schemes we have guaranteed unconditional

stability only for θ ≥ 1

2
. For θ ∈ [0,

1

2
) we have only conditional stability. Note

that if discretization parameters do not full�ll the condition of (conditional)
stability, it does not mean that the method is not stable (there is the impli-
cation that full�lled condition implies stability). What we call �condition� is
inequality resulting from some estimation, so there is a possibility of formu-
lating it in many di�erent (meaning not equivalent) forms. Good estimations
with stability analysis are, for example, in [16], [10].

Remark 4 In contrast to Crank-Nicolson Scheme, explicit and implicit schemes
(cases θ = 0 and θ = 1) have convergence of 2nd order in respect to ∆S and
1st order in respect to ∆t [5].

As conclusion of numerical error analysis in dependence of θ we can state
that the best precision should be reached for θ = 0.5, and that for lower θ
we can expect large errors (in case of lack of stability). All plots and tables
from this paper are the results of our simulations; data determining American
Option (S, K, r, T , estimated σ and real price of options) we took from [1].



G. Krzy»anowski 285

0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165

log(  t)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

lo
g(

A
bs

ol
ut

e 
er

ro
r)

Figure 1: Absolute error in dependence of ∆t in Crank-Nicholson scheme (in
log-log scale; S = 80, K = 100, σ = 0.4, r = 0.06, T = 0.5). Order of
convergence is the linear coe�cient of the curve - empirically estimated value
is 2.03, exact value is 2.

Strike 80 85 90 95 100 105 110 115
Exact price 21.6059 18.0374 14.9187 12.2314 9.9458 8.0281 6.4352 5.1265

Sim1(θ = 1/2) 21.6038 18.0349 14.9159 12.2285 9.9437 8.0252 6.4326 5.1242
Sim2(θ = 3/4) 21.6018 18.0324 14.9131 12.2255 9.9407 8.0223 6.4301 5.122
Sim3(θ = 1) 21.5998 18.0299 14.9103 12.2225 9.9377 8.0195 6.4275 5.1199
Sim4(θ = 0) 20 15 10 5 0 0 0 0

Table 1: Simulations of price for American Option using di�erent values of θ.
The best precicion is reached for θ = 0.5; for θ = 0 we see the consequence of
lack of stability when θ ∈ [0, 1

2).

time[s] Strike 80 85 90 95 100 105 110 115
- Exact price 21.606 18.037 14.919 12.231 9.946 8.028 6.435 5.127

0.92 FD 21.604 18.035 14.916 12.229 9.944 8.025 6.434 5.124
4.41 CRR 21.607 18.037 14.918 12.23 9.944 8.029 6.436 5.126
2.74 LSM 24.128 18.158 16.941 13.067 8.907 7.61 7.153 5.54

Table 2: Comparison of di�erent methods of American Option valuation. FD-
presented in this paper Finite Di�erence Method(θ = 0.5), CRR-binomial
tree (Cox-Ross-Rubinstein Model; number of nodes=1000), LSM- Longsta�
Schwartz Method.
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Figure 2: Approximation of American option fair price for θ in di�erent in-
tervals (S = 90). Colour blue - approximation; red - real price. In a) can be
observed increasing precision along with getting closer to the value θ = 1

2 ; in
b) is visible explosive behavior for θ < 1

2 .
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Figure 3: Approximation of American option fair price for θ ∈ [0, 1] (S = 90).
Colour blue - approximation; red - real price. If conditional stability is not

provided we can expect big errors for θ ∈ [0,
1

2
) .

As we can see in the Table 2 the Finite Di�erence Method returns re-
sults with almost the same (very good) precicion as CRR, but in almost 4
times shorter time. In this experiment Longsta� Schwartz Method gives worse
results than previous methods; in almost 3 times longer time than FD and
less than 2 times shorter than CRR. As �time� we mean average time cal-
culated for all strikes. Precicion of LSM could be improved at the expense
of the time. Similar remark has place for the CRR - if we want to reduce
time of computation it can be done by loss of precicion. Simulations for CRR
we made using function �AmericanOptCRR� [6], for LSM we used function
�AmericanOptLSM� [6] (M = N = 40).

