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AbstractWe present an analysis of admission/discharge data from insurance provider
for Saxony and Thuringia (Germany) for years 2010�2016. A study of such data
is necessary to derive a structure of a healthcare system transfer network, as no
patients' transfer data are available. Hospital network is a basis for simulation of
multidrug-resistant bacteriae spread allowing to study the e�ectiveness of disease-
control strategies. In this paper, the properties of the dataset under consideration
are presented and discussed. Moreover, the resulting inter-hospital network structure
is analyzed.
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1. Introduction. Multidrug-resistant bacteria (MDR) recently became
more serious health threat [2, 8]. According to the European Centre for Dis-
ease Prevention and Control and the European Medicines Agency about 25
000 patients die in the EU from an infection with MDR each year, [5]. In
addition, it is estimated that these infections result in extra healthcare costs
of at least EUR 1.5 billion each year. These pathogens can spread within the
healthcare system population, e.g. by contact between undiagnosed infectious
patients and susceptible patients. Pathogen control strategies exist (see e.g.
[1, 2]), but they mainly focus on the individual healthcare facility level, while
the cooperative approach may be more bene�cial [7]. Unique properties of
MDR make them immune to typical prevention strategies, mainly due to their
antibiotic-resistant nature. In order to understand how to inhibit spreading
of such bacteria, new models describing their transmissions are introduced.
Such attempts to model the spread of some particular bacteria within the
hospital network have already been undertaken, see e.g. [3, 4, 6].
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Clearly, to model such a phenomenon one needs to have access to a good
database providing a lot of information about patients but also transfer data
of patients between the hospitals. Towards the end of the second decade of the
21st century, when the computerization is present in virtually every domain
of human activity, it seems natural to expect that the patient transfer data
are available as a database, which can be used for an e�cient data analysis.
Unfortunately, this is not the case even in Europe. Hospitals, or healthcare
facilities in general, collect information about patient admissions, discharges,
age, gender, diagnosis, procedures in they own patient registers, however do
not have information about hospitalisation history of patients. Nevertheless,
an excellent source of data could be healthcare providers collecting patient
hospitalization records for years. They store information that is the most rel-
evant for the modellers, unfortunately they do not keep track of patients'
transfers. So one of the di�culties for the modellers would be to extract the
transfer data form the hospitalisation history. Such a task seems not to be
too hard but, depending on the database, can be less or more challenging. In
addition, modellers need to better know the dataset in a way allowing them
e.g. to strati�cate patients according to certain risk factors. To provide so
much important information for the future work concerning creating models
describing the dynamics of the pathogen spread within the inter-hospital net-
work we perform an analysis of the dataset provided by AOK Plus � one of
the largest health insurance company in Germany.

This paper is organized as follows. In Section 2 and 3 we brie�y describe
the database provided by AOK Plus and analyse it. Next, in Section 4, we
describe basic properties of the generated inter-hospital network. Finally, in
Section 5, we comment on the results and present future plans concerning
modelling the spread of MDR bacterial infection.

2. Description of dataset. We consider the anonymized patients dataset
provided by AOK Plus � a healthcare provider in Saxony and Thuringia. The
dataset consists of 4 826 823 hospitalisation records of 1 623 567 patients cov-
ering the period of 7 years (2010 � 2016). In particular, the database stores
the following information: patient anonymized ID, anonymized healthcare fa-
cility ID, the federal state of healthcare facility, the day of admission, the day
of discharge, the diagnosis (international ICD-10-GM code), the patient's sex
and year of birth.

Within the provided dataset we have found 2 991 597 hospital/healthcare
facility stay records for the facilities located in Saxony with the numeric di-
agnosis code, 1 566 451 for Thuringia, 268 182 for other German federal states
and 593 records without any location given. There are 1 925 unique hospital
facilities among the whole database and 134 of them are situated in Saxony
and Thuringia. Since the overwhelming number of records concerns Saxony
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and Thuringia in the further study we focus on these two federal states.

