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Simple discrete SIS criss-cross model
of tuberculosis in heterogeneous population

of homeless and non-homeless people

Abstract In this paper we propose a discrete criss-cross model of tuberculosis (TB)
transmission in a heterogeneous population, which consists of two di�erent subpop-
ulations: homeless and non-homeless people. This criss-cross model is based on the
simple continuous SIS model with bilinear transmission function and constant in�ow
into both subpopulations considered previously by us.

We make preliminary stability analysis. We show that to control the spread of the
infectious disease in a heterogeneous population it is not enough to consider the
dynamics of the disease in each subpopulation separately. This result is consistent
with the result for continuous model. We also �t the model to epidemic data from
Warmian-Masurian Province of Poland.
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1. Introduction

In this paper we propose a simple discrete SIS criss-cross model of tu-
berculosis (TB) epidemic in a heterogeneous population. This work is based
on our previous papers [1] and [2] in which we have followed the ideas of [5],
where the continuous criss-cross model of the dynamics of TB epidemic was
proposed. The model took into account the e�ects of conducting programs
of Active Case Finding (ACF) in the community of homeless people. As a
consequence of applying ACF, the incidence of TB declined not only among
homeless individuals, but also among the whole population in the region. In
[2] the mathematical analysis of this model was presented. In this model, due
to its Malthusian background, there can be situations when the population
grows boundlessly or goes extinct. Because of that behaviour, the model has
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been modi�ed and analysis of its modi�cation is presented in [1]. We showed
there that the dynamics of epidemic in a heterogeneous population is di�erent
than the dynamics of epidemic in a homogeneous population.

Both of the models analyzed in [1] and [2] are continuous. For these mod-
els we made simulations in order to compare the model dynamics with real
data. However, the real data we base on has a discrete nature � the sizes
of each group of the population correspond to the de�ned moment during
the year. Furthermore, the programs of ACF correspond to detecting an in-
fected person in a particular moment of time. For these reasons, it seems to be
more justi�ed to consider discrete models instead of continuous ones. The dis-
cretized model should be relied on this kind of discretization method, which
expresses the real phenomenon in the possibly best way. Nevertheless, the
discretization methods of this type can often lead to a model having complex
form. In our case, the analysis of continuous models presented in [1] and [2],
especially stability analysis, was complicated. That is why, it is reasonable to
investigate the model based upon possibly the simplest type of discretization.
Thus, we discretized the model from [1] with the use of the explicit (forward)
Euler discretization. This discretization is widely applied in mathematical
epidemiological modeling, c.f. [3, 4, 6] and the references therein.

Having proposed discretized version of the model presented in [1] we then
focus on basic properties of solutions and make preliminary stability analy-
sis. The results are complemented with the numerical simulations. Our work
is applied to model the dynamics of TB in the population of homeless and
non-homeless people. However, it should be marked that the model is much
more general and could be used in the case of other diseases and other sub-
populations within a heterogeneous population.

2. Modeling of epidemic dynamics in a homogeneous population

Firstly, let us introduce the following component SIS model which de-
scribes dynamics of epidemic in a homogeneous population. As usual in this
type of models, we divide the whole population into the subpopulations of
susceptible (S) and infected (I) people. Here the homogeneous population
means the population in which we cannot di�er individuals in regard of the
risk of developing the particular disease. We would like to focus on the model
based on the mass-action law, cf. [1]. Hence consider the following system of
two di�erential equations

Ṡ = C − βSI + γI − µS,
İ = βSI − (α+ γ + µ)I,

(1)

where C is a constant in�ow into the population, β is a transmission coe�-
cient, γ stands for recovery rate, µ is a natural death coe�cient and α re�ects
disease-related death. We assume that the coe�cients are �xed and positive.
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Following [1] we change the variables:

τ = γt, x = βS, y = βI,

and denote k = 1 + α+ µ, obtaining

x′ = C − xy + y − µx,
y′ = xy − ky,

(2)

where the meaning of the variables and parameters is the same as in (1). Note
that the variables x, y are functions of τ now, and k > 1.