7. Conclusion A deterministic approach could be succesfully undertaken
in option pricing and more general in �nancial engineering. Using partial
di�erential equations, we can obtain the Black-Scholes Formula and �nd very
good approximation for the price of American option. For numerical method
from this paper, is always best to choose the Crank-Nicholson Scheme in
order to provide the best possible order of convergence and unconditional
stability. As we have seen, using this method should not take place without the
knowlegde of whether unconditional stability is provided. Presented modelling
is very important alternative for Monte Carlo methods widely associated with
Vanilla Options pricing.
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8. Appendix Algorithm of American put option pricing:

Input data: financial data (S0,sigma,r,T,K);

parameters for discretization: Smin=0, Smax, Delta t, Delta S,

N - number of nodes, M - number of time steps;

theta (parameter determining scheme);

The procedure:

Let Svec be a vector of length N+1 discretizating space

Compute the time and space increments

dt = T/M;

dS = (Smax-Smin)/N;

Compute elements of sub-matrix Omega of matrix P:

(m=elements of the main diagonal)

m =-2*((dt*sigma^2*Svec(2:N).^2)./(2*dS^2))-dt*r;

(d=elements under the main diagonal)

d=(dt*sigma^2*Svec(2:N).^2)./(2*dS^2)-(dt*r*Svec(2:N))/(2*dS);

(e=elements above the main diagonal)

e=(dt*sigma^2*Svec(2:N).^2)./(2*dS^2)+(dt*r*Svec(2:N))/(2*dS);

%from these elements we create a matrix N-1 on N-1.

Create matrix P from matrix Omega and vectors w1, w2

P=[w1 Omega w2]

where

w1=[d(1),0,..,0]^{T}

w2=[0,0,..,0, e(N-1)]^{T}

d(1)=(dt*sigma^2*Svec(1)^2)/(2*dS(1)^2)-(dt*r*Svec(1))/(2*dS);

e(N-1)=(dt*sigma^2*Svec(N-1)^2)/(2*dS^2) + (dt*r*Svec(N-1))/(2*dS);

Compute matrix A and B, based on them calcule matrices Am and Ap:

Am=I-theta A Ap=I+(1-theta)A

Compute vector of the payoff function v1=max(K-Svec,0):

for j=1:1:M

v2=v1;

v1(1)=K;

b = Ap*v2(2:N) + theta *B*v1([1 N-1]) + (1-theta)*B*v2([1 N-1]);

Solve in respect to w equation:

Am*w=b; %%For example using LU algorithm.

Into v1(2:N) put the largest element of corresponding

elements of the payoff function components and vector w.

end

Using value v1 in points Svec

interpolate value of the payoff function in S0.

Return this value.
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Wybrane zastosowania równa« ró»niczkowych w wycenie opcji
waniliowych.

Grzegorz Krzy»anowski

Streszczenie Celem niniejszego artykuªu jest przedstawienie zastosowa« równa«

ró»niczkowych w wycenie opcji waniliowych. Na pocz¡tku przedstawiamy gªówne

zaªo»enia modelu Blacka-Scholesa z niezb¦dnymi komentarzami, których jako norm¦

nie mo»na ªatwo znale¹¢ w literaturze.

Nast¦pnie pokazujemy, co wspólnego ma równanie dyfuzji ze sprawiedliw¡ cen¡ opcji

europejskiej. Nale»y pami¦ta¢, »e te rozwa»ania zostaªy pierwotnie przedstawione

jako dowód formuªy Blacka-Scholesa. Kolejno wyja±niamy, dlaczego wycena opcji

ameryka«skiej mo»e zosta¢ sprowadzona do problemu ze swobodnym brzegiem, zna-

nym jako problem Stefana opisuj¡cym propagacj¦ temperatury w niejednorodnym

o±rodku ulegaj¡cym przemianom fazowym.

W ko«cowej cz¦±ci pracy wprowadzamy metod¦ ró»nic sko«czonych, która posªu»y

do numerycznego rozwi¡zania problemu. Opisujemy gªówne cechy metody pokazuj¡c

potencjalne zagro»enia, które mog¡ pojawi¢ si¦ w wyniku zastosowania tej metody

bez dokªadnego zrozumienia jej struktury. Dokonujemy równie» porównania z in-

nymi, szeroko stosowanymi metodami. Gªówny cel tego opracowania to pokazanie

potencjalnego znaczenia podej±cia deterministycznego w in»ynierii �nansowej.

2010 Klasy�kacja tematyczna AMS (2010): Primary: 91G20; Secondary: 90B25;

60G40; 93E20.

Sªowa kluczowe: model Blacka-Scholesa, metody numeryczne, opcja ameryka«ska,

opcja europejska, metoda ró»nic sko«czonych, problemy ze swobodnym brzegiem.
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