3. Data analysis. To investigate the provided dataset (admissions, dis-
charges, duration of stays, sizes of the facilities etc.), to analyse their structure
and statistics, we used the previously developed Python code, freely avail-
able (with documentation) on the web page www.mimuw.edu.pl/~monika/

emergenet. Clearly, similarly as in our previous study of the AOK Lower
Saxony dataset [9], grouping the records with the same patient identi�cation
number we faced the problem of the so-called overlaps � the non-empty in-
tersection of stay periods for distinct sets of two or more records for a given
patient, either within the same facility or in other facilities, for details see
Subsection 3.5.

3.1. Population structure. After limiting the records to the facilities
located in Saxony and Thuringia, we end up with data for 706 827 men with
1 up to 155 hospitalizations and 845 666 women with 1 up to 147 hospital-
izations. The average number of admissions per person is 3.24 for men and
3.0 for women, the median of admissions per person is 2 for both sexes. The
average length of hospitalisation is 9.856 days, and the average period spent
outside the facilities, between two hospitalisations is 286.305 days. In Fig-
ure 1 we present the structure of patients' population. Clearly, we do not
consider patients' age, as the database covers seven years. Furthermore, we
do not know exactly which patients died during that period � such informa-
tion is only available in the database if a patient died while being insured by
AOK Plus. Thus, for our statistical purposes we consider the birth year to
investigate the age structure of patients.

Among 4 558 048 hospitalisation records for healthcare facilities located in
Saxony and Thuringia there are 843 512 (18.5%) cases of diseases of the cir-
culatory system. Other signi�cant groups are diseases of the digestive system
(466 739, 10.2%), neoplasms (464 666, 10.2%), injury, poisoning and certain
other consequences of external causes (460 118, 10.1%) and mental and be-
havioural disorders (327 221, 7.2%).

3.2. Admissions. From Figure 2 it is clear that the majority of facili-
ties had between 10 000 and 99 999 admissions and the other groups were less
common. This distribution is suitable for studying the inter-hospital trans-
missions of infections, because the facilities with very few patients (less than
10) in seven years do not have much impact on migrations of patients. In
fact, out of 134 considered facilities, there is only one with less then 10 pa-
tients and �ve with 10-99 patients during this whole period. Thus they might
be omitted as their contribution to the patient transfer is insigni�cant. For
separately-treated years most Saxony and Thuringia healthcare facilities had
between 1 000 and 9 999 reported admissions and the number of facilities with
given intervals of reported admissions did not change much with time.

www.mimuw.edu.pl/~monika/emergenet
www.mimuw.edu.pl/~monika/emergenet
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Figure 1: Structure of the patients' population.
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Figure 2: Number of healthcare facilities having given number of admissions for
Saxony and Thuringia within years 2010-2016 and for separate years.
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Figure 3: Number of healthcare facilities having given number of patients for Saxony
and Thuringia within years 2010-2016 and for separate years.

3.3. Numbers of patients. In order to estimate the probabilities of
patient transfers, one often needs information about the size of the healthcare
facilities. Thus, we also categorise the healthcare facilities by the number
of patients admitted to them. From Figure 3 it is clear that during years
2010�2016 the facilities with 10 000 to 99 999 patients were the largest group.
However, looking at the years separately, we see that for each year facilities
having between 1 000 and 9 999 patients dominated by far. We analyse the
changes of the number of patients of each healthcare facility in time (from
2010 up to 2016). In general, for the biggest hospitals, we can distinguish
two kinds of processes. Clearly, there are periodic variations of the number of
patients, which occur simultaneously among the healthcare system. On the
other hand, there are long-term increase/decrease of the facility population's
size, which are speci�c to healthcare facility.