Let us discretize System (2) with the use of the explicit Euler method.
We then get

xn+1 = xn + h (C − xnyn + yn − µxn) ,

yn+1 = yn + h (xnyn − kyn) ,
(3)

where h is a step size of discretization method. Note that we can choose h > 0
as small as necessary for System (3) to have adequate properties.

2.1. Basic properties Let us present some basic properties of Sys-
tem (3).

First, note that the basic reproduction number R0 = C
µk for both models

(2) and (3) is the same, since while computingR0, we do not consider whether
the model is continuous or discrete.

Next, we estimate the whole population size re�ected by the variable
wn := xn + yn, assuming non-negativity of subpopulation sizes. Note that
if we add both equations of (3) by sides, we get

wn+1 = wn + h (C − µwn − αyn) ≤ wn + h (C − µwn) .

Solving the above inequality, with the assumption h < 1
µ , we have

xn, yn ≤ wn ≤ (1− hµ)nw0 + (1− (1− hµ)n)
C

µ
(4)

for all n ≥ 0, and then we can state that wn ≤ w0 + C
µ for every n ≥ 0, which

means that the population is upper bounded. Moreover, using (4) we easily
see that

Corollary 2.1 If

h <
1

µ
(5)

and w0 ≤ C
µ , than wn ≤

C
µ for every n ≥ 0.
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System (3) is a discrete dynamical system described by the function

H(x, y) =

(
F (x, y)
G(x, y)

)
=

(
x+ h (C − xy + y − µx)

y + hy (x− k)

)
,

that is the orbit of an arbitrary point (x0, y0), indicated by O, has the form
O =

(
(x0, y0) , H (x0, y0) , H

2 (x0, y0) , . . .
)
. Due to the meaning of the vari-

ables x and y we must have Fn(x, y) ≥ 0 and Gn(x, y) ≥ 0 for nonnegative x
and y. Moreover, basing on Corollary 2.1, we focus on the set

Ω =

{
(x, y) ∈ R2 x+ y ≤ C

µ

}
,

which we require to be invariant for System (3). Hence, in the following we
check under which assumptions this set has the desired property. Therefore,
we focus on nonnegativity of solution of System (3) in Ω.

• Looking for nonnegativity of the second variable, we easily see thatG(x, y) =
y(1−kh)+hxy is nonnegative/positive for nonnegative/positive x and y under
the assumption 1− kh > 0.

Hence in the following we assume that

h <
1

k
, (6)

and this is obvious that if h satis�es Inequality (6), then it also satis�es
Inequality (5), as k > µ. This means that if x0, y0 ≥ 0, then yn ≥ 0 for any
n.

• Looking for nonnegativity of the �rst variable we need to check minimal
value of the function F (x, y) in the set Ω. Calculating partial derivatives of
F (x, y), we get

∂F

∂x
= 1− hµ− hy, ∂F

∂y
= h(1− x).

If we equate these derivatives to zero, then the solution of the following set

of equations is (x, y) =
(

1, 1−hµh

)
.

In order to avoid extreme points of the function F (x, y) inside Ω, the
condition C

µ − x < y has to be ful�lled. This inequality can be written as
C
µ − 1 < 1

h − µ. Note that, due to the meaning of the parameters C and µ,

we have C >> µ, that is C
µ > 1. Hence, the above inequality is equivalent to

h <
1

C
µ − 1 + µ

. (7)

Assuming (7) the point at which F can has extremal value lies outside Ω,
so we need to check values on the boundaries of this set. We have
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• F (0, y) = hy + hC > 0 for any y ≥ 0;

• F (x, 0) = x(1− hµ) + hC > 0 for any x ≥ 0 under Assumption (6);

• F
(
x, Cµ − x

)
= f(x), where

f(x) = x(1− hµ) + hC + h(1− x)

(
C

µ
− x
)
.

We see that f is a quadratic function of x:

f(x) = hx2 + x

(
1− h

(
C

µ
+ µ+ 1

))
+ hC + h

C

µ
,

and it is obvious that f(x) > 0 for x ≥ 0 if the condition

h <
1

C
µ + µ+ 1

(8)

holds. Note that Inequality (8) is stronger than (7).

We can sum up the analysis above as follows.

Corollary 2.2 If

h < min

(
1

k
,

1
C
µ + µ+ 1

)
(9)

and (x0, y0) ∈ Ω, then solutions (xn, yn) of System (3) remain in Ω for any

n.