3.4. Duration of stays. In Figures 4a and 4b we report the duration
of stays (until 31.12.2016) of patients in particular healthcare facilities and
lengths of stays at home between hospitalizations, respectively. Clearly, the
majority of hospitalizations do not exceed 10 days and most of them are 3
days long. The number of hospitalizations quickly decreases for the duration
longer than 3 days. We can see that hospitalizations that last at least a
month constitute only a marginal part of all records (less then 5% of all
hospitalizations). When it comes to stays at home between hospitalizations,
the number of stays �rst increases as the duration growths, reaches maximum
for six-day-long stays and then decreases with some �uctuations. However,
the decline is considerably slower than for the hospitalizations, and the stays
lasting one hundred days or longer are still signi�cant, as they constitute
slightly more than a half of all home stays.

3.5. Overlaps. Among 4 558 048 detected in the Saxony and Thuringia
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Figure 4: Durations of patients stays: (a) in healthcare facilities (b) at home between
hospitalizations.

dataset hospitalizations we �nd 198 723 cases of overlapping records. Follow-
ing [9], we distinguish several types of overlaps: standard transfer � one day
overlap of two stay periods, where both periods are longer than one day and
each record corresponds to a di�erent facility; �rst day transfer/last day trans-
fer � similar to above, but the duration of the stay in one facility is exactly
one day long and it coincides with admission to/discharge from the latter
facility; simultaneous two admissions in a single institution � two reported
stays in the same place for the same period; temporary transfer � two records,
period of one of them is contained in the other, and admission and discharge
dates are not the same; simultaneous two admissions in two di�erent institu-
tions � periods are exactly the same, but the facilities are di�erent; unknown
two admissions in two di�erent institutions � any two records for hospitali-
sations in di�erent institutions, which are not covered by the cases already
introduced; two admissions in a single institution � two reported stays in the
same institution but for di�erent (overlapping) periods and unknown mul-
tiple admissions (n) � more than two records of overlapping hospitalisation
periods, with maximal number of records in a given day is n.

In Table 1 we present overlapping records within the years 2010�2016. The
majority (over 77%) of them are typical transfers, meaning that both stay
periods are covered only by one day and the stays are reported for di�erent
institutions � standard, the �rst day and the last day transfers. The other
signi�cant types are overlapping stays within one facility (over 13%) and
temporary transfers (over 7%). Clearly, the most problematic cases such as
simultaneous admissions in three or more facilities are marginal (around 0.5%)
and therefore can be ignored. In general, the longer the overlaps are, the less
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Table 1: Identi�ed types of overlaps (units located in Saxony and Thuringia).

Overlap description number of records

standard transfer 137 331 (69.1%)

two admissions in a single institution 26 402 (13.3%)

�rst day transfer 14 837 ( 7.5%)

temporary transfer 14 534 ( 7.3%)

unknown two admissions in two institutions 3 391 ( 1.7%)

unknown multiple admissions (3) 1 023 ( 0.5%)

last day transfer 900 ( 0.5%)

simultaneous two admissions in two institutions 271 ( 0.1%)

simultaneous two admissions in a single institution 32 (0.0%)

unknown multiple admissions (4+) 2 ( 0.0%)

often they appear in the database.

4. Properties of the inter-hospital network. Although we do not
know the geographic localization of the reported in the database healthcare
facilities we are still able to build the inter-hospital network on the basis
of the hospitalization records. In the hospital network healthcare facilities
are represented by nodes, while weighted edges represent the probabilities of
transfers between healthcare facilities. Derivation of the patient transfers and
then the inter-hospital network along with per-patient transfer probabilities is
not straightforward and requires solving the overlaps issues �rst and next the
precise counting of patient transfers for each day and the size of the population
in each node. Thus, due to the complexity of that process the details will not
be described here and we focus on the properties of the obtained network.
Nevertheless, we expect that the obtained stochastic probability matrix is
regular. It can be checked numerically by empirical veri�cation, but this result
is always dependent on numerical errors. Thus, we prefer to �nd an analytic
argument, based on the following lemma.

Lemma 4.1 Assume that A = [Aij ]
k
i,j=1 is a k × k dimensional real matrix

such that

1. ∀i, j ∈ {1, . . . , k}, i 6= j, Aij ≥ 0,

2. ∀j ∈ {1, . . . , k} Ajj > 0,

3. ∀i ∈ {1, . . . , k}
∑k

j=1Aij = 1,

4. ∀i, j ∈ {1, . . . , k} ∃ i0 = i, i1, . . . , in−1, in = j such that
∀m ∈ {1, . . . , n} Aim−1im > 0.

Then A is a stochastic regular matrix.
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Proof A is a right stochastic matrix by Assumption 3 of this lemma. Thus,
it is enough to prove that there exists su�cient large N such that all ele-
ments of B = AN are positive. Let us de�ne n(i, j) to be the smallest n so
that Assumption 4 is true for indices i, j. Then, due to non-negativity of Aij

(Assumption 1), Assumption 4, and standard matrix multiplication rules we
have

eTi A
n(i,j)ej ≥

n∏
m=1

Aim−1im > 0, (1)

where T denotes the transposition of the vector. Then, for any natural l > 0,
due to Assumption 2, we have

eTi A
n(i,j)+lej ≥ Al

jj

n∏
m=1

Aim−1im > 0 (2)

If we therefore de�ne N := max
{
n(i, j) : i, j ∈ {1, . . . , k}

}
, then by inequal-

ity (2) we get

Bij = eTi Bej =
(
eTi A

N
)
j
=
(
eTi A

n(i,j)+l(i,j)
)
j
> 0, (3)

where l(i, j) := N − n(i, j) ≥ 0 is an integer. Thus, matrix B = AN has only
positive elements and A is regular by the de�nition. �

Clearly, Assumption 1 is satis�ed as all the elements are non-negative,
they are probabilities. Assumption 2 is more subtle, as in general Ajj can be
equal to 0. It is however rather unlikely, as it would imply that no patients
would stay in the healthcare facility overnight ever. While theoretically pos-
sible, this is unrealistic and such facility would be most likely removed from
the simulation. Assumption 3 ensures that the probability matrix is stochas-
tic. Since Aij is a probability of a jump from ith node to jth node, clearly
these probabilities must sum up to one, otherwise the Markov Process is not
de�ned correctly. Assumption 4 means that for every two facilities, there is a
(potential) transfer path between them. Actually, it is not necessary that any
patient follows this whole path, but there must be a patient transfer for every
component. Thus, the transfer path must exist between every two facilities,
in both directions.

In Figure 5 we present visualization of the inter-hospital network built on
hospitalization records for Saxony and Thuringia. In the analysis we examined
133 out of 134 healthcare facilities located in Saxony and Thuringia, as one of
them has too few admissions in the database and may cause problems in the
future models (e.g. creating absorbing state, in which all patients eventually
end up). We examine every day of every hospitalization and check whether
the patient changed the healthcare facility (transfer) or not (auto-transfer).
There are 42 255 828 such direct transfers, among which there are 27 420 531
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transfers between two facilities located in Saxony (including both transfers to
another facility and auto-transfers), 14 828 627 transfers between two facilities
located in Thuringia (both transfers and auto-transfers), 3 430 transfers from
Saxony to Thuringia and 3 240 transfers from Thuringia to Saxony. The over-
whelming majority (42 059 912, 99.5%) of these transfers are auto-transfers,
which results in very high rate of re-admission to the same hospital.
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Figure 5: Visualization of the inter-hospital network considering only transfers be-
tween di�erent facilities. Darker edges correspond to higher probability of transfer.
Red nodes represent facilities located in Thuringia and blue nodes represent facilities
located in Saxony. The size of the nodes represents the size of the set of both direct
predecessors and successors.