Let us look at Inequality (9) in the context of the basic reproduction number
R0. Note that if R0 > 1, then C

µ > k, that is C
µ + µ + 1 > k. Hence, in the

situation of the spread of epidemic Inequality (9) is equivalent to h < 1
C
µ
+µ+1

.

2.2. Local stability Let us now focus on the local stability analysis.
There are two stationary states of System (3):

• Ed = (xd, yd) =
(
C
µ , 0

)
always existing,

• Ee = (xe, ye) =
(
k, C−µkk−1

)
existing under the condition C > µk, which

is equivalent to R0 > 1.

Note that System (3) has the same stationary states as (2) (cf. [1]).
Now, we investigate conditions of local stability of these stationary states.

Let M denotes a Jacobian matrix for System (3). This matrix has the form

M(x, y) =

(
1− h(y + µ) h(1− x)

hy 1 + h(x− k)

)
.
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We start with the stability analysis of the disease-free state Ed. The Ja-
cobian matrix for this state reads

M(Ed) =

(
1− hµ h(1− xd)

0 1 + h(xd − k)

)
.

Recall that the conditions for stability of Ed are |λi| < 1, i = 1, 2. We see
that λ1 = 1 − hµ satis�es these inequalities under Assumption (5). On the
other hand, λ2 = 1−hk+hxd is positive under Assumption (9), while λ2 < 1
i� xd < k, that is R0 < 1. More precisely, we can conclude that

Corollary 2.3 If Inequality (9) is satis�ed, then the disease-free stationary

state Ed is

• a sink for R0 < 1,

• non-hyperbolic for R0 = 1,

• a saddle for R0 > 1.

Now we focus on the local stability of the endemic state Ee. We make the
analysis under the existence condition R0 > 1. The Jacobian matrix for this
state reads

M(Ee) =

(
1− h(ye + µ) h(1− xe)

hye 1

)
,

yielding characteristic polynomial of the form

P(λ) = λ2 + λ

(
h
C − µ
k − 1

− 2

)
+ 1− hC − µ

k − 1
+ h2(C − µk).

The eigenvalues of the matrix M(Ee) have the form

λ1,2 = 1− h(C − µ)±
√
δ

2(k − 1)

where δ = (C − µ)2 − 4(C − µk)(k − 1)2.

1. Assume that δ ≥ 0. Then we have two real eigenvalues λ1 ≥ λ2 and to
get stability we only need to check the inequalities −1 < λ2 and λ1 < 1.
On the other hand, for Ee to be unstable it is enough that λ1 < −1. It
is easy to see that:

λ1 < 1 for R0 > 1, that is whenever Ee exists;

λ2 > −1 for h < 4(k−1)
C−µ+

√
δ
;

λ1 < −1 for h > 4(k−1)
C−µ−

√
δ
.
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2. Assume that δ < 0, that is we have complex eigenvalues. Note that
|λ1| = |λ2| =: λ and λ1λ2 = |λ|2 = 1−hC−µk−1 +h2(C−µk). It is obvious

that |λ| < 1 for h < C−µ
(k−1)(C−µk) .

Let h1 = 4(k−1)
C−µ+

√
δ
, h2 = 4(k−1)

C−µ−
√
δ
and h3 = C−µ

(k−1)(C−µk) . Hence we obtain

the following corollary.

Corollary 2.4 If R0 > 1, then the endemic stationary state Ee exists and
is

• a sink for δ ≥ 0 and h < h1 or δ < 0 and h < h3,

• a source for δ ≥ 0 and h > h2 or δ < 0 and h > h3,

• non-hyperbolic if δ ≥ 0 and h = h1, h = h2 or δ < 0 and h = h3,

• a saddle if δ ≥ 0 and h1 < h < h2.

3. Model for a heterogeneous population In this section we consider
a population consisting of two subpopulations with di�erent risk of developing
TB: non-homeless and homeless people, as in [5]. In this case the illness is
transmitted not only among one subpopulation, but also between individuals
of di�erent subpopulations, and that is why we use the criss-cross model.
Similarly like in the two-dimensional case, each subpopulation is divided into
two groups of susceptible and infected people. Continuous model describing
the dynamics of TB epidemic considered by us in [1] reads

Ṡ1 = C1 − β11S1I1 − β12S1I2 + γ1I1 − µ1S1,
İ1 = β11S1I1 + β12S1I2 − (γ1 + α1 + µ1)I1,

Ṡ2 = C2 − β22S2I2 − β21S2I1 + γ2I2 − µ2S2,
İ2 = β22S2I2 + β21S2I1 − (γ2 + α2 + µ2)I2,

(10)

where:

• βij , i, j = 1, 2, are transmission coe�cients between speci�c groups in
a heterogeneous population; here we assume that these coe�cients are
�xed;

• αi, i = 1, 2, re�ect disease-related death rates for the non-homeless and
homeless individuals, accordingly;

• γi, i = 1, 2, are recovery coe�cients for the given subpopulation;

• µi, i = 1, 2, stand for natural death rates for each subpopulation;

• Ci, i = 1, 2, re�ect a constant in�ow of humans into the given subpopu-
lation; here they are numbers of newborn and net migrating individuals.

The values of the parameters are positive. Note that we do not consider
explicit exchange of people between the groups of non-homeless and homeless
individuals as even without such exchange the model has complex form.
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After making scaling analogous to those for System (1) (for more details
cf. [1]), and making discretization with the use of explicit Euler method, we
get

x
(1)
n+1 = x(1)n + h

(
C1 − x(1)n y(1)n − β1x(1)n y(2)n + y(1)n − µ1x(1)n

)
,

y
(1)
n+1 = y(1)n + h

(
x(1)n y(1)n + β1x

(1)
n y(2)n − k1y(1)n

)
,

x
(2)
n+1 = x(2)n + h

(
C2 − x(2)n y(2)n − β2x(2)n y(1)n + η2y

(2)
n − µ2x(2)n

)
,

y
(2)
n+1 = y(2)n + h

(
x(2)n y(2)n + β2x

(2)
n y(1)n − k2y(2)n

)
,

(11)

where x
(i)
n and y

(i)
n are the sizes of the groups within ith subpopulation at

the nth step, i = 1, 2, h is a step size of the discretization method, and
kiηi + αi + µi, i = 1, 2, η1 = 1, η2 = γ2

γ1
. Note that ki > ηi > 0.

Analogously to the two-dimensional case, we can estimate the size of each

subpopulation denoted by w
(i)
n = x

(i)
n +y

(i)
n , i = 1, 2. Adding by sides the �rst

and second equation of (11) or the third and fourth equation of (11), we get

w
(i)
n+1 = w(i)

n + h
(
Ci − µiw(i)

n − αiy(i)n
)
≤ w(i)

n + h
(
Ci − µiw(i)

n

)
, i = 1, 2.

Using the same reasoning like for System (3), we get that if

h <
1

µi
, i = 1, 2, (12)

than w
(i)
n ≤ w

(i)
0 + Ci

µi
for every n ≥ 0, meaning that each subpopulation is

upper bounded and so is the whole population. Moreover, we can state that

if Inequality (12) holds and w
(i)
0 ≤

Ci
µi
, than w

(i)
n ≤ Ci

µi
for every n ≥ 0.

Now, we rewrite System (11) in the form of discrete dynamical system
de�ning the function

F (x1, y1, x2, y2) =


F1(x1, y1, x2, y2)
F2(x1, y1, x2, y2)
F3(x1, y1, x2, y2)
F4(x1, y1, x2, y2)

 =


x1 + h (C1 − x1y1 − β1x1y2 + y1 − µ1x1)

y1 + h (x1y1 + β1x1y2 − k1y1)
x2 + h (C2 − x2y2 − β2x2y1 + η2y2 − µ2x2)

y2 + h (x2y2 + β2x2y1 − k2y2)

 ,

for which we have
(
x
(1)
n+1, y

(1)
n+1, x

(2)
n+1, y

(2)
n+1

)
= F

(
x
(1)
n , y

(1)
n , x

(2)
n , y

(2)
n

)
.