The examined directed graph is strongly connected, i.e. it is possible to
reach every node from any starting point. Since the size of the graph is not
big, this fact can be proved by computer using a �nite number of edges'
combinations and checking whether they form a path between the two chosen
nodes. The diameter of the graph, which is the longest path between any two
nodes, is 3. Out of 17 556 ordered pairs of di�erent nodes, 4 729 pairs are
directly connected, 12 051 pairs have the shortest connecting path of length 2
and 776 pairs � of length 3. The radius of the graph is 2, meaning there exists a
node, whose shortest path to every other node is less then or equal to 2 and no
node is directly connected with all of the other nodes. Nodes have on average
indegree and outdegree 36.6, which is the number of edges going respectively
into the node and out of the node, excluding the edges connecting the nodes
to themselves. For nodes representing facilities in Saxony the numbers are
slightly higher � indegree 39.3 and outdegree 39.2 and for nodes representing
facilities in Thuringia they are lower � 31.2 and 31.3, respectively. In Figure 6a
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Figure 6: Number of nodes having the given number of: (a) direct predecessors,
(b) direct successors.

we present the number of edges as a function of the indegree (number of direct
predecessors) and in Figure 6b � as a function of the outdegree (number of
direct successors).

These properties determine the problems to be faced in the context of
the pathogen spread simulations in such a network. The incidence matrix has
over 1/4 non-zero elements, which along with average predecessor/successor
number makes it a dense matrix (O(n2) nonzero elements, rather than O(n)
for a sparse matrix). Moreover, no loosely-connected hospital groups can be
found below the region-level. As we see in Figure 5, even between regions the
ties may be signi�cant. This poses a problem for the parallel simulations, as
the inter-process communication will be signi�cant. Moreover, from a practi-
cal viewpoint, it is very hard to prevent the pathogen transmission through
the hospital transfer path, as there is no clear method to localize the disease
to a subgroup of facilities, as it would basically mean that it breaks all the
ties, which is hardly feasible.

5. Discussion The analysis of the AOK Plus database is extremely useful
for modelling the spread of MDR bacterial infection. Information about the
population structure enables us to divide patients based on the risk factors,
such as age or gender. Furthermore, the classi�cation of healthcare facilities
based on the number of admissions or the number of patients allows us to
identify which facilities may be more prone to infection outbreaks.

Out of the admissions database we extracted the information about pa-
tients' transfers between the hospitals. Based on the records we created the
inter-hospital network that contains probabilities of direct transfers. Our anal-
ysis shows that the network is rather well connected in favour of the Saxony
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subnetwork. However, the transfers between Saxony and Thuringia are also
well represented.

Since the examined network is built on the direct transfers only, it does
not take into account cases when the patient stays at home between the
hospitalizations. Hence, it does not re�ect the actual spread of the bacteria as
after leaving one hospital a patient may stay infected for a long period of time
and still be infected while being admitted to another facility. A solution to
this problem would be an introduction of additional node(s) representing stays
outside of healthcare facilities leading to the analysis of a greater network.
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Analiza danych AOK Plus i zbudowanej

na ich podstawie sieci szpitalnej

A. Lonc, M.J. Piotrowska, K. Sakowski

Streszczenie W artykule analizujemy dane o hospitalizacjach pacjentów dostar-
czone przez jednego z ubezpieczycieli dziaªajacego na terenie dwóch landów nie-
mieckich: Saksonii i Turyngii. Dostarczona baza danych obejmuje lata 2010�2016.
Ze wzgledu na brak informacji dotyczacych transferów pacjentów miedzy szpitalami,
przeprowadzona zostaªa niezbedna analiza pozwalajaca na wyekstrahowanie takich
informacji.Wefekcie stworzono siec zªozona z placówek opieki zdrowotnej, konieczna
do symulowania rozprzestrzeniania sie wielolekoopornych bakterii szpitalnych. Taka
siec pozwoli na badanie skutecznosci dziaªan majacych na celu kontrolowanie i zwal-
czanie tego typu zakazen. W niniejszym artykule zostaªy przeanalizowane dane z
udostepnionej bazy danych. Ponadto poddano analizie strukture otrzymanej sieci
transferów miedzyszpitalnych.

Klasy�kacja tematyczna AMS (2010): 62-07; 92C42.

Sªowa kluczowe: analiza danych opieki zdrowotnej, nakªadaj¡ce si¦ dane, sie¢ mi¦-
dzyszpitalna, wielolekooporne bakterie.
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