3.1. Local stability In this section we perform local stability analysis
under Assumption (12). Because of using the explicit Euler discretization
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method, stationary states of System (11) are the same as in the continuous
case and these states exist under the same conditions. The results of stationary
state analysis obtained for the continuous model were presented in [1]. We
summarize them below.

Remark 3.1 System (11) has two stationary states:

• disease-free state E1 = (x̃1, 0, x̃2, 0), where x̃i = Ci
µi
, existing if Ci > 0,

i = 1, 2;

• positive (endemic) state E2 = (x̂1, ŷ1, x̂2, ŷ2), which exists if at least one
of the following conditions hold:

1. C1 ≥ µ1k1;
2. C2 ≥ µ2k2;
3. Ci < µiki, for i = 1, 2, and (µ1k1 − C1) (µ2k2 − C2) ≤ β1β2C1C2.

Jacobian matrix of System (11), denoted by J , reads

J(x1, y1, x2, y2) =


1− h(y1 + β1y2 − µ1) h(1− x1) 0 −hβ1x1

h(y1 + β1y2) 1 + h(x1 − k1) 0 hβ1x1
0 −hβ2x2 1− h(y2 + β2y1 − µ2) h(η2 − x2)
0 hβ2x2 h(y2 + β2y1) 1 + h(x2 − k2)

 .

Let us now study the local stability of the disease-free state E1. The
Jacobian matrix for E1 reads

J1(x̃1, 0, x̃2, 0) =


1− hµ1 h(1− x̃1) 0 −hβ1x̃1

0 1 + h(x̃1 − k1) 0 hβ1x̃1
0 −hβ2x̃2 1− hµ2 h(η2 − x̃2)
0 hβ2x̃2 0 1 + h(x̃2 − k2)

 .

The characteristic polynomial of J1 reads:

P1(λ) = (1− hµ1 − λ)(1− hµ2 − λ)P2(λ),

where

P2(λ) = (1− h(x̃1 − k1)− λ)(1− h(x̃2 − k2)− λ)− h2β1β2x̃1x̃2.

The eigenvalues of the matrix J1 have the form: λ1 = 1− hµ1, λ2 = 1− hµ2
and

λ3,4 =
1

2

(
2− h

(
k1 − C1

µ1
+ k2 − C2

µ2

)
± h
√
θ
)
,

where θ =
(
k1 − C1

µ1
− k2 + C2

µ2

)2
+ 4β1β2

C1C2
µ1µ2

, and h2θ is a discriminant of

P2.
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For local stability of E1 we require |λi| < 1, i = 1, 2, 3, 4. Since Inequalities
(12) hold, we have |λ1,2| < 1. After considering the conditions for λ3,4, we can
state that the stationary state E1 is locally stable if the following inequalities

Ci < µiki, i = 1, 2, (13a)

β1β2C1C2 < (µ1k1 − C1) (µ2k2 − C2) , (13b)

h <
4

k1 − C1
µ1

+ k2 − C2
µ2

+
√
θ
, (13c)

hold. It is worth noting that Conditions (13a) and (13b) are the conditions
of stability of E1 in a model being a continuous version of (11); cf. [1]. In
our case, discretization of the continuous model with the use of explicit Euler
method requires additional condition, that is (13c) for the step size.

The local stability conditions for the endemic state E2 are hard to express
explicitly, that is why we omit them in this paper.

4. Numerical simulations Here we illustrate the dynamics of Sys-
tem (11) for the parameters which we �tted to the data from Warmian-
Masurian province of Poland. The simulations were conducted with Matlab
software. The actual epidemic data and the numerical results of model sim-
ulations were compared in order to get the best-�tted parameters, which are
presented in Table 1.

Table 1: Parameters for the model described by System (11)
Name De�nition Value

C1 Constant in�ow of humans into the
subpopulation of the non-homeless

11000

C2 Constant in�ow of humans into the
subpopulation of the homeless

60

α1, α2 Disease-related death rates 0.09

γ1, γ2 Recovery coe�cients 0.9

µ1, µ2 Natural death rate 0.009

β11 Transmission coe�cient 6.0420·10−7 (estimated)

β12 Transmission coe�cient 6.2377·10−6 (estimated)

β21 Transmission coe�cient 1.9013·10−6 (estimated)

β22 Transmission coe�cient 5.0115·10−4 (estimated)

Demographic data used in the simulations were obtained from statistical
yearbooks. The numbers of homeless people were provided by the Regional
Center for Social Policy, O�ce of the Marshall of the Warmian-Masurian
province in the city of Olsztyn in Poland. The epidemic data used for the
study were anonymized by the Independent Public Tuberculosis and Lung
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Diseases Unit in Olsztyn, Poland, and only numerical results were used. The
values of the parameters C1, C2, α1, α2, γ1, γ2, µ1 and µ2, are taken from
Central Statistical O�ce of Poland. A best-�t technique was used to estimate
the values of the transmission coe�cients βij , i, j = 1, 2. All data are fully
available without any restrictions. Comparison between the actual data and
simulated values is illustrated in Fig. 1.

2002 2004 2006 2008 2010 2012 2014 2016
100

150

200

250

300

350

400

450

year

I 1

 

 
model
data

Figure 1: Tuberculosis in the Warmian-Mazurian province over the years 2001-
2016 (number of infected non-homeless individuals). Comparison between the
actual data and the model.

5. Summary Studying stability for homogeneous population we have
shown that the su�cient conditions guaranteeing disease elimination are C <

kµ and 0 < h < min

(
1
k ,

1
C
µ
+µ+1

)
. However, these conditions do not guaran-

tee that the disease will not spread in the heterogeneous population. If con-

ditions Ci < µiki and 0 < h < min

(
1
ki
, 1
Ci
µi

+µi+1

)
, i = 1, 2 hold, but at least

one of conditions (13b) or (13c) does not hold, the disease can still spread.
Thus, our analysis suggests that disease transmission from one subpopulation
to another may signi�cantly in�uence the spread of the disease in a general
population. Even if the basic reproduction number for one subpopulation is
less than one and ensures that the infection cannot maintain itself in the cor-
responding isolated subpopulation, the disease can be transmitted from one
subpopulation to another and TB can invade the heterogeneous mixed pop-
ulation. It means that to control the spread of the illness in a heterogeneous
population it is not enough to consider the dynamics of the disease in each



114 Simple discrete SIS criss-cross model of tuberculosis

subpopulation separately. In order to eliminate the infection it is required to
consider a criss-cross dynamics of the disease spread.

In this article we have formulated a mathematical discrete model describ-
ing the dynamics of tuberculosis epidemic in heterogeneous population. The
population is divided into two subpopulations regarding di�erent risk of devel-
oping TB: homeless and non-homeless people. This paper is motivated by our
previous work, cf. [1], [2] and [5], where we investigated continuous models.

What is important is the fact that some properties of solutions and sta-
tionary states of the system discretized with the explicit Euler method are
analogous to those for the continuous system [1], especially boundedness of
solutions and the existence of stationary states. However, the precise condi-
tions for local stability of stationary states are more complicated than those
for continuous case. For discrete models the additional conditions for step size
of discretization method are needed.
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Dyskretny krzy»owy model rozprzestrzeniania si¦ gru¹licy

w niejednorodnej populacji bezdomnych i niebezdomnych

Mariusz Bodzioch, Marcin Choi«ski

Streszczenie Zaproponowany zostaª dyskretny krzy»owy model rozprzestrzeniania
si¦ gru¹licy w niejednorodnej populacji skªadaj¡cej si¦ z bezdomnych i niebezdom-
nych. Model ten oparty jest na prostym modelu typu SIS z dwuliniow¡ funkcj¡
transmisji i staªym napªywem w obu populacjach. Przeprowadzona zostaªa wst¦pna
analiza stabilno±ci stanów stacjonarnych. Pokazano, »e aby kontrolowa¢ rozprze-
strzenianie si¦ choroby zaka¹nej w niejednorodnej populacji nie jest wystarczaj¡ce
rozwa»anie dynamiki choroby w k»dej podpopulacji oddzielnie. Parametry modelu
zostaªy dopasowane do danych z województwa warmi«sko-mazurskiego.

Klasy�kacja tematyczna AMS (2010): 92B05, 34C11, 34D20, 34K60, 92C60.

Sªowa kluczowe: gru¹lica, dyskretyzacja, lokalna stabilno±¢, metoda Eulera.
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